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1  Introduction

Combustion chambers, aircraft turbine discs, shafts, fasten-
ers, and guiding vanes are just a few examples of crucial 
components made from Inconel 718 (IN718) that are often 
utilised in the aerospace industry [1, 2]. It possesses strong 
corrosion resistance, great oxidation resistance at high tem-
peratures, and excellent cycle fatigue resistance [3]. The 
tensile strength of it is likewise quite high. The IN718 alloy 
is a typical face-centered cubic (FCC) nickel-based super-
alloy as a result of precipitate strengthening. The modest 
amounts of metastable γ′  phase (Ni3Nb-based D022 struc-
ture), spherical γ′′  phase (Ni3Al-based L12 structure), 
and carbides that are present in Inconel 718 are what give 
it its high thermal strength [4–7]. The quantity and size of 
the γ′  phase γ′′  that exhibits significant coherence with 
the matrix will have a direct impact on the alloy’s overall 
mechanical properties. The incoherent equilibrium phase 
(Ni3Nb-based D0a structure), which may stably remain at 
increased temperatures and diminish the alloy’s strength, is 
unstable and prone to shift into the “phase when exposed 
to prolonged high temperatures or during heat treatment. 
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Abstract
This study examines the design and numerical analysis of induction hardened of Inconel 718 superalloys on the tensile 
properties. The two tensile specimens (IHT1 & IHT2)’s outside surfaces are heated to temperatures of 850 and 1000 °C. 
The heated samples are then quenched in oil. The samples are evaluated utilizing a 250kN capacity servo hydraulic univer-
sal test at ambient temperature and an enhanced temperature of 800 °C. At both room temperature and a raised temperature 
of 800 °C, the metrics yield strength (YS), ultimate tensile strength (UTS), and elongation of induction hardened sample 
have risen. Induction-hardened materials have better mechanical characteristics than non-induction-hardened samples, 
according to numerical results from ANSYS Workbench that are corroborated with experimental data. The results of the 
tensile test’s cracked surfaces under a scanning electron microscope (SEM) show that the presence of shallow dimple 
structure at 800 °C caused transgranular cleavage and intergranular dimple rupture as the modes of failure.
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As a structural element of an aero-engine, the IN718 alloy 
experiences continual high temperatures and high stresses, 
which change the microstructure of the alloy. The mechani-
cal characteristics of materials are directly influenced by the 
evolution of the microstructure [8].To comprehend the frac-
ture process of IN718 alloy under identical service circum-
stances, it is required to investigate the dynamic relationship 
between the evolution of the microstructure and change in 
the mechanical characteristics of the alloy. Numerous stud-
ies have looked at the structure-property correlations and 
deformation behaviours of the alloy IN718 at various tem-
peratures. Ex-situ tensile testing was used by Wang et al. 
[9] to examine the hot deformation behaviours of the IN718 
alloy at high temperatures between 950 and 1050 °C. They 
discovered that dynamic recrystallization is responsible for 
the flow oscillations in stress at lower strain rates. Liu et al. 
[10] evaluated the effect of grain size on the fracture behav-
iour in uniaxial tensile tests on IN718 sheets carried out at 
room temperature and interpreted the fracture behaviour in 
terms of the influence of the microstructure, but they failed 
to consider the effect of tensile temperature. Based on the 
post-mortem observation of fracture morphology by SEM, 
Zhao et al. [11] proposed a two-step fracture process after 
examining the impacts of grain size and strain rate on the 
fracture behaviours of IN718 thin sheets. Lin et al. [12] 
investigated the effects of deformation temperature and 
strain rate on the fracture morphology of IN718 by perform-
ing heat-treated hot uniaxial tensile tests at temperatures 
between 920 and 1040  °C and strain rates between 0.001 
and 0.01  s-1.They found that the temperature, strain, and 
strain rate of the deformation had a substantial impact on 
the flow behaviours.

Even though several of the IN718 alloy’s tensile deforma-
tion behaviours at high temperature were investigated, the 
research are mostly conducted without induction hardening 
tensile testing. The bulk of fracture mechanisms are deduced 
by fractographic analysis from hypothesised fracture pro-
cesses [13]. It is important to compare the microstructure 
evolution and the complete fracture process during tensile 
testing at room temperature and higher temperature with 
induction hardening in order to fully understand the effects 
of deformation temperature on the fracture mechanism of 
IN718 alloy. Uniaxial tensile tests are employed in this stud-
ies to compare the mechanical properties of non-induction 
hardened Inconel 718 alloy with induction hardened Inco-
nel 718 alloy at room temperature (RT) and 800  °C. The 
fracture initiation and propagation mechanisms are seen in 
the SEM after tensile testing. In light of the experimental 
results, the effects of induction hardening on microstruc-
ture, hardness, and mechanical properties are examined. 
The experimental results are only valid at a particular tem-
perature of 800 °C. Understanding the relationship between 

structure and properties as well as the superalloy’s fracture 
process at various temperatures would be beneficial.

2  Material and methods

2.1  Methodology

Overall methodology of the research undertaken is shown 
in Fig. 1. A thorough review of the literature revealed that 
high temperature tensile test of Inconel 718 superalloys 
have rarely been quantified and characterized. A specimen 
of commercial Inconel 718 alloy have taken and subjected 
to induction hardening and details study of mechanical 
properties of treated superalloys with untreated one as point 
of comparison under tensile tests at room temperature and 
800 °C have been done.

2.2  Experimental procedure

The testing specimens are induction hardened using an 
industrial induction hardening machine of power density 
26–40  kW, frequency 7.8  Hz, voltage 240  V, current 30 
amps and coil testing specimen distance is 3 mm. The Vick-
ers hardness test is carried out for inconel 718 untreated and 
induction hardened specimens at (Jyothi Specto Analysis, 
Hyderabad-India) with a 5kgf test load, using MVN-50PC 
115–0618 equipment. The test is conducted according to 
standard procedures, using an indenter on a square diamond 
pyramid with the plane angle of 136°.

The following procedures are carried out in order to cap-
ture a good microstructure: (1) grinding (2) polishing (3) 
etching. Three stepsd of grinding with Silicon Carbide (SiC) 
emery paper at SiC 500 (30 m), SiC 2000 (10 m), and SiC 
4000 (5–6 m) are carried out for 3–5 min. The specimens 
are polished by placing them on a disc polishing machine 
that rotates in an anti-clockwise circular motion for 15 min, 
1 Mol (cotton and nylon cloth plate), 0.25 Nap (fibre plate), 
Non-crystallizing colloidal Silica polishing suspension 
on Chem cloth for 5 min, and water polishing for 30 s on 
another Chem cloth. Hydrochloric acid (HCl) and oxalic 
acid (H2C2O4) were mixed 50:50 to perform the etching. 
After the sample preparation process the microstructure 
of the specimen is investigated using scanning electron 
microscope (SEM) with a specifications of magnification of 
(TESCAN VEGA 3 SEM), Electron gun (Tungsten heated 
cathode), Resolution (3 nm at 30 kV / 2 nm at 30 kV ) Mag-
nification (2× − 1,000,000x), Probe Current (1pA to 2 µ A).

For the uniaxial tensile test at room temperature (RT) in 
accordance with ASTM E8-21 standards, a servo hydrau-
lic tensile testing machine setup (BISS, 250kN, UTM) is 
also used, while (BISS, 0-40T, AI UTM equipped with an 
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Environmental Test Chamber (ETU: chamber) is utilised 
for elevated temperature of 800  °C in accordance with 
ASTM E21-20 at the same strain rate of 0.0167  mm/sec. 
For each condition, the test is conducted three times, and the 
results of the elongation, yield strength, and ultimate tensile 
strength tests are presented as an average value of 0.2%. It 
would be beneficial to conduct elevated temperature (ET) 
tensile testing to compare the results to room temperature 
tests and to comprehend the static behaviour. The SEM at a 
voltage of 15 kV shows the crack initiation and propagation 

processes using the fracture surfaces of the failed specimen. 
For the quantitative evaluation of precipitates, the SEM is 
outfitted with Image Pro-Plus 6.0 software and energy dis-
persive spectrometry (EDS).

2.3  Specimen preparation

As seen in Fig.  2(a), three specimens with a diameter of 
12.7 mm and a height of 50 mm were cut from a long Inco-
nel 718 ingot.Table 1 lists the chemical makeup of Inconel 

Fig. 2  (a) Microstructure and 
Hardensss test specimen (b) Ten-
sile test specimen dimension

 

Fig. 1  Overall research 
methodology
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for the hourglass-shaped standard tensile test specimens are 
illustrated in Fig. 2(b).The specimens’ exterior surfaces are 

718 as determined by positive material identification (PMI) 
testing. The ASTM E468-08 (M10-standard) dimensions 

Table 1  Chemical composition of Inconel 718
COMP Ni Cr Mn Co Mo Si Ti Al Fe Nb
% 51.7 17.7 0.3 0.3 3.11 0.18 0.8 0.43 19.86 5.05

Fig. 4  Vicker Harness (HV) 
values of samples
 

Fig. 3  Induction hardening of machined specimens (a) induction hardened at T = 850℃ (IHT1) (b) Induction hardened at T = 1000℃ IHT2
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dislocation motion. Induction hardened at T = 850℃ (IHT1) 
superalloy’s microstructure shows (Fig.  5b) evidence of 
grain size increment and presence of γ′  distributed in the 
grain boundaries and NbC carbides have needle-like and 
blocky morphologies, respectively [14, 15]. In the induction 
hardened at T = 1000℃ (IHT2) it can be observed that the 
grains are equiaxed with the equal grain size. In addition, 
lamella-like twins formed and presence of two morpholo-
gies of γ′′  and γ′  polygonal-shaped particles embedded 
inside matrix (marked by yellow arrows) can be seen in 
(Fig. 5c), δ phase particles distributes in the grain boundar-
ies which are confirmed to be (Nb, Ti) C carbides.

3.3  Tensile properties

An induction hardening-induced strengthening mechanism 
is used to explain the outcomes of stress and strain. Com-
paring Inconel 718 to a non-induction-hardened alloy, the 
yield strength has increased and the specific elongation 
has altered taking into account the elevated temperature 
(ET) of 8000 C, the experimental value of ultimate tensile 
strength (UTS), yield stress (YS), elongation to fracture 
and reduction of cross section are tabulated in Table 2. A 
high elongation value implies good plasticity, and it is a key 
measure of a material’s capacity for plastic deformation. It 
is clear that the specimen with the highest value of elon-
gation is the one that is at room temperature (IHTT2_RT). 
The specimens NR_RT, IHT1_RT, and IHT2_RT have final 
gauge lengths of 22.84  mm, 24.01  mm, and 25.23  mm, 
respectively. And the respective elongations are 26.89%, 
33.39%, and 40.17%. The presence of the γ′′  and γ′  phases 

heated to two distinct temperatures 850 and 1000 °C for a 
total of 10 to 15 s each.The coil’s alternating current causes 
the specimen to develop an induced magnetic field. The 
heated specimens are then cooled in oil as seen in Fig. 3. 
The untreated sample is designated as (NR), whereas speci-
mens that were induction hardened at temperatures of 850 
and 1000 °C are designated as IHT1 and IHT2, respectively.

3  Result and discussions

3.1  Hardness test

Figure  4 displays the average values for the three places 
where the measurements are taken. The average hardness 
values of untreated specimen is 200.33 HV whereas induc-
tion hardened specimen (IHT1 and IHT2) values are 407 HV 
and 417 HV respectively. In comparison to untreated (NR) 
and induction hardened at 850  °C (IHT1), the induction 
hardened sample at 1000 °C (IHT2) shows better hardness.

3.2  Microstructures

Figure  5 shows the high resolution SEM microstructures 
image of the untreated and induction hardened specimens. 
For the untreated superalloy, the grain size for a given loca-
tion is smaller than that of the induction hardened (Fig. 5a).
This indicates that during induction hardening, grain 
enlargement, has taken place. It is important to note that the 
applied induction hardening lead to uniformity in grain size 
and strengthening the grain boundaries by acting barriers to 

Fig. 5  High-resolution SEM 
Images of IN718 Samples (a) 
SEM image of untreated samples 
(b) SEM images of induction 
hardened at T = 850℃ ( IHT1) 
(c) SEM images of induction 
hardened at T = 1000℃(IHT2)
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3.4  Numerical simulation

The geometric model of the tensile test sample (Fig. 2(b)) 
is created in ANSYS workbench 22 as shown in Fig.  7a, 
the discretized model of geometric model is presented in 
Fig. 7b. It consists of 92,092 nodes & 88,040 Hexa elements 
the finite element simulations of tensile test were conducted 
using dynamic explicit formulation. Finite element analysis 
is performed using some amount of the experimental data 
for boundary & initial conditions. Commonly used Inconel 
718 superalloys elastic properties were assumed, including 
a young’s modulus of 210 GPa & Poisson ratio of 0.3. The 
output of the FE model such as total deformation, equivalent 
stress & maximum principle stress (as shown in Fig. 7c, d 

demonstrates that the specimens plasticity grows while 
induction hardening proceeds. When comparing induction 
hardened test results obtained at elevated temperatures of 
800 °C with those obtained at room temperature, it appears 
that elongation, yield strength, ultimate strength, and tough-
ness are decreasing. This behaviour might be explained by 
the existence of δ phase particles. Figure 6 accompanying 
stress-strain graphs for the tested samples. It indicates that 
strength has slightly decreased in cases of elevated tem-
perature when comparing the elevated temperature tensile 
strength for induction hardened superalloys with the room 
temperature tensile strength. It is evident that the speci-
mens with induction hardening tensile stress-strain curves 
undergo three stages of deformation, typical all curves are 
elastic with uniform plastic. While parabolas in the tensile 
curves indicate consistent plastic deformation when the ten-
sion reaches the yield strength, straight lines in the early 
stages of deformation indicate elastic deformation. When 
the tension approaches the maximum tensile strength, neck-
ing, a non-uniform plastic deformation, occurs.

Table 2  Tensile properties of untreated and induction hardened sample 
at room temperature and elevated temperature (800℃)
Testing Specimen YS

(MPa)
UTS
(MPa)

Elon-
gation
(%)

Area 
reduction
(%)

Final 
gauge 
length
(mm)

NR_RT 790.51 964.79 26.89 64.00 22.84
NR_ET 667.98 737.02 6.11 80.0 19.10
IHT1_RT 959.53 1265.34 33.39 57.57 24.01
IHT1_ET 698.08 749.17 13.39 89.0 20.41
IHT2_RT 1177.96 1451.48 20.61 33.87 21.71
IHT2_ET 790.93 847.47 40.17 67.20 25.23

Fig. 7  (a) Geometric model, (b) Meshed model, (c) Equivalent stress,  
(d) Maximum principle stress

 

Fig. 6  Stress vs. Strain graph of IN718 of untreated and induction 
hardened samples at room temperature
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dimple voids and fractures in a ductile, transgranular manner 
at room temperature (Fig. 8c), but the sample fractured in an 
intergranular, brittle manner at 800 °C (Fig. 8d). Figure 8e 
of the finding for induction hardening IHT2 at RT shows 
features that are substantially comparable to those of IHT1 
at RT [32–40]. It exhibits ductile brittle transgranular frac-
ture mode as well, but carbide particles are dispersed over 
the void walls. Transgranular brittle fracture was visible 

and e) for different condition are compared & validated with 
specific experimental results values as tabulated in Table 3.

3.5  Tensile fractured specimen observations

Figure  8 shows the overall fracture surfaces of the 
IN718 specimens after uniaxial tensile testing at room 
temperature(RT) and 800  °C.The following results of the 
fracture surface of the tensile test are obtained using a scan-
ning electron microscope (SEM) at X500 magnification:

After a tensile test at RT, the specimen’s fractograph is 
shown in Fig.  8a. A ductile transgranular fracture mode 
occurred, according to the many equiaxed dimples present 
on the fracture surface [15–21]. On the surface, a few dis-
tinct voids can also be seen.After a tensile test at RT, the 
specimen’s fractograph is shown in Fig.  8a. The fracture 
surface’s abundance of equiaxed dimples suggests that a 
ductile transgranular fracture mode took place. On the sur-
face, a few distinct cavities can also be seen [22–31]. A sam-
ple that has been induction hardened (IHT1) has shallow 

Table 3  Numerical results of untreated and induction hardened at room 
temperature and at elevated temperature (800℃)
Tested Specimen TotalDeforma-

tion
(mm)

Equivalent 
Stress
(MPa)

Maximum 
Principle 
Stress
(MPa)

NR_RT 2.0439 931.7 944.26
NR_ET 0.10071 620.55 697.36
IHT1_RT 0.1728 1065.1 1234.78
IHT1_ET 0.10143 624.98 713.67
IHT2_RT 0.1973 1216.2 1424.68
IHT2_ET 0.1158 713.55 817.58

Fig. 8  Fractography of IN718 of 
untreated and induction hardened 
samples at room and elevated 
temperature (a) untreated sample 
at room tempeature (b) untreated 
sample at elevated temperature 
(c) IHT1 sample at room tempea-
ture (d) IHT1 sample at elevated 
temperature (e) IHT2 sample at 
room tempeature (f) IHT2 sample 
at elevated temperature
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	● The obtained results will be further used to study fatigue 
life of induction hardened IN718.
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