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Abstract
Composites play a significant role in societal development. Therefore, the machining of composites is a significant topic of
interest among the research community. In this context, this work uses stir-casted composite (Al-6061 alloy with graphene
powder (5%), and nano-TiO2 (10%)) as a workpiece. Depth of cut, cutting speed, and feed rate were considered significant
factors at three levels. The experimental design was formulated based on Taguchi’s design of experiment (DOE) and used
an L9 orthogonal array. The process’s output characteristic was measured in terms of surface roughness (Ra) using a Surface
Roughness Tester. The regression analysis has been applied to determine the best process parameters with little trial and error.
The likelihood estimator (lambda) was calculated using the Box-Cox transformation, yielding a powerful regression equation.
The estimated values from the regression equation and the observed values were quite close to one another. A 0.687 Ra value
was achieved with a 1 mm depth of cut, 1000 rpm spindle speed, and a 50 mm/min feed rate. To produce the smallest possible
discrepancy between observed and anticipated values, the ’hyperparameter’ of the regression equation was fine-tuned. The
maximum likelihood estimator value of lambda was found to be 2, with a mean error of 0.03%. The variance inflation factor
was also found to be 1.00, which justifies the correctness of the equation.
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1 Introduction

Aluminium and its alloys commonly exhibit notable multi-
property characteristics, including a high strength-to-weight
ratio, excellent heat conductivity, and effective resistance
against corrosion, under typical circumstances. As a conse-
quence, these materials may be implemented across a wide
range of industries. Notwithstanding their notable attributes,
these materials have notable drawbacks like diminished
mechanical strength, inadequate wear resistance, and subpar
corrosion resistance when exposed to submerged water envi-
ronments [1–4]. The utilization of aluminium-based metal
matrix composites (MMCs) is a viable solution to mitigate
these limitations. In order to acquire the requisitemechanical,
physical, chemical, or thermal characteristics, metal matrix
composites (MMCs) fundamentally amalgamate twoormore
components at the macroscopic level. They are widely uti-
lized in many industries such as manufacturing electrical
equipment, automotive, marine, and aerospace, owing to
their distinctive characteristics [5–7]. Ceramic materials are
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commonly employed as reinforcement in composites due
to their ability to increase the essential characteristics of
the composites [8–10]. The Al-6082 alloy (Si) is primarily
composed of two prominent alloying elements, namely mag-
nesium (Mg) and silicon. The alloy has moderate mechanical
strength and high resistance to air corrosion. It is commonly
utilized as a construction material for architectural elements
necessitating substantial structural integrity, such as cranes,
bridges, and trusses [11–13]. Likewise, Al-6061 is a widely
recognized aluminium alloy renowned for its exceptional
ratio of strength to weight, commendable resistance to cor-
rosion, and favorable weldability. When the combination of
titanium dioxide (TiO2) and graphene is utilized, it intro-
duces novel opportunities and augments its characteristics
for diverse applications. Several uses of this material may
be observed in various industries such as Aerospace and
Aviation, Automotive Industry, Marine and Offshore Indus-
tries, Sports Equipment, Medical Devices, and other sectors
[14–16].

To evaluate the performance efficiencies and mechanical
properties of aluminium and aluminium-based matrix com-
posites, numerous research-related activities and evaluations
have been conducted [17–20]. The literature demonstrates
that the creation of composite materials can enhance the
hardness, wear, and corrosion characteristics of MMCs
based on aluminium. By using ceramic components, alu-
minium composites were created. The results of the literature
review revealed that adding ceramic components not only
increased the composite’s macro and micro hardness but
also considerably increased itswear and corrosion resistance.
The stir-casting procedure is one of the most used meth-
ods for creating composites. Ceramics made of Titanium
Dioxide (TiO2), and Graphene powder, which are tough,
can be utilized as reinforcement for composite materials.
Additionally, it has good qualities for resisting corrosion
[21–23]. Researchers are actively working on research on
the impacts of TiO2 and graphene powder in composites
for corrosion resistance and enhancing thermal and electri-
cal conductivity. However, TiO2 and graphene powder has a
well-established history of usage as a hardening reinforce-
ment, and it has been studied to determine the effect of
produced metal composites on various properties [24–26].
With the use of SEM examination, the microstructure of the
TiO2 and Graphene powder-reinforced MMC is thoroughly
examined. The results have revealed numerous modifica-
tions in the mechanical characteristics of TiO2 and Graphene
powder-enhanced MMCs [27–29]. This reinforcement has
generally improved the mechanical properties of the pro-
duced composites, which is a good thing. According to
studies, TiO2 and Graphene powder has a more favourable
impact on mechanical characteristics including hardness
and compressive strength. Studies have revealed that the
increased hardness of TiO2 and Graphene powder reinforced

composites also enhances their tribological characteristics
[30, 31]. According to research, TiO2 and Graphene powder
are largely utilized to enhance the mechanical and tribologi-
cal characteristics of composite materials [32, 33].

It is necessary to investigate the extent of the post-
processing technique’s operational parameters [34–36]. The
needed surfacefinish canbe producedby choosing the correct
operating parameter values. Numerous tests and testing of
the specimens may be necessary due to the wide variation in
the number of parameters and their range [37–39]. Taguchi-
Design of experiments (T-DoE), an optimization technique,
is used to get around this laborious process [40–42]. By using
this technique, it is possible to identify the post-processing
settings that are most effective at giving coated surfaces the
desired surface finish [42–44]. Experimentation and surface
roughness testing can be used to validate the optimal values.
A surface coating with a high-quality surface finish is pro-
duced as a result of using the best post-processing settings
[45–47].

The ideal values of the process parameters were obtained
using optimization techniques. Researchers have used a
variety of techniques for process parameter optimization,
including turning of AISI 5140 for flank wear, cutting forces
and vibration [48, 49], plasma arc cutting [50], welding of
similar and dissimilar metals [51–54], fused filament fab-
rication for part geometry accuracy [55], dry sliding wear
characteristics [56, 57], forming process [58], and cold
rolling for improved surface characteristics [59]. According
to the literature, a variety of methodologies can be used for
process parameter optimization, however, Taguchi analysis
is the most effective in terms of the outcomes.

In their study, Fang and Hong [60] explored various
transformations of the response variable and subsequently
developed estimation and confidence intervals for the result-
ing non-linear model’s uncertainty. In the context of the
Box-Cox model with general uncertainty, the utilization of
the uncertain least squares method for estimation may result
in a flawed estimate due to the transformation parameter
approaching negative infinity and zero. This issue arises due
to the tendency of the aforementioned parameters towards
these limiting values. Liu et al. [61–63] proposed the rescaled
least squares estimation (RLSE) method to obtain results
for the uncertainty Box-Cox regression model. However,
it should be noted that this method is only applicable to
the Box-Cox transformation and cannot be used for a gen-
eral uncertain model [64]. An alternative methodology is
the uncertain maximum likelihood estimation (MLE), which
has been proposed in recent literature. The authors Lio [61]
and Liu [62] introduced the maximum likelihood estimation
(MLE) approach for the continuous uncertainty model and
implemented it in the context of the uncertainty linear regres-
sion model.
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The present study aims to enhance the surface finish and
minimize the surface roughness of the Al alloy composite
subjected to turning operation byoptimizing theCNC turning
operating parameters. The optimization of operating param-
eters, namely Depth of Cut (DoC), Spindle Speed (SS), and
Feed Rate (FR), will be carried out through the utilization of
Taguchi analysis in combination with the Single-Response
Performance Index (SPI). Acquiring the regression equation
that is fine-tuned with hyperparameters to accurately predict
the surface roughness at a high level. The nature of the data
plot is heteroscedastic, indicating that the variables are unbi-
ased.

The utilization of analysis of variance (ANOVA) is a
prevalent method for optimizing process parameters since
it aids in the creation of regression equations. The primary
objective of this study is to enhance optimization by employ-
ing the Box-Cox transformation technique and determining
the maximum likelihood value (lambda ‘λ’) to assess sta-
tistical significance (P-value). Following this, the variance
inflation factor (VIF) is calculated, which functions as a
quantitative measure for evaluating the existence of multi-
collinearity in regression analysis.

2 Materials andmethods

The composite material consists of the matrix material and
the matrix material selected for this study was the aluminium
alloy Al-6061. Of all the aluminium alloys, Al-6061 alloy
offers the highest strength and ductility as well as outstand-
ing machinability, good bearing, and wear characteristics.
Additionally, it has a low weight, a good strength-to-weight

ratio, and great open-air corrosion resistance. The automo-
bile, aerospace, and marine sectors all make extensive use of
it. Its lack of mechanical strength restricts its application. In
order to make the use of aluminium alloy in high-strength
bearing applications in the automotive and aerospace sectors
simpler, extensive research on the material has been done
through the creation of MMCs [11]. The composition of Al-
6061 is shown in Table 1, and its mechanical properties are
shown in Table 2.

Based on the existing body of research, ongoing efforts
are being made to develop metal matrix composites (MMCs)
with aluminium as the primary constituent, with the aim of
catering to a diverse array of applications. The utilization of
titanium dioxide (TiO2) as reinforcement has been proven to
enhance the necessary strength [21]. Graphene powder (C)
is also used as a reinforcement as it is a good conductor of
electricity and a good conductor of heat, due to the pres-
ence of free electrons. Obtaining the hyperparameter-tuned
regression equation that predicts the surface roughness with
high-level accuracy. The data plot is to be heteroscedasticity
in nature, so the variables are not biased [27]. The mechani-
cal properties of reinforcements are shown in Table 3. A flow
chart to express the research work is shown in Fig. 1.

2.1 CNC turning operation

The present investigation aims to explore the optimization of
CNC turning operation parameters that influence the diminu-
tion of surface roughness and enhancement of surface finish
in machined composites. Figure 2 depicts the workpiece
mounted on theCNCmachine formachining. Themachining
operations were carried out using the CNC lathe CLT100.
This CNC machine is flatbed type, with a Fanuc emulated

Table 1 Composition of Al-6061

Element Al Mg Si Fe Cu Cr Zn Ti Mn Others

% by Wt (Minimum) 98.85 0.8 0.4 0 0.15 0.04 0 0 0 0

% by Wt (Maximum) 98.56 1.2 0.8 0.7 0.4 0.35 0.25 0.15 0.15 0.15

Table 2 Mechanical properties of
Al-6061 Property Density Youngs

modulus
Tensile strength Percentage of

elongation
Poisson’s
ratio

Magnitude 2.70
gm/cm3

68 GPa 124–290 MPa 12–25% 0.33

Table 3 Mechanical properties of
Titanium Dioxide and Graphene Property Density Youngs modulus Tensile strength Poisson’s ratio

TiO2 0.00397–0.00405 mg/m3 230–288 GPa 333.3–367.5 MPa 0.27–0.29

Graphene (C) 2.25 gm/cm3 2.4 TPa 130 GPa 0.19
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Fig. 1 Research study flowchart

keyboard. The chuck is manual with a maximum size of
100 mm dia. The CNC controller is ‘Cutviewer’, operat-
ing software which is a PLC-based controlled system. The
CNC machine is automatic with a stepper motor with step-
per drives. The Taguchi analysis was utilized together with

the Single-Response Performance Index (SPI) to optimize
the Depth of Cut (DoC), Spindle Speed (SS), and Feed Rate
(FR) operating parameters. The optimization of operating
parameters was carried out to achieve the desired surface
finish.

2.2 Design of experiments using Taguchi method
(T-DoE)

The turning process parameters of the CNC lathe must be
optimized in order to improve the surface quality finish of
composite materials. The present investigation involved the
utilization of Taguchi analysis for the optimization of process
parameters. Figure 3 depicts the flow chart of the Taguchi
Design.

During the preliminary phase, the T-DoE methodology
relies on the number of process parameters associated with
turning operations and the number of levels at which each of
these factors is evaluated. Table 4 depicts the process param-
eters and their respective levels for the turning operation,
which have been determined in accordance with the capacity
of the CNC machine that has been selected for the purposes
of this investigation.

The determination of the optimal combination of process
parameters for turning operations, which results in the mini-
mum surface roughness (Ra), is contingent upon the number
of parameters and their respective levels. The present inves-
tigation involved the consideration of three distinct process
parameters, each with six corresponding levels. Equation 1
[59] was utilized to establish the required number of trials.

No. of Experiments � P × (L − 1) + 1 (1)

where L depicts levels and P represents parameters.
The present investigation utilized the T-DoEmethodology

and determined that a total of 9 experimental trials have been

Fig. 2 CNC Turning tool and
specimen
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Fig. 3 T-DoE flow chart

Table 4 CNC Turning Operation
Process Parameters and their
Levels

Operating process parameters Depth of cut Spindle speed Feed rate

Units (mm/cycle) (rpm) (mm/min)

Assigned variables A B C

Magnitudes Level- 1 1.0 1000 50

Level- 2 2.0 2000 75

Level- 3 3.0 3000 100

Table 5 Turning operation process parameters and their levels

Trail no Depth of cut
(mm/cycle)

Spindle speed
(rpm)

Feed rate
(mm/min)

1 1 1000 50

2 1 2000 75

3 1 3000 100

4 2 1000 75

5 2 2000 100

6 2 3000 50

7 3 1000 100

8 3 2000 50

9 3 3000 75

necessary. Orthogonal arrays of L9 and L27 are the available
options in theT-DoE, ofwhichL9 is chosen as shown inTable
5. The experimental design involved the consideration of two
replications in each run, with the response being determined
as the average of the two replications.

Fig. 4 Setup for measuring the surface roughness

2.3 Experimental setup and result measurement

Themachining operation was conducted using a single-point
cutting tool on aCNC turning centre. A rudimentary program
for text conversion has been created with the aim of schol-
arly investigation. The surface roughness test was conducted
using the Mitutoyo roughness tester as shown in Fig. 4. The
other components for the surface roughness tests include the
test specimen and an anvil. The specimen is kept over the
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Table 6 Experimental Results
with signal to noise ratio data Trial no Depth of cut

(mm/cycle)
Spindle speed
(rpm)

Feed rate
(mm/min)

Surface
Roughness
(Ra)

SNR

1 1 1000 50 0.687 3.26087

2 1 2000 75 0.876 1.14992

3 1 3000 100 1.17 − 1.36372

4 2 1000 75 1.09 − 0.74853

5 2 2000 100 1.23 − 1.79810

6 2 3000 50 1.45 − 3.22736

7 3 1000 100 1.33 − 2.47703

8 3 2000 50 1.55 − 3.80663

9 3 3000 75 1.67 − 4.45433

v-groove of the anvil so that the lateral degrees of movement
are arrested. The probe is set to be in contact with the work-
piece and the probe movement was along the length of the
workpiece. The measured results were recorded as presented
in Table 6. Signal to noise ratio was calculated by using a
smaller-is-better condition.

3 Results and discussion

By applying the ’smaller is better’ criterion to the signal-
to-noise ratio of the experimental findings, the influence of
noise has been identified. The results of the signal-to-noise
ratio (SNR) are presented in Table 6 along with the respec-
tive surface roughness values. The main effects plot of SRN
is shown in Fig. 5. The significant combination of param-
eters identified from the experimental studies using the L9

orthogonal array was the DoC � 1 mm/cycle, SS measured
1000 rpm, and FR of 50 mm/min. The plot was obtained
from the Minitab platform. The surface roughness values
constantly increased as and when the DoC, SS, and FR were
raised. This could be due to the built-up edges at the cutting
edge of the single-point HSS tool.

3.1 Mathematical modelling

For the mathematical modelling, a three-step process is used.
The Box-Cox transformation and calculation of the maxi-
mum likelihood value (lambda) for statistical significance
(P-value) are described in detail in the first step [65–67].
The variance inflation factor (VIF), a metric for evaluating
the presence of multi-collinearity in regression analysis, is
determined in the second step [68–70]. The general linear
regression is discussed in the third phase.

3.1.1 Box-Cox transformation

The utilization of the Box-Cox transformation methodol-
ogy within the field of machine learning is implemented in
order to achieve a normal distribution of the coefficients.
The variable that is influenced by the independent variable is
commonly represented as Y, while the variable that is being
manipulated or controlled is typically denoted as X � (1, x1,
x2, x3,…..xk) [71]. The Box-Cox technique presents a model
that facilitates the transformation of a non-normal distribu-
tion of data for variables A, B, and C, without reliance on the
original scale. This method aims to achieve a normal distri-
bution of the data [72].

Y BC(Y , λ) � Xβ + σ e (2)

where,
If λ �� 0

Y BC(Y , λ) � Yλ − 1 (3)

If λ � 0

Y BC(Y , λ) � Log(Y) (4)

X is the covariate matrix including intercept.
β � (β0, β1, β3, ……, βk) � vector of regression coeffi-

cients.
The random error’s variance is denoted by the symbol σ.

The stochastic error term "e" follows the normof the standard
distribution. The Box-Cox transformation is used in Eq. 3,
where the logarithm of Y reflects a particular case in which
lambda (λ) equals zero.

For estimating the parameter lambda (λ), the method
of maximum likelihood is frequently used [73]. Multiple
lambda values are used to apply themodel to the altered data;
the best lambda is then chosen since it produces the highest
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Fig. 5 Main effect plot of Signal
noise ratio

likelihood value. The fact that changing the covariates alters
the likelihood value is one problem with this approach. The
lambda argument will change as a result. Thus, the use of
Minitab software to optimize the value in order to handle
this problem was considered since it effectively uses the fit
statistic approach. Equation (2) and Eq. (3) only apply to
positive numbers, namely when Y is greater than 0. The
Yeo-Johnson distribution family should be used when the
dataset contains negative values since it can be used without
placing any restrictions on the response variable (including
negative replies). The ideal lambda value can be easily calcu-
lated in Minitab software to improve the correlation between
the variables. This improves the equation’s accuracy as well
[74].

The coefficient values for the intercept (constant), DoC,
SS, and FR are displayed in Table 7. On either side of the
scale, the values are evenly dispersed [62]. A negative num-
ber denotes the coefficients’ direction.

Figure 6(a) and (b) depict the pattern of the coefficient
values. The values aremuch closer to themean,which reflects
the tuning of the model is proceeding in the right direction
[61]. Both positive and negative correlations were noticed in
the coefficient plot. Figure 6(a) represents the lambda value
of 3. Figure 6(b) depicts the p-value trend for different values
of lambda.

Figure 6(a) and (b) shows the coefficient plot for the vari-
ables as shown in Table 8. It was noticed that the coefficients
were decreasingwith theλvalue reaching theoptimumvalue.
This signifies that the model is highly accurate and more sig-
nificant [63]. The residual plot for all the lambda values is
shown in Fig. 7(a), (b), (c), and (d).

Fig. 6 Coefficient values and their P-value trend. a Coefficient values
of the variables. b P-value trend for different values of lambda
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Table 7 Coefficient values for
different λ (hyper-parameter)
value

Parameters λ � 0 λ � 0.5 λ � 0.75 λ � 2 (Optimum)

Intercept (constant) 0.2066 0.6010 0.4042 − 0.634

Depth of cut 0.3028 0.1407 0.2186 0.7253

Spindle speed 0.000917 0.000092 0.000143 0.000472

Feed rate 0.000287 0.000440 0.000442 − 0.0218

Table 8 P-values for different λ
(hyper-parameter) value Parameters λ � 0 λ � 0.5 λ � 0.75 λ � 2 (Optimum)

Intercept (constant) 0.071 0.0 0.003 0.003

Depth of cut 0.0 0.0 0.0 0.0

Spindle speed 0.0 0.001 0.001 0.0

Feed rate 0.753 0.450 0.569 0.114

Histogram in the residual plot shows the frequency dis-
tribution. The histogram [Fig. 7 (d)] for the λ value of 2.0,
is distributed uniformly across both sides partially. Although
the histogram is not perfect it is still within the acceptable
range. Heteroscedasticity data was noticed in the verses fit,
which is a clear sign of being unbiased. The linearity in the
normal probability plot passes over all the residual points
with minimum error, which is also a good fit. A two-way
residual distribution was observed in the versus order.

3.1.2 Variance inflation factor

Variance Inflation Factor (VIF) determines the strength of
the correlation between the independent variables. It is pre-
dicted by taking a variable and regressing it against every
other variable. The R2 value is determined to find out how
well an independent variable is described by the other inde-
pendent variables. A high value of R2 means that the variable
is highly correlated with the other variables [68, 69, 75]. This
is captured by the VIF, denoted by the Equation,

TheVariance Inflation Factor (VIF) is a statisticalmeasure
used to assess the degree of correlation among indepen-
dent variables. Performing a regression analysis of a variable
against all other variables results in the prediction. The R2

value is utilized to assess the degree towhichone independent
variable is explained by the remaining independent variables.
A strong correlation between a variable and its peers is indi-
cated by a high R2 [65, 66, 76]. The aforementioned concept
is quantified by the Variance Inflation Factor (VIF), repre-
sented by the following equation:

V I F � 1

1 − R2 (5)

If the VIF value is lesser than 5, then the model is said
to have low multicollinearity between the independent vari-
ables. Similarly, if the VIF value is between 5 to 10, then the

model has high collinearity, and the variables can be further
tuned to fit the data. However, if the VIF value is above 10,
it is removed or deleted from the data set as they are highly
multicollinear. As shown in Table 9, the regression model
exhibits the VIF value to be lesser than 5, which indicates
that the factors are acceptable.

3.1.3 Linear regression

The regression equation denotes the statistical association
between different independent variables and a response vari-
able. Equation 5 represents the general regression equation.

Y � β0 + β1(A) + β2(B) + β3(C) (6)

The aforementioned equation pertains to a linear regres-
sion model where Y represents the response variable, which
in this case is surface roughness. β0 denotes the intercept
or constant, while β1, β2, and β3 are the regression coeffi-
cients. The independent variables in question are denoted as
"DoC," "SS," and "FR," represented by the letters A, B, and
C, respectively. The linear regression equations for the vari-
able ’Surface Roughness (SR)’ were derived and expressed
as Eqs. 6, 7, 8, and 9 for the lambda values of 0, 0.5, 0.75,
and 2.0.

SR � 0.2066 + 0.3028(DC) + 0.000197(SS)

+ 0.000287(FR) (7)

SR0.5 � 0.6010 + 0.1407(DC) + 0.000092(SS)

+ 0.000440(FR) (8)

SR0.75 � 0.4042 + 0.2186(DC) + 0.000143(SS)

+ 0.000442(FR) (9)
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(a). Residual plot of the variables λ = 0.0
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(b). Residual plot of the variables λ = 0.5
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Fig. 7 Residual plots. a Residual plot of the variables λ � 0.0. b Residual plot of the variables λ � 0.5. c Residual plot of the variables λ � 0.75.
d Residual plot of the variables λ � 2.0
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(c). Residual plot of the variables λ = 0.75
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(d). Residual plot of the variables λ = 2.0
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Table 9 Variance Inflation Factor
Parameters λ � 0 λ � 0.5 λ � 0.75 λ � 2

(Optimum)

Intercept (constant)

Depth of Cut 1.00 1.00 1.00 1.00

Spindle Speed 1.00 1.00 1.00 1.00

Feed rate 1.00 1.00 1.00 1.00

Table 10 Experimental and
predicted Surface roughness
value with defined boundaries
using 95% CI

Exp
No

Depth of
cut (mm)

Spindle
Speed
(rpm)

Feed
rate

Experimental
Ra (μm)

Predicted
Ra (μm)

Upper
limit Ra
(μm)

Lower
Limit Ra
(μm)

1 1 1000 50 0.687 0.674 0.560 0.771

2 1 2000 75 0.876 0.934 0.882 0.983

3 1 3000 100 1.170 1.135 1.072 1.195

4 2 1000 75 1.090 1.061 1.015 1.104

5 2 2000 100 1.230 1.242 1.203 1.279

6 2 3000 50 1.450 1.457 1.416 1.498

7 3 1000 100 1.330 1.340 1.287 1.391

8 3 2000 50 1.550 1.542 1.502 1.580

9 3 3000 75 1.670 1.672 1.635 1.707

Fig. 8 Predicted value between upper and lower limit

SR2 � −0.634 + 0.7253(DC) + 0.000472(SS)

− 0.00218(FR) (10)

The model summary of the predicted values is expressed
in Table 6. The surface roughness values predicted after
substituting in Eq. (7) are verymuch close to the actual exper-
imental values and also well within the defined upper limit
and lower limit. The predicted surface roughness values are
fitted by assuming a 95% Confidence Interval (CI) for each
variable. Table 10 displays the surface roughness values that
were obtained through experimentation and prediction,while
also taking into account defined boundaries and a 95% confi-
dence interval. The graphical representation in Fig. 8 depicts

the predicted value of surface roughness within the range of
the upper and lower limits.

4 Conclusions

The experimental process parameter combination is done
by Taguchi design of experiment. L9 Orthogonal array was
selected, and the experimental combinations were framed
by using Minitab. The predicted surface roughness was
very much aligned with experimental results. This high-level
accuracy was able to be established only after optimizing the
hyperparameter lambda (λ). The following conclusions are
drawn:

• The optimum λ value � 2 was determined using the
box-cox transformation machine learning technique. This
equationwas further used for experimental data validation.
Using a Bix-Cox transformation and an optimal lambda
value can help improve the performance of statistical
models and enhance the validity of their predictions or
estimations, particularly when the assumptions of those
models are violated due to skewed or non-normal data
distributions. By applying the Box-Cox transformation
with the optimal λ value of 2, improved performance was
achieved in the statistical model and enhanced the valid-
ity of its predictions or estimations. This transformation
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effectively addressed any issues related to skewed or non-
normal data distributions, allowing the statistical model to
make more accurate predictions and estimations.

• The coefficients also have equal contributions andwere not
biased. This proves that the regression equation built by
using the optimum lambda value using box-cox transfor-
mation techniques has higher accuracy and high-reliability
confidence. This approach of using the Box-Cox trans-
formation technique with the optimal lambda value has
not only enhanced the accuracy of the regression model
but has also boosted its reliability and confidence. This
demonstrates the effectiveness of experimental design,
data preprocessing, and model-building processes.

• Obtained regression equation (Eq. 9) had a mean error of
0.03%, which was closer to the measured value. Having a
mean error of only 0.03% in the obtained regression equa-
tion is a remarkable realization.A lowmean error indicates
that the predictions made by the regression model are very
close to the actual measured values. This level of accuracy
is desirable and suggests that your regressionmodel is per-
forming exceptionally well in capturing the relationships
between the predictors and the response variable.
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49. Adin, M.Ş, İşcan, B.: Optimization of process parameters of
medium carbon steel joints joined by MIG welding using Taguchi
method. Eur. Mech. Sci. 6(1), 17–26 (2022)

123

https://doi.org/10.1049/IET-RPG.2018.5142
https://doi.org/10.1016/J.MATCHEMPHYS.2023.127661
https://doi.org/10.1016/J.AEUE.2018.09.014
https://doi.org/10.1016/J.JNONCRYSOL.2022.121466
https://doi.org/10.1016/J.MSEB.2022.115972
https://doi.org/10.1088/1757-899X/225/1/012262
https://doi.org/10.1109/ACCESS.2019.2902979
https://doi.org/10.1016/J.COMPSTRUCT.2021.115127
https://doi.org/10.1007/S11709-014-0247-9/METRICS
https://doi.org/10.1016/J.JALLCOM.2019.151925
https://doi.org/10.1088/2053-1591/AB26BE
https://doi.org/10.1063/1.4870260/24501
https://doi.org/10.1016/j.matpr.2020.09.742
https://doi.org/10.1016/J.MATLET.2022.133680
https://doi.org/10.1142/S0218625X23400012
https://doi.org/10.1186/S40537-017-0082-7/TABLES/7
https://doi.org/10.1016/J.JHAZMAT.2020.124493
https://doi.org/10.1109/ICIRCA48905.2020.9183373
https://doi.org/10.1016/J.PHYSB.2019.411976
https://doi.org/10.1016/J.MATCHAR.2023.112863
https://doi.org/10.1016/J.MTPHYS.2022.100851
https://doi.org/10.1016/J.JESTCH.2019.01.015
https://doi.org/10.1016/J.CERAMINT.2022.12.263
https://doi.org/10.1080/01694243.2023.2221391
https://doi.org/10.1080/15376494.2023.2240319
https://doi.org/10.1016/J.MATPR.2020.07.383


3382 International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:3369–3382

50. Behera, A.: Optimization of process parameters in laser welding of
dis-similar materials. Mater. Today Proc. 33, 5765–5769 (2020).
https://doi.org/10.1016/J.MATPR.2020.07.148

51. Nath, P., Olson, J.D., Mahadevan, S., Lee, Y.T.T.: Optimization
of fused filament fabrication process parameters under uncertainty
to maximize part geometry accuracy. Addit. Manuf. 35, 101331
(2020). https://doi.org/10.1016/J.ADDMA.2020.101331

52. Yadav,G.P.,Bandhu,D.,Krishna,B.V.,Gupta,N., Jha, P.,Vora, J.J.,
Mishra, S., Saxena, K.K., Salem, K.H., Abdullaev, S.S.: Exploring
the potential of metal-cored filler wire in gas metal arc welding for
ASME SA387-Gr. 11-Cl. 2 steel joints. J. Adhesion Sci. Technol.
15, 1–22 (2023)

53. Bandhu, D., Vora, J.J., Das, S., Thakur, A., Kumari, S., Abhishek,
K., Sastry, M.N.: Experimental study on application of gas metal
arc welding based regulated metal deposition technique for low
alloy steel. Mater. Manuf. Process. 37, 1–19 (2022). https://doi.
org/10.1080/10426914.2022.2049298

54. Dinbandhu, V.P., Vora, J.J., Abhishek, K.: Advances in gas metal
arc welding process: modifications in short-circuiting transfer
mode. Adv. Weld. Deform. 17, 67–104 (2021). https://doi.org/10.
1016/b978-0-12-822049-8.00003-7

55. Nagendra, J., Srinath, M.K., Sujeeth, S., Naresh, K.S., Ganesha
Prasad, M.S.: Optimization of process parameters and evalua-
tion of surface roughness for 3D printed nylon-aramid composite.
Mater. Today Proc. 44, 674–682 (2021). https://doi.org/10.1016/J.
MATPR.2020.10.609

56. Aslan, A.: Optimization and analysis of process parameters for
flank wear, cutting forces and vibration in turning of AISI 5140:
a comprehensive study. Measurement 163, 107959 (2020). https://
doi.org/10.1016/J.MEASUREMENT.2020.107959

57. Nagendra, J., Prasad,M.S.G., Shashank, S., Ali, S.M.: Comparison
of tribological behavior of nylon aramid polymer composite fabri-
cated by fused deposition modeling and injection molding process.
Int. J. Mech. Eng. Technol. 9, 720–728 (2018)

58. Prabhu, P.R.,Kulkarni, S.M., Sharma, S.:Multi-response optimiza-
tion of the turn-assisted deep cold rolling process parameters for
enhanced surface characteristics and residual stress of AISI 4140
steel shafts. J.Mater. Res. Technol. 9, 11402–11423 (2020). https://
doi.org/10.1016/J.JMRT.2020.08.025

59. Srinath, M.K., Nagendra, J.: Post-processing parameter optimiza-
tion to enhance the surface finish of HVOF-developed coatings.
MultiscaleMultidiscipModel Exp.Des. 5, 255–267 (2022). https://
doi.org/10.1007/S41939-022-00116-X/FIGURES/9

60. Fang, L., Hong, Y.: Uncertain revised regression analysis with
responses of logarithmic, square root and reciprocal transforma-
tions. Soft. Comput. 24, 2655–2670 (2020). https://doi.org/10.
1007/s00500-019-03821-x

61. Lio, W., Liu, B.: Residual and confidence interval for uncertain
regressionmodel with imprecise observations. J. Intell. Fuzzy Syst.
35, 2573–2583 (2018). https://doi.org/10.3233/JIFS-18353

62. Lio, W., Liu, B.: Uncertain data envelopment analysis with impre-
cisely observed inputs and outputs. Fuzzy Optim. Decis. Mak. 17,
357–373 (2018). https://doi.org/10.1007/S10700-017-9276-X/TA
BLES/2

63. Lio, W., Liu, B.: Uncertain maximum likelihood estimation with
application to uncertain regression analysis. Soft. Comput. 24,
9351–9360 (2020). https://doi.org/10.1007/S00500-020-04951-3/
TABLES/2

64. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat.
Soc. Ser. B 26, 211–243 (1964). https://doi.org/10.1111/J.2517-
6161.1964.TB00553.X

65. Vyas, U.B., Shah, V.A.: Optimisation based 3-dimensional poly-
nomial regression to represent lithium-ion battery’s open circuit
voltage as function of state of charge and temperature. J. Energy
Storage. 50, 104656 (2022). https://doi.org/10.1016/J.EST.2022.
104656

66. Raj Bukkarapu, K., Krishnasamy, A.: Support vector regression
approach to optimize the biodiesel composition for improved
engine performance and lower exhaust emissions. Fuel 348,
128604 (2023). https://doi.org/10.1016/J.FUEL.2023.128604

67. Wang, P., Feng, Y., Chen, Z., Dai, Y.: Study of a hull form optimiza-
tion system based on a Gaussian process regression algorithm and
an adaptive sampling strategy part I: single-object optim. Ocean
Eng. 279, 114502 (2023). https://doi.org/10.1016/J.OCEANENG.
2023.114502

68. Gupta, A.K., Guntuku, S.C., Desu, R.K., Balu, A.: Optimisation of
turning parameters by integrating genetic algorithm with support
vector regression and artificial neural networks. Int. J. Adv. Manuf.
Technol. 77, 331–339 (2015)

69. Sumayli, A.: Development of advanced machine learning models
for optimization of methyl ester biofuel production from papaya
oil: Gaussian process regression (GPR), multilayer perceptron
(MLP), and K-nearest neighbor (KNN) regression models. Arab.
J. Chem. 16, 104833 (2023). https://doi.org/10.1016/J.ARABJC.
2023.104833

70. Fazla, A., Aydin,M.E., Kozat, S.S.: Joint optimization of linear and
nonlinear models for sequential regression. Digit. Signal Process
Rev. J. 132, 103802 (2022). https://doi.org/10.1016/j.dsp.2022.10
3802

71. Chandrashekar, R., Kumar, B.: Experimental investigation on
energy saving potential for thermally activated buildings integrated
with the active cooling system. Energy Sour. Part A Recov. Util.
Environ. Eff. 44, 7585–7597 (2022). https://doi.org/10.1080/1556
7036.2022.2116132

72. Grote-Ramm,W., Lanuschny, D., Lorenzen, F., Oliveira Brito, M.,
Schönig, F.: Continual learning for neural regression networks to
cope with concept drift in industrial processes using convex opti-
misation. Eng. Appl. Artif. Intell. 120, 105927 (2023). https://doi.
org/10.1016/J.ENGAPPAI.2023.105927

73. Yuan, H., Wang, M., Zhang, J., Zhang, Y., Lu, X.: Integrated
optimization of a high-lift low-pressure turbine cascade based on
dynamic support vector regression. Aerosp. Sci. Technol. 131,
107986 (2022). https://doi.org/10.1016/J.AST.2022.107986

74. Bickel, P.J., Doksum, K.A.: An analysis of transformations revis-
ited. J. Am. Stat. Assoc. 76, 296–311 (1981). https://doi.org/10.
1080/01621459.1981.10477649

75. Rajput, C., Kumari, S., Prajapati, V., Dinbandhu, Abhishek, K.:
Experimental investigation on peel strength during ultrasonicweld-
ing of polypropylene H110MA. In:Materials Today: Proceedings.
pp. 1302–1305. Elsevier (2020). https://doi.org/10.1016/j.matpr.
2020.02.259.

76. Peeters, J., Louarroudi, E., Bogaerts, B., Sels, S., Dirckx, J.J.J.,
Steenackers, G.: Active thermography setup updating for NDE: a
comparative study of regression techniques and optimisation rou-
tines with high contrast parameter influences for thermal problems.
Optim. Eng. 19, 163–185 (2018). https://doi.org/10.1007/S11081-
017-9368-Z/TABLES/7

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/J.MATPR.2020.07.148
https://doi.org/10.1016/J.ADDMA.2020.101331
https://doi.org/10.1080/10426914.2022.2049298
https://doi.org/10.1016/b978-0-12-822049-8.00003-7
https://doi.org/10.1016/J.MATPR.2020.10.609
https://doi.org/10.1016/J.MEASUREMENT.2020.107959
https://doi.org/10.1016/J.JMRT.2020.08.025
https://doi.org/10.1007/S41939-022-00116-X/FIGURES/9
https://doi.org/10.1007/s00500-019-03821-x
https://doi.org/10.3233/JIFS-18353
https://doi.org/10.1007/S10700-017-9276-X/TABLES/2
https://doi.org/10.1007/S00500-020-04951-3/TABLES/2
https://doi.org/10.1111/J.2517-6161.1964.TB00553.X
https://doi.org/10.1016/J.EST.2022.104656
https://doi.org/10.1016/J.FUEL.2023.128604
https://doi.org/10.1016/J.OCEANENG.2023.114502
https://doi.org/10.1016/J.ARABJC.2023.104833
https://doi.org/10.1016/j.dsp.2022.103802
https://doi.org/10.1080/15567036.2022.2116132
https://doi.org/10.1016/J.ENGAPPAI.2023.105927
https://doi.org/10.1016/J.AST.2022.107986
https://doi.org/10.1080/01621459.1981.10477649
https://doi.org/10.1016/j.matpr.2020.02.259
https://doi.org/10.1007/S11081-017-9368-Z/TABLES/7

	Evaluation of surface roughness of novel Al-based MMCs using Box-Cox transformation
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 CNC turning operation
	2.2 Design of experiments using Taguchi method (T-DoE)
	2.3 Experimental setup and result measurement

	3 Results and discussion
	3.1 Mathematical modelling
	3.1.1 Box-Cox transformation
	3.1.2 Variance inflation factor
	3.1.3 Linear regression


	4 Conclusions
	References




