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Abstract
A growing trend in the utilization of compliant micro-motion stages, which offer exceptional precision and repeatability
in positioning. These stages enable the creation of dual-range positioning systems, allowing for precise positioning at the
nanoscale within a centimeter-scale working area when combined with conventional stages. However, such systems often
come with a high price tag and require substantial physical space. This research presents an alternative solution in the form
of a compact, cost-effective XY micro-motion stage with dual-range manipulation to address these limitations. The primary
objective is to maintain workspace efficiency while improving positioning accuracy. This is achieved by integrating a long-
range, low-resolution linear encoder with short-range, high-resolution capacitive sensors. The linear encoder determines the
stage’s position and provides coarse positioning data, while the capacitive sensors step in to correct any positional errors,
enabling precise fine positioning. By adopting this approach, an impressive positioning precision of approximately 1.5 µm is
attained within a 3 mm × 3 mm workspace. The compliant stage is constructed using aluminum, and wire electric discharge
machining is employed. This material is well-suited for this application due to its high reversible strain and compatibility
with compliant systems.

Keywords Wire EDM ·Micro position stage · Compliant mechanism · Sensors

1 Introduction

Because they provide a variety of advantages over con-
ventional linear stages, such as solidity, cost savings, and
improved presentation, compliant XY motion stages are
viable substitutes. Such applications as micro-assembly,
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semiconductor placement, fibre alignment, and AFM scan-
ners are among the numerous sectors that employ these
stages. By combining them with micro-motion applications,
high levels of accuracy and repeatability in the nanoscale
range have been made achievable. Compliant stages are free
of backlash, friction, noise emission, and the requirement for
lubrication. They do, however, have a number of drawbacks,
including non-linear behaviour and a constrained working
space.

The literature [1–19] has reported a number of compliant
XY motion stages with motion ranges ranging from 110 to
128 mm2 and positioning accuracy ranging from 10 m to a
few nanometres. High accuracy and a sizable working area
are frequently only possible with cost effective metrology
equipment, such as ultra-high-resolution sensors and actu-
ators with enormous range capabilities. In this study, the
idea of two-range manipulation is applied in an effort to
achieve positioning accuracy of a few micrometres inside
a workspace at a reasonable cost.

The use of two sets of actuators and/or sensors inside the
same system is known as dual-range manipulation. The sec-
ond set covers a smaller area, corrects the positioningmistake
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of the coarsemechanism, and offers higher precision than the
first set, which allows placement in a wider workspace but
with less accuracy. The cost reductions, together with the
avoidance of difficult calibration requirements and stringent
manufacturing and assembly tolerances, are the key benefits
of dual-range manipulation.

The design and assembly of traditional dual-range micro-
motion stages are made simpler by the use of two serially
coupled stages. Some stages use ultra-high resolution sen-
sors, such as laser interferometers, to achieve high absolute
positioning precision across a wide range of motion. How-
ever, this strategy frequently involves high expenses and has
a detrimental effect on the environment. For instance, one
stage design [20] layers a piezo (PZT) actuated stage on
top of a DC motor-driven stage to provide a workspace of
300 mm2 with positional accuracy of 10 nm. Another step
[21] produces a workspace of 500500 mm2 with nanometer-
scale precision and a repeatability of 50 nm by using voice
coil actuators (VCAs) for fine positioning and linear motors
for coarse positioning. An alignment stage described in [22]
combines a 2-DOF coarse positioning stage powered by lin-
ear motors with a 6-DOF fine positioning stage powered by
VCAs and magnetic bearings. Within a 300mm2 area, this
combination yields precision of 10 nm and 15 nm along theX
and Y axes, respectively. A 3-DOF stage [23] with two linear
motors and four PZT actuators has an operating range of 200
mm2 with an accuracy of 13 nm. The combination of VCAs
with PZT actuators in the next step [24] results in an accu-
racy of 20 nm across a 30 mm2 working area. Additionally,
a 1-DOF stage [25] uses a VCA for fine motion and a lin-
ear motor for coarse motion to achieve positioning precision
of 10 nm across a 350 mm working range. The geometri-
cal dimensional values for the mechanism are represented in
Table 1.

However, these expensive, highly accurate, and spacious
stages are not appropriate for applications requiring the
assembly of miniature products [26, 27]. Additionally, stack-
ing two stages on top of one another adds to themovingmass,
slowing the dynamic response. As an alternative, some stages
employ capacitive sensors, which have excellent resolu-
tion and short range capabilities, enabling precise placement
[28–34]. This method involves relative positioning based on,
yet it lowers equipment expenses while keeping the same
positioning precision.

2 XYmotion stage design compliant

The design reported in reference [35] and the implementation
in reference [36] served as the foundation for the compliant
XY motion stage that is detailed in this work. The beams’
dimensions were specially designed for this stage; they were

50 mm long to maximise range of motion, 8 mm tall to main-
tain z axis stiffness and 0.8 mm thick to reduce input force
requirements. This stage is made of aluminium, a substance
recognised for its high reversible strain properties, which is
consistent with the bulk of compliant stages covered in the
literature. At both ends of the beams, rounded corners with
a radius of 0.8 mm is given to remove the factor of stress
concentration.

2.1 Dynamic analysis

Ensuring the initial natural frequency of the compliant stage
is as high as possible is critical to minimize the influence of
external vibrations. It is also preferable to maintain a signif-
icant ratio between the first two natural frequencies and the
third natural frequency. This ensures that the stiffness along
the two motion directions remains much lower than the stiff-
ness along other directions, effectively preventing undesired
motion. According to existing literature [4, 5, 10–12, 37–39],
the typical range for the ratio of stiffness in compliant stages
varies from 3 to 6.

In Fig. 1, the Lanczos Eigen solver is employed for
dynamic analysis in ABAQUS on the stage. The research
findings indicate that the first two modes correspond to con-
current vibrations along the X and Y axes at a frequency of
57.128 Hz. In the third mode, the Z-axis undergoes rotation,
with a frequency of 260.15 Hz, while the fourth mode, at a
frequency of 320.03 Hz, depicts vibrations along the Z-axis.
This is of utmost importance as the ratio between the first two
natural frequencies and the third natural frequency exceeds
4, satisfying the essential stiffness ratio criterion.

3 Manufacturing of XYmicro-motion stage

Wire electric dischargemachining is used to create themajor-
ity of the compliance stages stated in the literature. Although
pricey, this method provides flawless surface polishing and
excellent tolerances. Alternatives including laser cutting and
CNC machining were taken into consideration, but these
couldn’t mill 0.8 mm-thick beams. While CNC machining
would result in beam bending because of the applied cutting
force, laser cutting would cause the beams to melt. The stage
construction was given corners with a radius of 0.8 mm in
order to lessen stress concentration (Fig. 2). With an 18 mm
stroke, a continuous force of 73.2 N, and a force constant of
23.16 N/A, the stage is driven by two Moticont VCA (Voice
Coil Actuator). High-precision micro guides from SKF that
are preloaded are used to guide the moving coils. A 12-bit
Analog-to-Digital Converter (ADC) that can resolve position
instructions down to 1.201 m over 4 mm in both directions
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Table 1 Basic XY motion stage
geometrical dimensions Parameters Youngs modulus (MPa) σmax (MPa) Density (kg/m3) Force (N)

Variables 71,700 508 2800 0.34

Fig. 1 FEM modal analysis with
mode shapes for the mechanism

Fig. 2 XY stage designed and manufactured mechanism (37)

is produced by two drives operating the VCAs. The dis-
placement of the actuators is determined by means of two
Renishaw linear encoders with 115 nm precision.

3.1 Analysis of frequency response

Using testing apparatus that permits the stage to freely
vibrate, the frequency response of the XY motion stage is
examined as shown in Fig. 3. A 3-D accelerometer is posi-
tioned in the middle of the stage to measure the vibrations
produced along the X, Y, and Z axes by an impulse. The
accelerometer in use has a sensitivity of 115 mV/G. A Dual
Channel Accelerometer Amplifier processes the output sig-
nal from the accelerometer, and a National Instruments data
capture devicewith a 15 kHz sampling rate records the ampli-
fied signal.

The Fast Fourier Transform (FFT) technique is used
with LabVIEW software to examine the frequency domain
response of each direction of motion. Peaks may be used to

123



4400 International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:4397–4408

Fig. 3 Test setup for the
experimentation with all
components

identify the natural frequencies along each of themotion axes
by looking at the amplitude spectrum. The acquired findings
are compared to the FEA predictions after accounting for the
accelerometer’s mass.

Along the X, Y, and Z axes, the measured resonance fre-
quency is determined to be 50 Hz, whereas it is 281 Hz along
the other two axes. The associated errors are found to be 18%
along the X, Y, and Z axes and 16% along the Z axis when
compared to the FEA findings. The lack of adequate preload-
ing of the beams during screwing by themounts may account
for the disparity in measurements.

4 XY two-series locatingmicro-motion stage

A complete XY motion range is shown in Fig. 4. It is made
up of a platform that is positioned right in the centre of the
complying stage. Displacement of output stage is measured
using two small plates that are positioned on the platform as
targets. The movable mass of the stage as a whole is around
1.8 kg.

4.1 Initial position control

Aproportion-integral-derivative loop used to regulate the lin-
ear displacement of the VCAs for input position control. The
stage’s output displacement is sent back by the two linear
encoders. Two Micro-Epsilon capacitive sensor heads (CS1)
and DT controllers are employed to precisely detect the out-
put displacement. These sensors have a obtained accuracy of
0.8m across a series of 3mmand a resolution of 110 nm. Two
L12-P micro linear actuators are used to move them along a
guide rail while they are placed on a carrier. These actuators
feature a 14 mm stroke and 0.3 mm repeatability.

LABVIEW 2014 is used to control the input displace-
ments along the X and Y axes of the XY motion stage using
the analogue outputs of a Lab jack U6 Pro DAQ system.

The stage is displaced along the Y direction by a range of
0 to 4 mm during the single direction displacement test. The
findings show that there is a 7µmdisparity between the input
and output displacements. There is also a parasiticmovement
of 60 m in the transverse direction, which translates to a cou-
pling of 3% (Fig. 11). Throughout the bi-directional loading
test, the stage maintains the 3 mm input displacement along
the Y direction while gradually applying a 4 mm input dis-
placement along the X direction. The results, as shown in
Fig. 12, are consistent with the FEA predictions with a maxi-
mum error of less than 5 m for the 4 mm input displacement.
The largest parasitic displacement that has been observed is
60µm. These data validate the stage’s behaviour in compar-
ison to the projected outcomes from finite element analysis
(FEA), demonstrating the correctness and consistency of the
stage’s performance.

4.2 Two-range positioning

In the XY motion stage, a dual-range positioning method
is used to resolve the coupling and positioning inaccuracy
that have been noticed. To immediately monitor the stage’s
output displacement and correct the positioning fault, high-
resolution sensors are used. With a 12 mm stroke and a
repeatability of 0.3 mm, Firgelli L12-P micro linear actu-
ators are used to move the sensors along a guiding rail while
they are mounted on a carrier. Following are the processes
involved in the two-range positioning technique for either
direction of motion:
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Fig. 4 Developed XY stage
mechanism

1. As a coarse positioning step, the stage is first pushed into
the required location in open-loop mode.

2. Next, the moving platform is approached by the high-
resolution sensors, and the distance between them is
measured. This distance serves as the starting location
for the following phase.

3. An outside system is used to measure the positioning
inaccuracy.

4. The stage is moved in closed-loop mode utilising the
high-resolution sensors’ feedback, and the detected posi-
tioning error is used to correct the location. The step of
fine placement is this.

The output displacement of the stage is modified by a
second PID loop using information from the high-resolution
sensors. Gains are first adjusted by trial and error, and if
more fine-tuning is necessary, it may be carried out at a
later stage of development. The streamlined plant model is
shown in Fig. 5, which also shows how the PID control loop
and high-resolution sensors were integrated. This dual-range
positioning strategy improves the XY motion stage’s pre-
cision and control, providing more precise and dependable
placement for a variety of applications.

The user’s choice of theXYmotion stage’s integration into
the larger system determines which external system will be
used to measure positioning inaccuracy. To find the location
of the movable platform where a calibration grid is placed,
for instance, one possibility is to use a high-resolution vision
system. In a previous study, the positional errorwasmeasured
using a coordinate measuring machine (CMM) [36].

4.3 Selection of a sensor

It is crucial to use a high-resolution sensor, even when
doing so requires making a trade-off between measurement
precision and system cost. Table 2 uses information from
RENISHAW®, KEYENCE Ltd., and MICRO-EPSILON

Ltd. to offer a qualitative analysis of four alternative sen-
sor types for this specific application. The capacitive sensor
stands out as the best choice among these alternatives since
it strikes a balance between price and precision. As a result,
the linear actuators are utilised in conjunction with the same
sensors that were used to monitor the compliant stage’s
open-loop behaviour for the closed-loop control of precise
placement. Figure 3 shows the layout of the XYmotion stage
with dual-range arrangement.

5 Experimentation

Capacitive sensors may be used to evaluate the relative posi-
tioning precision by sensing the stage’s location directly. The
force disturbance is thought to be more severe for larger
displacements because of the nonlinear stiffness of the com-
pliant stage. Tests are conducted with input displacements of
4 mm in both directions and no deflection in either direction
in order to evaluate this. In fine positioning mode, measure-
ments from the sensors are collected during a 28-s period,
and accuracy is calculated based on the maximum oscilla-
tion amplitude after the system enters steady state.

It’s also important to keep in mind that the analog-to-
digital converter (ADC) that the data acquisition card uses to
understand position instructions only has a 12-bit resolution.
1.8 µm of incremental position resolution is the outcome. It
might be possible to achieve higher positioning precision by
using controllers with higher resolution.

The steady-state response for zero loading in both direc-
tions as no external applied forces on the mechanism as
shown in Fig. 6. It is clear that the greatest oscillation ampli-
tude is less than 0.8 m, which exceeds the capacitive sensors’
reading accuracy. Figure 7 on the other hand shows the reac-
tion at steady state for a ± 4 µm bidirectional loading. The
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Fig. 5 Control system for accurate position for the motion stage

Table 2 Description of the
sensors Type of sensor Accuracy Range of sensing Economy Sensitivity

LVDT – *** *** ***

Eddy current * – – ***

Capacitance *** – * *

Interferometer *** ** – *

Fig. 6 X and Y axis positioning output readings from the capacitive
sensors (initial 0 mm)

oscillation’s amplitude grows until it reaches± 4µmdemon-
strating the presence of nonlinearities brought on by the
compliant stage.

Fig. 7 X and Y axis positioning output readings from the capacitive
sensors (final 4.0 mm)

The design, characterization, and production of an alu-
minium compliant XY micro-motion stage. With a coupling
ratio of 2.9%, it provides a travel range of around 4 mm in
both the X and Y axes. The working area and stiffness results

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:4397–4408 4403

Fig. 8 Buckling point load applied in X direction

from the simulation are in good agreement with those from
the finite element analysis (FEA). Amaximum displacement
inaccuracy of 75 m was noted during the coarse positioning
mode evaluation of the micro-motion stage.

5.1 Analysis of displacement versus force

The actuators are sized and the stage’s travel range is deter-
mined using FEA analysis utilising ABAQUS. A buckling
analysis and a stress/strain analysis make up the analysis.

The travel range of the stage is determined by the buckling
analysis, which identifies the buckling point of the beams.
Short beams may need to be subjected to much higher pres-
sures than necessary to attain the material’s yield strength
before they buckle. Buckling, however, could happen before
the yield strength is attained for longer or thinner beams.
In this instance, buckling is observed at the inner beams
Fig. 8 and the stage’s difference between input and output dis-
placement considerably widens when the stress at the centre
abruptly increases. The buckling point is predicted to occur
at a displacement input of about 4.257 mm, or a force input
of 363.123 N, in accordance with Fig. 9.

The input displacement is gradually delivered on one side
of the stage until the material’s yield strength is attained
before continuing with the stress/strain analysis. Throughout
this evaluation, the output displacement, maximum stress,
and response force are noted. In this specific instance, the
reaction force of 210.011Nand the yield strength of 514MPa
are attained with an input displacement of 3.4025 mm. Thus,
the stage’s travel range is primarily constrained by the yield
strength of the aluminium.

The final design limits the travel range in the x and y axes
to 3 mm in order to guarantee a long fatigue life and reduce

Fig. 9 Response of large displacement for the stress versus displace-
ment

Fig. 10 X Y stage direction deformation for the motion stage

the needed force input. The input force associated with this
restriction is approximately 70 N.

The axial deformation of the inner parallelogram beams is
taken into account as well as a comparison of the output dis-
placement to the input displacement. This distortion causes
a little discrepancy between the output and input displace-
ments. According to the data, the discrepancy between input
and output displacements can be as much as 7 µm for input
displacements between 0 and 4 mm.

5.2 Coupling analysis

For a compliant stage, minimising cross-coupling between
the axes of motion is preferred. A computation is done to
determine the parasitic displacement in the Y direction when
a load is applied in the X direction in order to explore this. In
the beginning, as represented in Fig. 10, a input displacement
of 3 mm is applied along the Y direction. According to the

123



4404 International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:4397–4408

Fig. 11 One direction estimation of parasitic displacement for XY load-
ing

Fig. 12 Error for the XY displacement

calculations, a coupling of 5% corresponds to a maximum
parasitic displacement of 75 µm (Fig. 11). Then, a 4 mm
input displacement along the X direction is progressively
applied. According to the findings, the greatest Y-direction
displacement error is 71 µm (Fig. 12).

5.3 Force–displacement test

The relationship between input displacement and the corre-
sponding response forcewas investigated in this study.While
the X-axis remained fixed, the input displacement was varied
along the Y-axis within the range of 0 to 4 mm. To measure
the positions of the Variable Compliance Actuator (VCA),
linear encoders were employed since the servo motors incor-
porated current sensors [40–55]. The force was subsequently
determined using the VCA’s force constant, and the results,

Fig. 13 One direction stiffness for the mechanism

depicted in Fig. 13, reveal that the primary source of initial
force inaccuracies can be attributed to internal friction in the
bearings, which can be considered negligible [56–61]. When
compared to the Finite Element Analysis (FEA) results, the
largest force discrepancy, occurring at a 3 mm displacement,
amounts to 14%. When trying to find answers to the numer-
ous issues that are encountered in the manufacturing sector,
there are awidevariety of approaches andmethods that canbe
tried [62–70]. In the beginning, the experimental methodwas
utilized to solve a broad variety of issues that were connected
to the manufacturing sector [71–85]. As a result of develop-
ments in technology, the experimental procedures can now
be evaluated, and the outcomes of those tests can be antic-
ipated, prior to the methodologies actually being put into
exercise [86–100] The characterization strategies and pro-
cedures that are utilized by a variety of specialists in the
course of the component manufacture are essential to mak-
ing a significant contribution to the fields of materials and
manufacturing [101–111].

6 Conclusions

A system of dual-range manipulation has been developed,
utilizing capacitive sensors to enhance positioning accuracy
significantly. In themost challenging scenarios, relative loca-
tion accuracy has been improved to less than ± 4 µm. The
implementation of sensors with even higher resolution and
advanced motor controllers is expected to further reduce this
level of inaccuracy. These findings underscore the substantial
potential of dual-range positioning for creating small, cost-
effective, and exceptionally precise micro-motion systems.
Incorporating this stage into a hybrid system for assembling
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miniature products will further expand its range of applica-
tions.
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