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Abstract
Single Point Incremental Forming (SPIF) is a novel and die-less variant of Incremental Sheet Forming (ISF) which directly
exempts the use and involvement of dedicated punch and dies. This is an agile and flexible methodology that directly saves
energy and materials making the forming method ready for sustainable production. The estimation and analysis of forming
force can assure the safe utilization of forming setup to perform the SPIF operation for the designed process conditions
and materials. Artificial Neural Networks (ANN) models stimulate the Machine Learning (ML) techniques in computing
the rendition and superiority by using pertinent and relevant input factors. Consequently, ANN-based techniques have been
explored for SPIF process, to enhance the employability and suitability of the SPIF process to themainstreamofmanufacturing
industries. The presentedwork is to explore and estimate the axial peak forces during the SPIF process by using an experimental
campaign and ML methodology. A comparison has been made between the actual, predicted values, and accuracy has also
been analyzed to measure the efficiency of current model. The results delineate that the ANN model outperforms the other
ML models with an accuracy of approximately 98%.

Keywords Single point incremental forming · Artificial neural networks · Machine learning · Smart manufacturing · Forming
force

1 Introduction

Batch-type and customized manufacturing approaches have
been considered as the latest aspects to upgrade the business
of manufacturing sectors due to the cutting-edge require-
ments of the customers. Manufacturing of the complex and
intricate shapes of components can be economical for cus-
tomized and batch-size production when the reduced lead
time and involved cost. Moreover, amount of wastage of
material is minimum in forming operations. In conventional
sheet forming operations, dedicated die-sets are required to
accomplish the forming process that turns into a hindrance
for persuading the requisite of customizedmanufacturing [1].
Moreover, the larger forming forces are needed, during con-
ventional forming, to execute the deformation that in turn
raises the requirement of the bigger machinery and forming
set-up. The implementation of the bigger machinery directly
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makes the forming operations costlier if volume of produc-
tion does not reach the breakeven level of the operation [2].
Also, substantial growth in the obsolescence of traditional
forming-methods has produced the demand for flexible and
agile techniques formanufacturing user-ready components in
the global market. ISF has the potential to escalate the insur-
rection in the field of rapid manufacturing due to its agility
and flexibility. ISF yielded in the starting of the current cen-
tury and is fascinating the researchers as a choice of green
manufacturing without using dedicated punches and dies
[3–5]. Moreover, ISF overcomes the issues that are encoun-
tered in manufacturing field because of the non-availability
of die-sets of old machinery such as fuselage parts of old air-
craft and sheet metal components of vintage cars, etc. Also,
ISF exhibits the potential to manufacture the end-user parts
with almost no-wastage, remarkable surface quality, consid-
erable strength, and lower tolerances. In ISF, the deforming
load for the sheets are considerably lower as compared to
other sheet forming techniques which enable the use of quite
small-size and light-weight machines to accomplish the pro-
cess. Hence, the breakeven point of this die-less process is
achieved by manufacturing a smaller number of parts due
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Fig. 1 Illustration of SPIF method

to the lower cost of machines and tools of small capacity
involved in it. The customized parts can also be econom-
ically produced by this process which enables the greater
productivity, higher flexibility, lightweight parts, and higher
accuracy [6, 7]. The postulate of the ISF consists of deform-
ing thematerial, clamped in thefixture, progressivelywith the
maneuver movement of a forming punch which is supervised
by the NC mechanism [8]. The forming tool is clamped on a
rotating spindle and provided the downward motion accord-
ing to step size [9–11]. SPIF (Fig. 1) is a viable and novel
variant of ISF which exempts the involvement of dies to pro-
duce the parts and is also knownas “die-less formingprocess”
or “negative incremental forming”. SPIF directly finds appli-
cations in various manufacturing sectors including medical,
bio-medical, dental, aerospace, agriculture, automobile, and
architecture.

In SPIF, the strain is purely local because very small
amount of forming load is desired to manufacture the work-
piece. The requirement of lower amount of force decreases
the consumption of energy and power for executing this
operation. Therefore, small size of machines can perform
the process efficiently [12]. Hence, the amount of maxi-
mum force that is desired to deform the sheet material under
certain process conditions andmaterials, delineate the capac-
ity of forming machinery. Therefore, secure and effective
employment of experimental setup is secured by estimating
and investigating the maximum force values [13]. During
this operation, the force values are generally measured by
mounting the force dynamometers either on the forming tool
or between the ISF fixture and machine table. Most of the
researchers [14–26] have used a later method (in which a
load cell or force dynamometer is fixed between the fixture
and machine table) as shown in Fig. 2. Yang et al. [14] inves-
tigated the forming load by changing the values of the step
depth and temperature of sheet material (PEEK) and pro-
duced truncated pyramidal shapes of varying wall angle and
constant wall angle.

They found that deforming load increased drastically
when the step size was increased for all shapes of pyramidal

Fig. 2 Force measuring approach

frustums. Oraon et al. [15] observed the impact of input vari-
ables and developed the ANN model. They found that the
combination of minimum step depth, reduced forming angle
and lower sheet thickness resulted in minimum deforming
force. They used feed-forward back-propagation algorithm
to train the model. This model was limited to estimate load
values for AA-3003-O and Cu67Zn33 sheets only. Bansal
et al. [16] developed a model to estimate the deforming load
taking contact area into consideration and made a compar-
ative analysis for single stage and multi stage approaches
of forming for Al 5052 and Al 3003 sheets. The proposed
model was able to give results similar to the results pro-
duced by experimental campaign. Suresh et al. [17] analyzed
impact of input variants forAA-1100 sheets by an experimen-
tal campaign and observed that step size, punch radius and
forming angle control the deforming forces significantly. It
was also observed that the magnitude of deforming load was
greater in initial stage of forming operation and then became
constant. Liu et al. [18] offered a theoretical approach for
estimating the real values of deforming load in three direc-
tions which was based on assuming the stress in the forming
zone and then it was processed according to experimental
scenario and deformation behavior of material. The experi-
ments were performed on AA-1050-O sheets for fabricating
the pyramidal frustums of 55° forming angle. They observed
that the model successfully predicted the load values with
an error of 18%. Wernicke et al. [19] proposed an approach
to reduce the desired deforming load in incremental forming
of gears by using the mechanism of electroplastic effects for
DC04 and HSM 700 HD sheets numerically. They observed
that required load for given process condition was found to
reduce up to 55%. They also developed an analytical model
for estimating the current density which was dependent on
actual and numerical data.Hussain et al. [20] reported the sig-
nificance of stretching force and impact variables on the wall
curling of the pyramidal frustums produced from Cu/Steel
composite. A meaningful correlation, between the curling of
parts and stretching force with other impact variables, was
also investigated. They observed that the curling effect was
lowered when the stretching force values were increased.
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It was also found that the curling effects reduced with the
employment of high punch radius, low forming angle. Liu
and Li [21] also used ANN model to estimate the deform-
ing load for various step size and the experimental values
was considered for training of model. They formed the pyra-
midal frustums from AA 7075 sheets for this purpose. They
also offered an optimization approach for reducing the errors
during estimation using a hybrid objective function. The
developed model was able to estimate the tangential load
values significantly. Kumar et al. [22] optimized the pro-
cess conditions in terms of forming force taking the Taguchi
technique into account for AA 6063 and AA 2024 sheets.
A statistical approach was offered to forecast the desired
deforming load. This model was also verified with additional
experimental campaign. An increase of 14.20% was noticed
in peak load value when a forming tool of flat-end shape
was used as compared to the forming tool of the hemispher-
ical shape of the same diameter. Kumar and Gulati [23] also
offered amodel for forecasting the deforming load taking the
Taguchi technique into account for AA 2014 sheets. Profile
and spiral tool paths were used for manufacturing the trun-
cated cones. The rise in step size, punch radius and thickness
of sheet resulted in raising the deforming load value to a
crucial level. Chang et al. [24] estimated the deforming load
using an analytical approach which was further verified by
the results obtained from experimental work onAA5052 and
AA 3003 alloys sheets.

Previous work [6, 22, 23, 26] also reports that the ver-
tical component of deforming load (Fz) is greater than the
horizontal components (i.e. Fx and Fy; see Fig. 2 for load
components). Hence, measurement of maximum vertical
forces, for performing theSPIFprocess,may secure the effec-
tive utilization of experimental setup. Also, the investigation
of the relationship between input variables and forming
forces can open the window to estimate the failures of parts,
machinery, and forming processes efficiently. Furthermore,
the estimation of forming forces can ensure the prediction of
power to be consumed by the forming machine and control-
ling the process on-line.

The conventional models may not explain the nonlinear
correlation between the impact variables and the deform-
ing load during SPIF. The Machine Learning (ML) models
[27–38] are able to develop the nonlinear and complex cor-
relation between input variables and output factors as an
alternative and effective solution. The ML models can be
utilized effectively for optimizing the response of the pro-
cess by setting suitable input parameters. Furthermore, data
samples can be used to train the ML model which comprises
dependent variables and the independent variable (output or
response). In SPIF, the implementation of ML models can
help the researchers and investigators to minimize required
resources viz. power consumption, forming time and cost of
the process by estimating the required deforming load. These

models can also be utilized to control and monitor the pro-
cess on-line and prevent the failure of hardware. It has been
observed from the literature that artificial intelligence- based
models have the potential to estimate the output in manufac-
turing processes [37, 39–41].

Li et al. [47] investigated and predicted heating effects in
HA-ISF process numerically on aluminum alloys and high
precision FEMmodel was established for the forming region
taking thermal conductance into account. Li et al. [48] also
investigated effect ofMolybdenum disulphide (MoS2) on Ti-
6Al-4V sheets using HA-ISF. A roller-ball ended deforming
punch was employed in such a manner that the MoS2 could
reach the forming zone directly through the tool-end for
decreasing the thermal stresses and expansion. The deform-
ing loads were found to decrease with the use of MoS2 as a
lubricant. Najm et al. [49] investigated the effects of various
punch shapes, punch materials and punch radii on the pillow
effects of the formed components from the AlMn1Mg1 alloy
sheets experimentally. They further developed a ML model
to predict the pillow effects using the experimental data for
the training purpose of the ML models. To perform forming
force prediction in SPIF, intense literature survey is carried
out. Table 1 represents the different models used for predict-
ing the deforming load for different materials during SPIF
technique.

ML is the trending and widely used approach for predict-
ing the response to complex problems because of computer-
based algorithms that train the computer to learn through
the process and improve the accuracy of output automat-
ically. Through ML, a system learns from its experience
like human learns without programming explicitly. There-
fore, ML models have been explored to forecast the nature
and level of maximum load value in this operation. The
current work explores the supervised learning techniques
of machine learning to predict the maximum axial form-
ing force (Fz_max.) during the SPIF process. In this work,
three supervised-learning techniques namely Support Vec-
tor Machine (SVM), Random Forest Regression (RFR), and
ANN have been considered based upon their merits and suit-
ability of undertaken parameters and Design of Experiment
(DOE). SVM regression has been employed with four differ-
ent kernels to design four models viz. SVM–linear (model
1), SVM -Ploy (model 2), SVM–Gaussian Process (model 3)
andSVM–RBF (model 4).Apart fromSVM, theRFR (model
5) and ANN (model 6) models have also been designed and
fine-tuned for the efficient prediction of the Fz_max in the
SPIF process for the selected input factors and process con-
ditions. Literature [27] also reports that the SVM technique
is suitable for obtaining better results for a small sample size.
All the models have been trained and tested on the experi-
mental dataset to predict the axial peak force (Fz_max) to
calculate the accuracy of training and testing. Thereafter, the
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Table 1 Summary of literature published related to forming force prediction in SPIF

References Model Material Input parameters Computational time

Alsamhan et al. [46] ANFIS, ANN, QR AA1050 Punch radius, tool feed, step size,
thickness of sheet

No

Liu and Li [21] ANN Al7075-O Punch radius, forming angle,
thickness of sheet, step size

No

Racz et al. [42] ANFIS DC04 Punch radius, tool rotation, tool
feed, step depth

No

Jawale et al. [43] ANN AA1050-H14 – No

Oraon and Sharma [44, 45] ANN AA3003-O, Cu67Zn33 Tool feed, tool rotation, step size,
forming angle, sheet material,
thickness of sheet

No

Current work ANN AA7075-O Tool shape, Spindle speed Yes

SVM

Table 2 Chemical composition
of AA7075-O sheets Chemical composition (weight %)

Al Cr Cu Fe Mg Mn Si Ti Zn

89.70 0.24 1.50 0.30 2.40 0.20 0.20 0.16 5.30

estimated values and actual experimental values of deform-
ing load have been compared, and the accuracy of offered
models has also been analyzed to measure the efficiency.

The main objective of proposed research is to explore
and analyze the impact of tool rotation (spindle speed), tool
shape, and their interactions on peak deforming load values
for AA7075-O sheets. The interactions of these parameters
have not been tested for the considered alloy and operation
conditions during the SPIF process to the best of author’s
knowledge. Furthermore, machine learning techniques have
also not been implemented to predict the maximum deform-
ing loads for this alloy during the SPIF process so far. The
machine learning techniques may provide a channel to sci-
entists and researchers to predict the deforming load which
offers an alternative economical, easy, and technology-based
solution to the cumbersome experimental process of this
die-less approach of forming. The material, taken under
investigation (i.e., AA7075-O), has been widely accepted
in sheet metal applications because of the various suitable
characteristics such as lightweight, greater strength, and
corrosion resistance. Table 2 represents the chemical com-
position of AA7075-O alloy used in the current study. The
chemical compositions of the sheets of this alloy were identi-
fiedusing the optical emission spectrometer. In thiswork, two
types of tool shape, viz. flat-end and hemispherical-end, of
identical diameters (TD �12.50 mm) have been considered
for investigating the deforming load as shown in Fig. 3 where
R represents radius of hemispherical tool and r represents the

Fig. 3 Dimensional illustration of forming tool

side radius of flat-end tools. Theflat-end tools of 2.30mmand
3.40 mm side radius are denoted by Flatend#1 and Flatend#2
respectively,whereas radius of hemispherical tool is 6.25mm
and half of diameter of tool bar. The deforming tools were
fabricated from theHSS rods. These tools were hardened and
tempered before finishing their forming-end. To ensure the
end-radii of these forming punches, Contracer CV-2100 was
used. Table 3 depicts the full factorial scheme of experiments
conducted in this work as DOE technique. Other impact fac-
tors were kept constant during experimentation examination
as wall angle 64°, punch radius 6.25 mm, blank thickness
1.2 mm, step size 0.5 mm, feed rate 1500 mm/min and heli-
cal tool path.
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Table 3 The impact factors
varied for experimental
examination

Impact factor Value 1 Value 2 Value 3 Value 4

Tool shape Flat end#1 Flat end#2 Hemispherical –

Spindle speed (rpm) 1000 1500 2000 2500

2 Experimentation andmethodology

The procedure of producing the designed components was
started by designing amodel of benchmark shape of a conical
frustum (Fig.4a) of 62.5 mm upper radius and 75 mm form-
ing height using the Solidworks® software. Afterward, the
designed model was transferred to the DelcamTM software
to generate the NC program and tool path instructions. The
helical tool path (Fig.4b) was taken into consideration during
this process. Thereafter, the forming tools were clamped in
the collect of the machine, alternatively according to DOE,
to perform the rotating action. Fig. 5 depicts the setup of
experimental examination executed on a Vertical Machin-
ing Centre. The sheet of defined thickness was clamped in
the SPIF fixture. The fixture was further firmly fixed on the
machine table. The machine table was allowed to move in
the x-axis and y-axis whereas the tool was given motion
along the z-axis (vertical downward direction) so that a rel-
ative motion can be provided between the tool and sheet.
Force dynamometer was installed below the fixture to expe-
rience the axial deforming load exerted by forming agent. The
dynamometer was supported with a data acquisition system
to record and amplify the signal of measured deforming load.

2.1 Development of support vector machine (SVM)
model

SVM is one of the popular techniques which is used for
solving supervised machine learning problems and suitable
for regression and classification approaches. SVM algorithm
trains the model using pairs of input output as training fea-
tures or sample data [28]. The nonlinear SVM algorithm
is used to predict the relationship between input data and
dependent variables. SVM is built upon the hyperplane lin-
ear model concept which exploits the plane to find out the
maximum margin. Hyperplane creates a decision boundary
that helps to train the model by using input and output pairs
of data samples. The number of input features determines the
dimension of the hyperplane. In this researchwork, two input
features have been used; hence the hyperplane is just a line
as shown in Fig. 6a. In the n-dimensional space, we may pro-
duce several decision boundaries to separate the data points,
but the SVM model requires us to choose the best decision
boundary to classify the data points. The best separating line
is called the hyperplane of SVM [29]. The hyperplane that

offers themaximum partition distance amongst the data sam-
ples is called an optimal hyperplane with maximum margin.
An optimal hyperplane helps in achieving higher accuracy
of the model. The separating hyperplane is a line that is used
to divide data samples (Support vectors) with the decision
boundary. Soft margin deals with the data points that are
partitioned wrongly by separating the hyperplane. The soft
margin permits margin violation while choosing a separating
hyperplane that allows a few data points to settle on either
side of the hyperplane and between the margin as depicted in
Fig. 6a. SVM algorithm finds the closest points to the margin
known as support vectors.

2.2 Development of random forest regression (RFR)
model

Regression analysis is one of the popular machines lean-
ing method that aspires to predict continuous output value
using the independent input variables though their underly-
ing relationship in data. Tomodel higher order non-linear, the
tree-based regression models have gained higher popularity
owing to flexibility and higher interoperability. Tradition-
ally, regression tree models are constructed in a two-phase
process; (1) a recursive binary partitioning is performed to
generate a tree structure, and (2) then pruning methods are
employed to eliminate the insignificant leaves. The decision
tree uses tree like structure as its name suggests, and predicts
results. It start from the root node and ends at leaf node with
a decision. A DT (Decision Tree) [30] can solve both the
regression and classification problems. But a decision tree
has high variance, therefore to reduce the variance, the deci-
sion trees are combined in parallel. Because of that the result
of decision tree is not driven by only one decision tree but
multiple decision trees that reduces variance. The principal
idea behind combining of multiple decision trees is that the
final out is determined by the multiple decision trees rather
than depending only a single decision tree. Thus, Random
Forest regression consists ofmultiple decision trees. Thefinal
predicted result is the mean of all outputs of the DTs in the
forest. Random forest is awell-accepted algorithm for regres-
sion problems which is also known as an ensemble technique
of machine learning [38]. The generic steps of random forest
regression are: (a) In Random Forest regression, x number of
random records are obtained from the dataset having i num-
ber of records, (b) Individual decision trees are constructed
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Fig. 4 a Shape of conical frustum
b Helical tool path adopted
during forming

Fig. 5 The setup and process of experimental examination executed in
this work

for each sample, (c) Every decision tree will produce an out-
put, (d) The final output is generated on averaging outputs of
DTs.

2.3 Development of ANNmodel

ANN is widely preferred by researchers and scientists over
traditional approaches due to its nature of predicting the capa-
bilities of complex linear and nonlinear input [32–34]. ANN
is an information processing model that is inspired by the
working of the human brain. ANN model mimics learn-
ing capabilities as a human learns. In this work, the ANN
approach has also been used to train the model, and the train-
ing set has been extracted from the actual values of results.
A generic architecture of an ANN is depicted in Fig. 6b.
Figure 8 shows the design of ANN model for Prediction of
Axial Peak Forces (Fz_max). The prime objective of design-
ing this model (Figure 8) was to analyze the accuracy by
forecasting the peak value of deforming load in this dieless

operation for the given levels of tool shape and spindle speed.
The selected model comprises an input layer composed of
two neurons as input variables i.e., spindle speed (x1) and
tool shape (x2). The weight vector W is applied between
each connection of neurons and random weights are applied
in continuation. The weight indicates the robustness of an
individual node. In addition to the two variables i.e. spindle
speed (x1) and tool shape (x2), one additional input parame-
ter bias b is also applied so that output is regulated along with
the weighted sum of the input parameters to the neuron. A
bias term allows to move or translate the activation function
up or down. The ANN is used to predict the nonlinear rela-
tionship in the dataset and the real source of accuracy comes
from the hidden layer. In this work, the hidden layer has
used 50 neurons and the neurons of the hidden layer have not
been visible to the outer world to implement the concept of
abstraction. The hidden layer performs various computations
for the given input factors (tool shape and spindle speed in
this case) before passing to the output layer (y). Each neuron
has the activation function which is processed on the given
data for standardizing the output (y) which is forming force.
The proposedmodel has utilized 50 epochs to train themodel
for predicting the output y (maximum forming forces).

In the generic form of ANN, each neuron in the hidden
layers contains an activation / transfer function [f(a)]. The
output of a neuron present in a hidden layer connected to n
input layer neurons [32] can be expressed as:

y � f(a) (1)

with, a � ∑n
i = 0 xiWi + b

where xi is ith independent variable and Wi is its cor-
responding weight, and b represents the bias term. The
activation function of a neural network is illustrated by Fig. 7
[34].

The hidden layer is used to perform feature extraction and
transformation. An activation function is applied on hidden
layer for adjusting the weights of the neurons. This process
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Fig. 6 a SVM with Soft Margin
b Architecture of artificial neural
network model

Fig. 7 Activation function of the
ANN model

is followed by all the layers in the model until the predicted
output (ŷ) is generated by the output layer in the first epoch.
To calculate the error, the output

(y) and predicted ŷ is compared and an error value e is
determined as per Eq. (2):

e � y − ŷ (2)

To minimize the error e [32], the ANN model has used
a multilayered feedforward backpropagation algorithm. The
multilayered feed forward back propagation is neural net-
work training algorithm which is used to improve the
prediction accuracy. It consists of two steps: first step is to
forward input values and second is calculate the error and
propagate back to the previous layer in the network. It is also
called backward propagation of errors in the neural network.
The algorithm calculates the gradient of a loss function with
respect to all the weights in the neural network. The fine-
tuning of theweights reduces error rates andmakes themodel
robust and reliable. The change in the hidden layer is a partial
derivative for the change in weights which is expressed by
Eq. (3).

y �
∑

i
∂y

∂wi
�wi +

∂y

∂b
�b

f or all i
(3)

Furthermore, the gradient descent is applied in each epoch
to minimize the error, and learning rate α is applied for vary-
ing weights of the hidden layer neurons.

The relationship in the change in a learning rate α and
change in error e expressed in Eq. (4):

�a � −α�e (4)

The change in the weights is computed by Eq. (5) and for
the next epoch, the new weights wnew are calculated by Eq.
(6):

�w � w−α
∂e

∂w
(5)

wnew � w + �w (6)
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Fig. 8 ANN model for prediction
of axial peak forces (Fz_max)

Table 4 Experimental and predicted maximum axial force (Fz_max) for full factorial DOE

Run Spindle
speed
(RPM)

Tool shape Experimental
Fz_max (N)

Model I
(SVM–Lin-
ear) Fz_max
(N)

Model II
(SVM–Poly)
Fz_max (N)

Model III
(SVM–GP)
Fz_max
(N)

Model IV
(SVM–RBF)
Fz_max (N)

Model
V (RFR)
Fz_max
(N)

Model VI
(ANN)
Fz_max
(N)

1 Free FlatEnd-R1 1422 1427.71 1268.28 1414.09 1347.1 1356.14 1379.59

2 Free FlatEnd-R2 1287 1324.8 1303.51 1303.59 1274.25 1305.76 1283.35

3 Free Hemispherical 1154 1221.74 1192.09 1178.2 1148.46 1195.96 1181.32

4 500 FlatEnd-R1 1311 1316.23 1173.27 1319.77 1315.28 1257.62 1281.88

5 500 FlatEnd-R2 1189 1213.31 1189.44 1212.01 1222.78 1239.04 1188.06

6 500 Hemispherical 1076 1110.26 1102.69 1098.02 1086.06 1121.32 1080.9

7 1000 FlatEnd-R1 1194 1204.74 1136.9 1199.7 1184.67 1096.7 1173.09

8 1000 FlatEnd-R2 1091 1101.82 1117.04 1103.02 1095.07 1093 1088.53

9 1000 Hemispherical 997 998.768 1027.04 1012.01 1016.88 1038.42 982.783

10 1500 FlatEnd-R1 1058 1093.25 1083.13 1080.95 1078.53 1046.94 1063.58

11 1500 FlatEnd-R2 978 990.331 1010.28 1001.11 1002.27 1015.72 992.001

12 1500 Hemispherical 908 887.279 889.085 939.538 1014.95 1017.38 893.899

The purpose of the training phase is to minimize error
and to optimize accuracy. Hence, the training of the model
is stopped once the minimum error value is obtained. There-
after, test data is fed to the trained ANN model to forecast
the output as illustrated by Fig. 8. The predicted outcomes
of this model may be considered as accurate and reliable.

3 Results and discussion

3.1 Experimental results and analysis

The experimental and estimated results for maximum axial
load (Fz_max) for various runs have been given in Table
4. Fig. 9a graphically depicts the impacts of the interac-
tions of tool rotation speed and tool shape. It was observed
that maximum axial load increased with the decrease in tool
rotation speed. Lower tool speed resulted in a decrease in

Fig. 9 a Interaction of spindle
speed and tool shape for axial
peak load. b Chip-formation
during run 12 (at spindle speed
1500 rpm, force 908 N)

Free 500 1000 1500

900
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1100
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1300

1400
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Fz
_m
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Spindle speed (rpm)
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(b)
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Fig. 10 Failure of specimen during run 10 (by Flatend-R1 tool shape,
1500 rpm spindle speed, force 1058 N, fracture height � 19.40 mm)

friction at forming area which further decreased the forming-
temperature. The decrease in forming-temperature resulted
in a reduction in ductility and formability of material and,
hence, a higher amount of deforming load was desired. The
axial load values were noticed to be highest when the tool
was kept at “free-to-rotate” conditions for all levels of tool-
shape because the friction was reduced to a minimal value.
The use of higher spindle speed could decrease the desired
load, but, at the expense of surface quality for all tool shapes
because somematerial was removed in the form of chips (see
Fig. 9b).

As far as the impact of tool shape is concerned, the forming
forces were found to be greater when the flat-end tools were
used as a forming agent in place of hemispherical-end tool.
The combination of flat-end tool and lower spindle speed
increased the forming forces drastically and can become
the limiting factor for forming machine. Axial peak loads
were decreased significantly when the greater spindle speed
was used with hemispherical tool. Moreover, fracture in the
components” happened when the higher spindle speed was
employed along with Flatend-R1 tool at a height of 19.4 mm
of the conical frustum because of excessive thinning and
removing some material in the form of chips (see Fig. 10).

It was also noticed that as the tool shape was changed
from hemispherical-end to Flatend-R1, the axial peak forces
increased by 16.51%, 19.75%, 21.84%, and 23.22% for tool
rotation speeds of 1500 rpm, 1000 rpm, 500 rpm, and “free-
to-rotate” condition, respectively. It can also be noticed from
the results that the increment of force was also found to raise
as the tool rotation speed was decreased. Similarly, peak val-
ues of loadwere increasedby27.09%, 31.59%, and34.4%for
the hemispherical end, Flatend-R2, and Flatend-R1, respec-
tively, when the tool rotation speed was decreased from 1500

rpm to “free-to-rotate” condition. It can also be noticed from
the results that the increment of force was also found to
raise as the side radius of the tool was decreased. When the
condition of forming was changed from the combination of
Flatend-R1 and “free-to-rotate”

condition to the combination of hemispherical-end and
1500 rpm, the forming force was found to decrease by
36.14% which is very significant to save power and energy.

3.2 Estimation of axial load values byMLmethods

ML models have been executed of three ML techniques,
(Matplotlib, Pandas, and Keras) by using Python 3.7.4 64-
bit to create six different models. To estimate axial forming
forces, four different variants of the SVM technique have
been exploited along with the models of RFR and ANN.
The SVMmodels have been preferred in literature for better
results [29]. The literature also endorsed that the Gaussian
Process (GP) Regression model is suitable for small training
samples [27, 31] which the authors have investigated. There-
fore, a comparative analysis has been performed between the
predicted and experimental results of the three models for
finding their accuracy. Figure 11 depicts the workflow for
forecasting the axial load. The first step was to pre-process
the experimental data for missing values before selecting
features and transformation approaches. Once the dataset
became ready, it was divided into two parts i.e., training data
(80%) and test data (20%). Thereafter, the proposed model
was trained on the training data samples and the model was
fine-tuned using various parameters of the model to optimize
the accuracy of the model. Furthermore, the trained model
was used to predict the axial peak forces for the given run
according to DOE. The axial load values predicted by all the
models were matched with the actual load values and the
accuracy of models were also analyzed.

3.3 MLmodels used for prediction ofmaximum axial
force

Training and testing statistics of SVM variants are shown
in Table 5. Four variants of SVM viz. linear, polynomial,
Gaussian process andRadialBasis Function (RBF) have been
designed deferring on a kernel and labeled as model 1, model
2, model 3, and model 4 respectively. The Random Forest
Regression (RFR) model is

created and n estimators are set to 50 which means the
forest consists of 50 trees. The training and testing accuracy
of Random Forest Regression (model 5) are shown in Table
6.

Similarly, the ANN model has been trained and tested
using the parameters vis-a-vis optimizer, activation function,
number of nodes, and number of epochs which are presented
in Table 7. In this model, an optimizer algorithm has been
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Fig. 11 The workflow of ML
models for the prediction of
Fz_max

Table 5 MAPE, MSE, and R2 during the training and testing of SVM models

Kernel Model During the training During the testing

Method Number RMSE MSE R2 MAPE RMSE MSE R2 MAPE

SVM–Linear Model 1 20.056 407.056 0.960 16.481 19.71 388.81 0.97 14.47

SVM–Poly Model 2 78.94 6232.70 0.70 47.90 43.90 1927.90 0.89 39.07

SVM–Gaussian Process Model 3 11.33 128.38 0.97 13.11 16.24 264.04 0.98 13.85

SVM–RBF Model 4 27.22 740.004 0.964 20.20 67.02 4492.60 0.74 51.66

Table 6 Training parameters for
random forest regression (RFR)
model (model 5)

Model number During the training During the testing

RMSE MSE R2 MAPE RMSE MSE R2 MAPE

Model 5 40.301 1624.242 0.922 35.275 89.322 7978.425 0.553 85.573

Table 7 Training parameters and errors for ANN Model (model 6)

Optimizer Activation During the training During the testing

Nodes Epochs RMSE MSE R2 MAPE Nodes Epochs RMSE MSE R2 MAPE

SGD Tanh 50 80 18.15 329.50 0.97 5.96 50 80 14.32 212.27 0.98 6.98
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Fig. 12 ANN model–loss versus epochs

used to change the weights and learning rate to minimize the
losses and to get the results at a faster rate. The activation
function of a neuron defines the output of the neuron. The
number of nodes indicates the total number of neurons in
the artificial neural network. In the ANN model, one epoch
indicates a full training cycle iteration on the training dataset.
The parameters have been set to train themodel for achieving
higher accuracy and lower errors. The tensor flow of Keras
has been used to implement ANN. The model has shown
high training accuracy when it was explored using Stochastic
Gradient Descent (SGD) optimizer, tanh activation function,
and 50 nodes in the hidden layer. The tanh activation function
is suitable for a small training sample size. The training and
testing accuracies of the ANN model were found as 97%
and 98%, respectively, and errors viz. the Root Mean Square
Error (RMSE), Mean Square Error (MSE), R-Squared (R2),
and MAPE were calculated.

During the training of the ANNmodel, it was evident that
the model produced higher accuracy and minimum loss at
the 80th epoch. After this value, the increase in epoch did
not affect accuracy significantly. The ANN model loss ver-
sus epochs is represented in Fig. 12 which shows that during
the training of the model, there is a sharp decrease in the loss
till the 30th epochs, and afterward, loss started decreasing
gradually and produced the minimum loss at the 80th epoch.
Furthermore, during the testing of this model, there was a
sharp decrease in loss till the 40th epoch, and afterward, loss
started reducing gradually and produced theminimum loss at
the 80th epoch. The predicted accuracy of model 1 (SVM—
Linear), model 2 (SVM–Poly), model 3 (SVM–Gaussian
Process), model 4 (SVM –RBF), model 5 (RFR), andModel
6 (ANN) are shown in Fig. 13(a)-(f), respectively which
delineates that among the four SVM regression models, the
best prediction accuracy was produced by Model 3—SVM
Gaussian Process (which is 97%) whereas the ANN model

produced 98% prediction accuracy, which is slightly higher
thanSVMGaussianProcessmodel. The othermodels (model
2 (SVM–Poly), model 4 (SVM–RBF) and model 5 (RFR))
displayed lower prediction accuracy as compared with the
model 3 (SVM–Gaussian Process) and model 6 (ANN).

3.4 Comparison of actual and predicted values
of maximum load

Training accuracy of SVM models (refer to Table 4) clearly
shows that SVM- Gaussian Process model outperforms the
rest of SVM models because Gaussian regression is suitable
for small training dataset [27]. The comparison of actual and
estimated values of maximum load using SVM, RFR, and
ANN is illustrated by Fig. 14. Table 8 depicted the compar-
ison of the accuracy of SVM, RFR, and ANN models for
predicting the axial peak forces for the defined process con-
dition.

The comparison of the performance measures the Root
Mean Square Error (RMSE), R-Squared (R2),Mean Squared
Error (MSE) and Mean Absolute Percentage Error (MAPE)
of SVM- Gaussian Process, Random Forest, and ANNmod-
els which concluded that the accuracy of SVM-Gaussian
Process (97%) is quite close to the ANNmodel (98%). How-
ever, the accuracy of the ANN model was found to be a
bit higher than the SVM–Gaussian Process model because
activation function, optimizer, and other features make the
ANNmodelmore robust and suitable for nonlinear problems.
Moreover, the predicted result of theANNmodel is very close
to experimental values which can be considered evidence of
the significance and efficiency of the ANN model.

Table 9 shows performance comparison with others work
and delineates that MAPE accuracy of proposed ANN is
slight better and model accuracy (R2) is 98%. Alsamhan
et al. [46] had not mentioned computational time whereas
this work also presented computational time. However, the
material, experimental setup parameters and conditions were
different in compared work. All the experiments were run
on intel core i7 11th gen laptop with 16 GB RAM. Table
10 shows the computational time for each model during the
training and test of the models. It is good to note that the
computation time for running ANN (model 6) and SVM-
Gaussian Process Model (model 3) were 1.002 seconds and
0.021 seconds. However, ANN model takes approximately
0.59 second more than SVM-Gaussian Process model that
did not make any significant overhead in terms of computa-
tional time but ANN has slight better accuracy.

Thus, the proposedMLmodel viz. ANN and SVM-Gaus-
sian Process can be used as an efficient tool to forecast the
desiredmaximumdeforming load in this dieless operation for
reducing the cost of experimentation. Furthermore, a com-
parison of the predicted results of the proposed models also

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 13 a Prediction accuracy of model 1 (SVM—Linear). b Pre-
diction accuracy of model 2(SVM—Ploy). c Prediction accuracy of
model 3 (SVM—Gaussian Process). d Prediction accuracy of model 4

(SVM—RBF). e Prediction accuracy of model 5 (RFR). f Prediction
accuracy of model 6 (ANN)

Fig. 14 Comparison between experimental and predicted axial forces

revealed that the ANNmodel has an advantage over the SVM
model to predict the axial peak forces.

4 Conclusions

This work explored the impact and interactions of tool
rotation and tool shape on axial peak deforming loads by

experimental examinations during SPIF. Several machine
learning techniques have been analyzed to forecast the load
values. The conical frustums of constant wall angle were pro-
duced from AA7075-O sheets. The SVM, RFR, and ANN
models were developed and trained (using specified levels
of spindle speed and tool shape) on experimental data to
predict the axial peak forces. The predicted values of max-
imum deforming load of all models were compared with
actual measured values from experimentation to verify the
accuracy and suitability of proposed models. The following
conclusions have been made:

• The axial load values were noticed to be highest when the
tool was kept at “free-to-rotate” conditions for all levels
of tool-shape because the friction was reduced to a mini-
mal value. The use of higher spindle speed could decrease
the desired load, but, at the expense of surface quality for
all tool shapes because some material was removed in the
form of chips. As far as the impact of tool shape is con-
cerned, the forming forces were found to be greater when
the flat-end tools were used as a forming agent in place of
hemispherical-end tool

• The combination of flat-end tool and lower spindle speed
increased the forming forces drastically and can become
the limiting factor for forming machine. Axial peak loads
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Table 8 Comparison of prediction accuracy of SVM, RFR and ANN models

Sr. No. Model RMSE MSE R2 MAPE

1 SVM-Gaussian process model (model 3) 19.30 372.67 0.97 17.73

2 Random forest regression model (model 5) 56.68 3212.78 0.84 47.84

3 ANN model (model 6) 19.24 370.19 0.98 4.96

Table 9 Performance comparison with others work

References Model Model accuracy (during training) Parameters (during
testing)

Computational time
(in second)

MAPE R2 MAPE R2

Alsamhan et al. [46] ANN 8.89 NA 11.59 NA NA

ANFIS 6.42 NA 15.44 NA NA

Regression 16.27 NA 26.05 NA NA

Current work ANN 5.96 0.97 6.98 0.98 1.002

SVM-GP 13.11 0.97 13.85 0.98 0.021

Table 10 Computation time in
second during training and
testing of the models

SVM–linear
model 1

SVM–poly
model 2

SVM–GP
model 3

SVM_RBF
model 4

RFR model 5 ANN model 6

0.013 0.071 0.021 0.058 0.042 1.002

were decreased significantly when the greater spindle
speed was used with hemispherical tool

• When the condition of formingwas changed from the com-
bination of Flatend-R1 and “free-to-rotate” condition to
the combination of hemispherical-end and 1500 rpm, the
forming force was found to decrease by 36.14% which is
very significant to save power and energy for producing
the components

• The SVM-Gaussian Process and ANN models produced
better accuracy as compared to other models. Moreover,
the ANN model outperforms the SVM-Gaussian Process
with greater accuracy of prediction (98%). Moreover, a
comparison of the predicted results of proposed models
also revealed that the ANN model has an advantage over
the SVM model for predicting axial peak forces

Hence, the proposed ML model viz. ANN and SVM—
Gaussian Process can be used as an efficient tool to forecast
the desired maximum deforming load in this dieless opera-
tion for reducing the cost of experimentation. The predicted
result of the ANN model was closed to the experimental
result and the model can successfully be implemented to
explore the different process conditions for a variety of mate-
rials. Furthermore, the secure and effective employment of
required machinery and auxiliary hardware can be promised
by estimating peak deforming loads using machine learn-
ing techniques which offer an alternative economical, easy,

and technology-based solution to the cumbersome experi-
mental process of this die-less approach of forming. Future
work would focus on the investigation of different materials
and input conditions to forecast the deforming load and to
develop hybrid models for complex process conditions using
ML techniques during the ISF process.
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