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Abstract
This research extends the constrained vehicle routing problem concept to solve flexible flow shop scheduling problems.Mixed-
integer linear programming and constraint programming formulations are developed for a flow shop problem with no-wait,
time lags and release time restrictions to minimize the makespan in both permutation and non-permutation schedules. The
comparative analysis of variousmodels reveals that constraint programmingmodels have superior computational performance
than mixed-integer linear programming models. However, the mixed-integer linear programming models are also timely-
efficient. Moreover, the efficiency of developed models is also represented in comparison with several benchmark datasets.
Basedon thefindings,while the objective functionvalues of themixed-integer linear programmingand constraint programming
models in non-permutation schedules exhibit lower values than their respective equivalents in permutation schedules, both
models demonstrate longer runtime in non-permutation schedules. Results represent that the proposed constraint programming
and mixed-integer linear programming models are among the top three models of the benchmark datasets in terms of the
number of decision variables and computational performance. One of the limitations of the research is that there is no
comprehensive dataset in the literature considering all the restrictions in permutation and non-permutation schedules.

Keywords Flexible flow shop · Mixed integer linear programming · Constraint programming · Constrained vehicle routing
problem

1 Introduction

Production and operations scheduling is one of the most sig-
nificant factors that may lead to the failure or success of a
manufacturing company [1, 2]. The job scheduling problem
is regarded as arranging operation tasks (jobs) in a produc-
tion system and focuses on specifying the orders of jobs on
a pre-defined set of machines. These job orders are usually
determined so that the operational or financial performance
of the given production system is optimized. The job schedul-
ing problem is known as the flow shop problemwhen all jobs
have the same sequence on machines, and each job requires
only one operation on each machine [3]. The flexible flow
shop (FFS) problem is a generalizationof theflowshopwhere
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every job can be processed by one of the machines in each
station [4]. In the FFS problem, the production system has
a fixed sequence of stations, and each station includes a set
of machines. So far, FFS problems are widely applied in
different industries such as chemical, logistics and semicon-
ductors. [5].

In the related literature, flow shop problems are usually
categorized into two main groups: Cyclic and Non-cyclic [3,
6, 7]. Each category considers different production settings
(assumptions) such as no-wait [8], time lags [9], blocking
[10, 11], and limited or unlimited intermediate storage lev-
els [12]. In no-wait flow shop problems, each job must be
processed without interruption between machines [13, 14].
In the flow shop problems with time lags, practitioners con-
sider the minimum and maximum wait time between every
two consecutive operations which are required for complet-
ing a job on machines [15–17]. Both cyclic and non-cycle
flowshopproblems canbe formulated to provide permutation
and non-permutation schedules for jobs. In permutation flow
shop scheduling, the sequence of jobs must be the same on
all machines [18, 19]. However, this sequence can be differ-
ent when the flow shop problem considers non-permutation
orders for jobs. [20, 21].
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From the computational point of view, flow shop problems
are usually NP-hard combinatorial optimization problems
resulting in high dimension solution regions with many
locally optimal solutions [22]. Therefore, scholars employ
different heuristics and non-heuristics modeling methods
to estimate the optimal or near-optimal schedules for the
production [23]. Mixed Integer Programming (MILP) and
Constraint Programming (CP) are recognized as mature
optimization techniques to solve both NP-hard and non-NP-
hard problems. Both techniques may enable users to model
scheduling problems and reach specific values for their deci-
sion variables, known as "exact" optimal solutions [24–26].
CP is a programming paradigm that models the relation
between decision variables in the form of constraints [26].
This technique, originated from artificial intelligence, aims
to efficiently estimate optimal solutions using constraints in
an optimization problem [27]. In general, CP models have
several advantages in solving optimization problems: 1) CP
models canfind infeasibilities immediately, 2)CPmodels can
obtain the initial feasible solutions quickly, 3) CPmodels can
obtain the optimal solution in low computational times, and
4) CP languages assist in the model development because
they are declarative [28]. Due to these advantages, a remark-
able trend of attention has been attracted to the CP models,
particularly for scheduling problems.

FFS problems have received increasing research attempts
during the last decade due to their real-world application
in manufacturing industries. However, some notable aspects
of the FFS problem have received less attention. Some of
the most related studies in this area are reviewed in the fol-
lowing. Mucha and Sviridenko [8] worked on the classical
problem of no-wait flow shop scheduling with makespan
objective and considered this problem as a particular case of
the asymmetric traveling salesman problem. Dorfeshan et al.
[9] considered transportation lags and a weighted distance-
based approximation method to arrange jobs in flow shop
scheduling problems. Rossit et al. [29] presented a com-
binatorial analysis of the permutation and non-permutation
flow shop scheduling problems with unknown processing
times. A systematic literature review on permutation and
non-permutation flow shop problems is provided by Singh
et al. [30]. They worked on the multi-objective flexible flow
shop scheduling with no-wait constraints. Samarghandi [31]
developed constraint programming and MILP models for
a flow shop environment under minimum and maximum
time-lag constraints in which the makespan is minimized.
Furthermore, Qin et al. [32] studied the integrated CP
and mixed-integer programming to solve the hybrid flow
shop scheduling problem. Xiao et al. [33] formulated the
non-permutation flow shop scheduling problem with order
acceptance as a MILP model. Moreover, Xin et al. [34]
proposed a MILP model for the flow shop scheduling prob-
lem with sequence-dependent setup time to minimize the

makespan and total energy consumption. Table 1 demon-
strates methods, objective functions, and features of flow
shop problems considered in the literature to schedule jobs.

The main contribution of the present study is to extend
the CVRP formulations for FFS with no-wait, time lags,
and release time restrictions and the makespan (Cmax) func-
tion in both permutation and non-permutation schedules.
In addition to presenting MILP models for different FFS
problems, the constraint programming (CP) models corre-
sponding to the underlying FFS problems are also proposed,
and the results of developed models are compared. How-
ever, the literature review reveals that scholars usually apply
MILP methods for specific flow shop scheduling problems.
Their MILP formulations were developed to consider only
permutation or non-permutation schedules for given flow
shop problems. In other words, their MILP methods cannot
be applied to solve both permutation and non-permutation
scheduling problems. DevelopingMILP formulation accord-
ing toCapacitatedVehicle Routing Problem (CVRP) concept
would be one of the modeling approaches to remove the
above limitations in creating a generalized method to solve
flow shop job scheduling problems. To the best knowledge of
the authors, there is no such modeling approach for flexible
flow shop problems.

2 Proposedmixed-integer linear
programmingmodel

The FFS problem considered in this study is described as
a set of n jobs (tasks) that should be processed on a set of
stations (l � 1, ..., c) containing Ml ≥ 1 identical parallel
machines. A function πi � [

p1i , p2i , . . ., pci
]
demonstrates

the required processing times of the i th job in different sta-
tions. Each job can be processed by any of the Ml parallel
machines in lth station (Fig. 1). The FFS problem is solved
to find a sequence of n jobs that should be processed so that
some objectives such as the total required time for complet-
ing all jobs, the maximum lateness, or the tardy job count are
optimized. The MILP models of the present study are gener-
alized based on the CVRP formulation for the FFS problem
with no-wait, time lags, and release time restrictions on time-
capacitatedmachines with permutation and non-permutation
schedules.

CVRP is defined on a graph G � (N , D) where N � {0,
1, 2, ..., n} is the vertex (node) set and D is the edge (arc)
set where D � {(i , j) : i , j ∈ N , i �� j}. Vertex i (i � 1,
..., n) represents customers, while vertex 0 is defined as the
depot (dummy) node. This node is considered as the depot
of m identical vehicles with a specific capacity level. Each
customer i (i � 1, ..., n) is associated with a positive integer
demand, and each set of (i , j) edge is associatedwith a travel
cost or travel time. The CVRP aims to determine a set of (at
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Fig. 1 A flexible flow shop layout

Fig. 2 A simple correspondence of FFS with CVRP

most)m vehicle routes such that: a) each route must start and
end at the depot vertex (node 0), b) each customer (vertex)
must belong to exactly one route, c) the total load on each
route does not exceed the capacity level of the vehicle, and,
finally, d) the total cost (or time) of allm routes is minimized.
FFS problem with n jobs, c stations, and Ml machines in
lth station is equivalent to c successive CVRP models with
n customers and Ml time-capacitated machines in lth sta-
tion. Figure 2 shows a simple adoption of non-permutation
FFS with two successive CVRPs, scheduling eight jobs pro-
cessed on two stations with two and three identical parallel
machines, respectively.

The following assumptions are considered in formulating
the FFS problem: a) All machines in each station are parallel
and identical with the same capabilities in job processing; b)
If a job is assigned to a machine, the entire job is completely
accomplished on this machine. There exist no possibility of
breaking a job and accomplishing a part of it in another time
on the samemachine. c) Eachmachine is capable of complet-
ing the processing of a job in a given time; d) Each job can
be processed after completing the other job, with no prece-
dence constraints, e) All machines are available through the
scheduling process and can continuously perform operations
at time zero, and f) The processing time of each job on each
station is pre-determined.

To specify scheduling problems economically and pre-
cisely, Graham et al. [51] introduced a shorthand notation.
The classification system comprises three fields separated by
bars: α|β|γ . In the field α, the type and size of the shop are
entered. For example, FFc denotes the flexible flow shop
with c stages (or stations). In the field β, the special features
of the shop are listed. For example, prmu represents permu-
tation schedules (where the sequence of job processing on
all stages is the same), r represents the release time restric-
tion (the earliest time that a job is available to be processed),
l represents the lag time restriction (the possibility that an
additional time delay should elapse between completing a
job at one station and starting it at the next), nwt represents
the no-wait restriction (where a job, once started, must flow
through every station to completion without any delay). In
the field γ , the objective function or criterion that should
be maximized or minimized is entered. For example, Cmax

denotes the maximal or latest completion time of any job
(this criterion commonly is called the makespan) [52].

In this study, the CVRP formulations for FFS with no-
wait (FFc|nwt |Cmax , FFc|nwt , prmu|Cmax ), time lags
(FFc| l|Cmax , FFc| l, prmu|Cmax ) and release time restric-
tions (FFc| r |Cmax , FFc| r , prmu|Cmax ) and Cmax func-
tion in both permutation and non-permutation schedules are
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extended. Minimizing the makespan (Cmax) is the objec-
tive function of the developed optimization models. The
constraint programming (CP) models corresponding to the
underlying FFS problems are also proposed.

2.1 Parameter

n: Number of jobs (i � 1, ..., n)c: Number of stations
(l � 1, ..., c)pli : Processing time of i th job in lth station

Ml : The number of machines in lth station .
Ri: Release time of i th job.
H : A large constant value (H → ∞).
In the CVRP model, a dummy job (i � 0) with zero

processing time is added to the list of jobs, which determines
the beginning and the end of the turn in the CVRP problem.

(expressed as i � 0, 1, ..., n).

2.2 Variables

xl
i j
: If the j th job is performing immediately after the i th job

in lth station (1), otherwise (0).
vl
i
: Cumulative time of the jobs processed on eachmachine

until completion of the processing of the i th job in the lth

station. Variable vl
i
is defined to eliminate sub-tours in each

station.
ul
i
: Cumulative timeof the jobs processed on eachmachine

until completion of the i th job fromfirst to the lth station. The
completion time of the i th job in the lth station is determined
by ul

i
. For the last station, uc

i
is equivalent to the flow time

completion of i th job. Therefore, the makespan or maximum
flow time of jobs in the last station is calculated as Cmax �

n
Max
i�1

(uci ).

si : Start time of jobs’ processing in the first station. In the
presented model, it is unnecessary to start processing jobs on
the first station at time zero. The variable si is defined for all
jobs at the first station, and if i th job is the first job on any
of the machines, then the start time of processing of this job(
ul
i
− pli

)
is calculated from time s

i
as ul

i
− pli � si .

Some pre-defined time lags exist between the same jobs
in successive stations in the flow shop problem with time lag
restriction. Processing of i th job is completed at u1i in station
one, and it should be resumed at

(
u2i − p2i

)
in station two

after elapsing time lag
(
lag1i � u2i − p2i − u1i

)
.

2.3 MILPmodel

The MILP model for FFc| |Cmax (FFS non-permutation
model) is formulated as follows:

2.3.1 Non-Permutation MILP model (MILP-NP)

Minimize Cmax (1)

n∑

i�1

xl0i �
n∑

i�1

xli0 � Ml ; l � 1, ..., c (2)

n∑

j�0
i �� j

xl
i j

�
n∑

j�0
i �� j

xl
ji

� 1; l � 1, ..., c; i � 1, ..., n (3)

(4)

vli − vlj + Hxl
i j
+ (H − pl

i
− pl

j
) xl

ji

≤ H − pl
j
; l � 1, ..., c ; 1 ≤ i �� j ≤ n

vli ≥ pli ; l � 1, ..., c; i � 1, ..., n (5)

vl
i
+ (H − pl

i
)xl0i ≤ H ; i � 1, ..., n; l � 1, ..., c (6)

uli − pli ≥ ul−1
i ; l � 2, ..., c; i � 1, ..., n (7)

u1
i
+ (H − p1

i
)x10i ≤ H ; i � 1, ..., n (8)

u1i ≥ p1i ; i � 1, ..., n (9)

(10)

ulj − plj ≥ uli −H (1−xli j ); l � 1, ..., c; 1≤ i �� j ≤ n

Cmax ≥ uci ; i � 1, ..., n (11)

uli , vli ≥ 0; i � 1, ..., n ; l � 1, ..., c (12)

xli j ∈ {0, 1}; 0 ≤ i �� j ≤ n; l � 1, ..., c (13)

Equation (1) is the objective function that minimizes the
makespan. Equation (2) assures that each turn (machine) in
the first station starts and ends with the dummy node 0. Equa-
tion (3) is the usual balancing constraint for CVRP. Equa-
tion (4) assures the sub-tour elimination for each machine
in each station. This inequality for all jobs 1 ≤ i �� j ≤ n
ensures that vli � vlj + plj only if xli j � 1 and vlj � vli + pli
only if xlji � 1. In the original CVRP model, the variable vlj
is computed cumulatively and continuously; in other words,
if the j th job is processed immediately after the i th job, then
vlj � plj + vli . This computation is not valid for the cumu-
lative time because in the optimal scheduling solution, for
two successive jobs, the start time of the following job is not
immediately after the finish time of the before job, and it is
possible to have idle time between two jobs. The variable vlj
does not have this condition, while by defining the variable

123



3310 International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) 17:3305–3319

uli and adding Eq. (5)-(10), the start and finish time of succes-
sive jobs on a machine is computed correctly. Equation (11)
ensures that the makespan must be greater than (or equal to)
the cumulative time of the jobs processed on the last station.
Equation (12) and Eq. (13) assure the positive and binary
conditions of variables, respectively.

By converting Eq. (7) into uli − pli � ul−1
i , the MILP

model for FFc|nwt |Cmax (no-wait FFS model) is formed.
The FFS will be formed with minimum time lags by adding
the parameter Lagli to Eq. (7) as uli − pli ≥ ul−1

i + Lagli .
By converting this inequality to uli − pli � ul−1

i + Lagli ,
the model for FFS with time lags restriction and by adding
uli − pli ≤ ul−1

i + Lagli to the model, the FFS with maximum
time lags is formulated.

Through changingEq. (8) andEq. (9) tou1
i
+(H− p1

i
)x10i−

si ≤ H and u1i ≥ p1i + si, and adding Eq. (14), Eq. (15)
and Eq. (16), the MILP model for FFS with the release time
restriction (FFc| r |Cmax ) is formed.

si ≤ Hx10i ; i � 1, ..., n (14)

u1i − p1i ≥ Ri ; i � 1, ..., n (15)

si ≥ 0; i � 1, ..., n (16)

The MILP model can be extended for
FFc|prmu|Cmax (FFS with permutation). In the per-
mutation schedule, the job permutation in all stations is the
same. Therefore, the variable x

i j
is defined as if the j th job

performs immediately after i th job (1), otherwise (0).
In the permutation schedule, sub-tours elimination is only

needed in the first station. Therefore, variable v
i
is defined as

a cumulative time of the jobs processed on eachmachine until
completion of the processing of the i th job in the first station.
In the permutation schedule, the number of machines in all
stations is equal. The MILP model for FFc|prmu|Cmax is
formulated as follows:

2.3.2 Permutation MILP model (MILP-P)

Minimize Cmax (17)

n∑

i�1

x0i �
n∑

i�1

xi0 � M (18)

n∑

j�0
i �� j

x
i j

�
n∑

j�0
i �� j

x
ji

� 1 ; i � 1, ..., n (19)

(20)

vi − v j + Hx
i j
+ (H − p1

i
− p1

j
) x

ji

≤ H − p1
j
; 1 ≤ i �� j ≤ n

vi ≥ p1i ; i � 1, ..., n (21)

vi + (H − p1
i
)x0i ≤ H ; i � 1, ..., n (22)

uli − pli ≥ ul−1
i ; l � 2, ..., c; i � 1, ..., n (23)

u1
i
+ (H − p1

i
)x0i ≤ H ; i � 1, ..., n (24)

u1i ≥ p1i ; i � 1, ..., n (25)

ulj − plj ≥ uli −H (1− xi j ); l � 1, ..., c; 1 ≤ i �� j ≤ n

(26)

Cmax ≥ uci ; i � 1, ..., n (27)

uli , vi ≥ 0; i � 1, ..., n; l � 1, ..., c (28)

xi j ∈ {0, 1}; 0 ≤ i �� j ≤ n (29)

The description of Eq. (17)-(29) is the same as Eq. (1)-
(13), respectively. The only difference between permutation
and non-permutation models is the definition of x

i j
and

v
i
variables (explained at the end of Sect. 2.3.1). No-wait,

time lags, and release time restrictions can be considered in
the model for FFc|prmu|Cmax as described for the model
FFc| |Cmax .

The proposed FFS with different restrictions can be mod-
eled through CP properties. The CP models differ from the
corresponding MILP representation and are described in
Sect. 3.

3 Constraint programmingmodels

Constraint programming is a tool for solving combinatorial
search problems and has been addressed in various tech-
niques such as artificial intelligence, computer science, and
operations research. Earlier, CP models were used to assign
values from the variables’ domain which satisfies all the con-
straints of a constraint satisfaction problem. Later, CP search
procedures were extended to efficiently estimate optimal
solutions using constraints in a constraint optimization prob-
lem [27]. In this part, some notable features of the CP in both
problem formulation and solving algorithms are mentioned.
First of all, CP can deal with different types of decision
variables such as interval and sequence-based variables and
also integer variables [53]. Second, CP benefits from gen-
eral constraints to develop models compactly [26]. Third, CP
models have no limitation using different types of problem
constraints and objective functions (e.g., linear, nonlinear,
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convex), which are challenging in developing MILP mod-
els. Moreover, from solving algorithms points of view, CP
usually uses the propagation technique to remove unfeasible
regions of the search space [54, 55]. CP benefits from this
technique to tackle large optimization problems that may not
be solvable byMILPmodels in a reasonable time frame [56].

In the present study, the Optimization Programming Lan-
guage (OPL) and IBM ILOGCP optimizer platform are used
to model and solve the problem. OPL is a modeling language
for combinatorial optimization, designed to simplify opti-
mization problems substantially. This language increases the
applicability of modeling languages by incorporating tech-
niques from constraint programming. The remainder of this
part discusses how to formulate the CP models.

3.1 Variables

Two types of variables are defined:

1. Interval variables: these variables represent an inter-
val of time during which something happens (a task
or an activity is carried out). An interval is character-
ized by beginning, ending, and size values, which OPL
offers some functions to retrieve these features. Interval
variables are optional; that is, one can decide not to con-
sider them in the solution schedule. According to this
definition, an optional interval variable xlim is defined,
representing the i th job on mth machines in lth station
(i � 1, ..., n, m ∈ Ml , l � 1, ..., c).

2. Interval sequence variable: these variables represent a
total order over a set of interval variables. In this newly
proposed model, there exist some stations which can
be mapped as sequence variables. Also, each of these
variables can be divided into some sub-sequence vari-
ables that represent the machines in each station. Every
station includes all the interval variables distributed on
its machines. According to this definition, an interval
sequence variable qlm is defined, which represents the
mth machine in lth station (m ∈ Ml).

3.2 CPmodel

This section presents the corresponding CP models
for FFc| |Cmax (FFS system with permutation) and
FFc|prmu|Cmax (non-permutation FFS). The required
parameters and variables are the same as defined in sub-Sects
2.1 and 3.1, respectively.

3.2.1 Non-Permutation CPmodel (CP-NP)

The CP model for FFc| |Cmax is formulated as below:

(30)

Minimize Cmax � max (end O f (xcim)); i

� 1, ..., n, m ∈ Mc

Subject to:

∑

m∈Ml

presence O f (xlim) � 1; i � 1, ..., n; l � 1, ..., c

(31)

(qlm); f orallm ∈ Mll � 1, ..., c (32)

startO f (xl2im2
) ≥ end O f (xl1im1

); i � 1, ..., n, l1 � l2

� 1, ..., c, m1 ∈ Ml1 , m2 ∈ Ml2 | l2 > l1

(33)

(34)

Lm ≤ max (end O f (xlim)) ≤ Um ; i

� 1, ...n, l � 1, ..., c, m ∈ Ml

The objective function is defined as the maximum finish
time of jobs in the last station and expressed as Eq. (30).
Due to the optionality feature of interval variables, a function
(called presenceO f ) could be used to indicate whether an
interval variable is absent or present. By considering this,
Eq. (31) is defined to assure that all jobs are carried out in each
station, and only one job appears on only onemachine in each
station. OPL has some pre-defined functions which indicate
the flexibility of the CP model. One of them is noOverlap,
which guarantees that there is no overlap between any two
interval variableswhich exist in a sequence. This constraint is
applied to interval sequence variables, expressed as Eq. (32).
This constraint states that themachines in all stations define a
chain of non-overlapping jobs. Equation (33) assures that the
same variable placed in the successive stations starts after the
previous stations. Moreover, Eq. (34) is applied to ensure the
upper and lower bounds of the time capacity of eachmachine.

By converting Eq. (33) to startO f (xlim2
) ��

end O f (xl−1
im1

), the CP model for FFc|nwt |Cmax is

formed. Adding the parameter Lagli to the EQ.(33) as
start O f (xlim2

) ≥ end O f (xl−1
im1

) + Lagli , the FFS will be

formedwithminimum time lags. Adding the parameter Lagli
to theEq. (33) as start O f (xlim2

) �� end O f (xl−1
im1

)+Lagli ,
the FFS will be formed with a time lag restriction. Finally,
by adding startO f (xlim2

) ≤ end O f (xl−1
im1

) + Lagli to the
model, the FFS with maximum time lags is formulated.

By adding startO f (x1im) ≥ Ri , the CP model for FFS
with release times restriction, FFc| r |Cmax , is formed. This
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constraint states that the processing of all jobs in the first
station occurs after the released time (Ri ).

3.2.2 Permutation CPmodel (CP-P)

CP model for FFc| |Cmax can be extended to
FFc|prmu|Cmax by adding a constraint to assure that
every machine in all stations has the same job permutation.
Equation (35) provides such that constraint. The OPL
function t ype O f Next (ql

m
, xlim) in this constraint refers

to the following interval variable from xlim in machine qlm .

(35)

t ype O f Next (ql1m1
, xl1

im1
) � t ypeO f Next (ql2

m2
,

xl2
im2

); i � 1, ..., n;

m1 ∈ Ml1 ; m2 ∈ Ml2

No-wait, time lags, and release time restrictions can
be considered in FFc|prmu|Cmax as described for model
FFc| |Cmax .

4 Results of themodels and efficiency
comparison

For computational analysis purposes, several test prob-
lems are selected from the literature available for
FFc|nwt , prmu|Cmax . These test problems include Car
problems (Car01-08) [57] and Rec problems (Rec01, 03, 05,
41) [58], which are available in the OR-Library.1 Car prob-
lems generally contain a small number of jobs and stations
(Sect. 4.1), while Rec problems correspond to real dimen-
sions of industrial problems, which contain many jobs and
stations (Sect. 4.2).

4.1 Problems with optimal solutions
for

(
FFc

∣
∣nwt, prmu

∣
∣Cmax

)

Conducting numerical experiments is a practical approach to
compare the performance of the developed models. To verify
the performance of the proposed models on the test prob-
lems, the results of the model obtained in Manne [59] and
Samarghandi [50] are considered for comparison purposes.
The numerical results of the following models are consid-
ered: 1) No-wait version of the Manne model; Manne model
is one of the best and most commonly used models, 2) Orig-
inal formulation of Model I of Samarghandi at relaxed due
date constraints, 3) Model I of Samarghandi with indicator
constraints and without due date constraints, 4) Model II of
Samarghandi, which includes two dummy jobs that should

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html

be located in the first and the last positions in the sequence, 5)
Model IV of Samarghandi, unlike previousmodels, is formu-
lated based on properties of CP, 6) Model V of Samarghandi,
is formulated based onCP.Due date constraints are relaxed in
Model II, IV, and V. The newly proposed models of MILP-P
and CP-P constitute the last two columns of Table 2.

The large number (H) is applied in the formulation of
MILP models for either-or constraints. Although this is a
proper manner to prototype either-or constraints, the numer-
ical value ofH may result in complexity in running themodel
in IBM CPLEX and any other software package. If the value
of H is not selected accurately, the CPLEX may eliminate
H in the pre-solve phase. Consequently, it is recommended2

that either-or constraints should be formulated through indi-
cator constraints instead of implementing the large number
H. Whereas, applying indicator constraints would decrease
the effectiveness of the branching algorithm, which in turn
could increase the solution time. Based on solving different
models through indicator constraints and the large number
H, it was found that considering H � ∑n

i�1 p
l
i ; l � 1, ...,

c in constraints of each station is more efficient. Therefore,
the large number H is applied in solving MILP models.

The IBM ILOG CPLEX V12.3 is applied to solve the
newly developedMILP and CPmodels (maximum time limit
600Sec). All the numerical experiments are run on a PC with
CPU- Intel Cori 7. 1.6 GHz and RAM-6 GB. In Table 2,
OFV represents the objective function value and all of the
CPU times are represented in seconds. The time when the
optimal solution is found is reported. For instance, the opti-
mal solution ofCar03 is 8866; theMILP-P finds this solution
after 173 s and the CP-P after 30 s. Instances without time
show the objective function value at the maximum allowed
CPU time (600Sec). The figures in boldface demonstrate the
optimal solution in the time limit.

Based on Table 2, in all eight studied problems, the pro-
posed MILP and CP models of the present study achieve
the optimal solution. From the runtime point of view, MILP
Model II of Samarghandi & Behrooz (2017), the pro-
posed CP, and MILP models are ranked first, second, and
third, respectively. Since all the models of Samarghandi &
Behrooz (2017) are presented for FFc|nwt , prmu|Cmax

problems, the performance comparison is not possible for
FFc|nwt |Cmax problems. However, in Table 3, the values of
the objective function and runtime are compared in various
permutation and non-permutation schedules. The results of
the presentedmodels in the non-permutation schedule adopt-
ingMILP-NP andCP-NP are tabulated in Table 3. The results
of non-permutation models are presented considering three
machines in all stations.

Although the objective function values in the MILP and
CP models in non-permutation schedules are less than the

2 http://www-01.ibm.com/support/docview.wss?uid=swg21400084 .
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Table 3 Computational results of the FFc|nwt |Cmax for problems with optimal solutions

Problem Size n × c Optimum OFV of
FFc|nwt , prmu|Cmax
(M � 1)

MILP-P
prmutation
with no-wait
restrictions (M �
1)

CP-P
prmutation
with no-wait
restrictions (M �
1)

MILP-NP
Non-permutation
with no-wait
restrictions (M �
3)

CP-NP
Non-permutation
with no-wait
restrictions (M �
3)

Car07 7*7 7705 7705, 2 7705, 0.9 4216, 5 4216, 5

Car08 8*8 9372 9372, 5 9372, 3.5 5093,105 5093,121

Car06 8*9 9690 9690, 5 9690, 4 5486,9 5486,25

Car05 10*6 9159 9159, 6 9159, 4 4526 4406

Car01 11*5 8142 8142, 42 8142, 10 3991 3604

Car03 12*5 8866 8866, 173 8866, 30 4338 3666

Car02 13*4 8242 8242, 254 8242,20 4522 3463

Car04 14*4 9195 9195, 261 9195,100 5117 3687

objective function values of the equivalent model in the per-
mutation schedules, the runtimeof bothMILPandCPmodels
in the non-permutation schedule is longer than the runtime in
permutation schedules. Note that in all the studied Car prob-
lems, permutation scheduling models have been solved at
the time limit (600Sec), but in five non-permutation schedule
problems, the models have not reached the optimal solution
within the specified time limit.

4.2 Problems without optimal solutions
FFc

∣
∣nwt, prmu

∣
∣Cmax

A set of 21 Rec problems are solved through the proposed
models. The results are compared with the results obtained
through other studies available in the literature that developed
for FFc|nwt , prmu|Cmax . The computational results of the
proposedMILP-P andCP-P for the problemswithout optimal
solutions are tabulated in Table 4. Since the optimal solution
cannot be found in less time throughMILP-P and CP-P, both
models are solved in 1800s. The feasible solution for Rec 37,
39, and 41 in the time limit cannot be found throughMILP-P.

In this Table, the first two columns represent the name
and size of test problems. The third column presents the
makespan of the model of Rajendran [60] for compari-
son. The next two columns represent the objective function
value of the MILP-P and the deviation percentage between
the reported objective function and the makespan values of
Rajendran [60]. The deviation percentage between the objec-
tive function value of these proposed models and the model
of Rajendran [60] is computed through Eq. (36):

(36)

Deviation Percentage

�
(
OFV Method − OFV Rajendran

OFV Rajendran

)
× 100

In this context, the more negative deviation percentage,
the more efficient the method. This fact assures the compet-
itiveness of these proposed models. The next two columns
represent the best solution obtained in five runs for the test
problem in FFc|nwt , prmu|Cmax through the PSO algo-
rithm of Samarghandi [61] and the TS + PSO algorithm
(a hybrid of the Tabu search and PSO) of Samarghandi &
ElMekkawy [62].

The MILP is compared with the three best models of
Manne [59], Wilson [63], and Wagner [64] as mentioned in
the study of Pan [65], in addition to threemethods introduced
byStafford [66], Šeda [67] andSamarghandi&Behroozi [50]
in Table 5.

In Table 6 and Fig. 3, the number of decision variables of
different models is compared in terms of different numbers
of jobs and stations. The lowest average number of decision
variables in all problems belongs toModel I of Samarghandi,
and the proposed model of this research is in the second rank
with only 1% more variables.

Figure 3 represents that the number of decision variables
of the proposed MILP-P model, Model I of Samarghandi
and models of Stafford and Seda is much less than models
of Wagner, Manne and Wilson.

Moreover, in Table 7, the number of constraints of differ-
ent models is compared in different numbers of jobs and
stations. The lowest average number of constraints in all
problems belongs to the Stafford model.
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Table 4 Computational results of the FFc|nwt , prmu|Cmax for problems without optimal solutions

Problem Size n × c Rajendran
[60]

MILP-P With
No-wait

CP-P With No-wait (PSO algorithm)
Samarghandi [61]

(TS + PSO
algorithm)
Samarghandi and
ElMekkawy [61]

OFV OFV %Deviation OFV %Deviation OFV %Deviation %Deviation OFV

Rec01 20*5 1590 1541 − 3.08 1527 − 3.96 1528 − 3.90 − 3.90 1528

Rec03 20*5 1457 1433 − 1.65 1361 − 6.59 1361 − 6.59 − 6.59 1361

Rec05 20*5 1637 1590 − 2.87 1501 − 8.31 1511 − 7.70 − 7.70 1511

Rec07 20*10 2119 2083 − 1.70 2047 − 3.40 2042 − 3.59 − 3.63 2043

Rec09 20*10 2141 2138 − 0.14 2042 − 4.62 2027 − 4.58 − 5.32 2043

Rec11 20*10 1946 1954 0.41 1881 − 3.34 1881 − 2.98 − 3.34 1888

Rec13 20*15 2709 2692 − 0.63 2559 − 5.54 2545 − 6.05 − 6.05 2545

Rec15 20*15 2691 2620 − 2.64 2542 − 5.54 2529 − 6.02 − 6.02 2529

Rec17 20*15 2740 2675 − 2.37 2587 − 5.58 2587 − 5.58 − 5.58 2587

Rec19 30*10 3157 3129 − 0.89 2881 − 8.74 2861 − 9.28 − 9.38 2864

Rec21 30*10 3015 2954 − 2.02 2864 − 5.01 2822 − 5.70 − 6.40 2843

Rec23 30*10 3030 2878 − 5.02 2716 − 10.36 2700 − 10.66 − 10.89 2707

Rec25 30*15 3835 3960 3.26 3591 − 6.36 3593 − 6.23 − 6.31 3596

Rec27 30*15 3655 3690 0.96 3477 − 4.87 3431 − 6.05 − 6.13 3434

Rec29 30*15 3583 3521 − 1.73 3301 − 7.87 3291 − 8.15 − 8.15 3291

Rec31 50*10 4631 5116 10.47 4351 − 6.05 4336 − 6.37 − 6.37 4336

Rec33 50*10 4770 5274 10.57 4519 − 5.26 4466 − 5.74 − 6.37 4496

Rec35 50*10 4718 5443 15.37 4545 − 3.67 4417 − 5.87 − 6.38 4441

Rec37 75*20 8979 – – 8361 − 6.88 8081 − 9.01 − 10.00 8170

Rec39 75*20 9158 – – 8937 − 2.41 8517 − 6.17 − 7.00 8593

Rec41 75*20 9344 – – 8717 − 6.71 8520 − 7.67 − 8.82 8627

Average of
%Devia-
tion

— 0.91 – − 5.77 – − 6.38 − 6.68 –

Table 5 Comparison of MILP models for FFc|prmu|Cmax

Type of FFS problem Number of binary variables Number of continuous variables Total number of constraints

MILP-P (n + 1)2 − (n + 1) n(c + 1) + 1 n2(c + 1) + 5n + 2

Samarghandi Model I n2 nc n2(c + 1) + 4n + 1

Wagner n2(c − 2) 2cn + 1 n3(c − 1) + 3cn

Manne (c−2)n(n−1)
2

nc(n+1)
2 + 1 nc(n+1)

2

Stafford n2 (2c − 1)n n + c(n − 1) + 1

Wilson n2(c − 2) nc + 1 n3(c − 1) + 3nc − c + 1

Seda n2 2nc nc + c + n
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Table 6 Comparison of the number of decision variables of different models

Number of
Jobs (n)

50 50 50 100 100 100 200 200 200 Average Rank Percent deviation
from the best

Number of
Stations
(c)

5 10 15 5 10 15 5 10 15

Number of binary variables

MILP-P 2550 2550 2550 10,100 10,100 10,100 40,200 40,200 40,200 17,617 4 1%

Samarghandi
Model I

2500 2500 2500 10,000 10,000 10,000 40,000 40,000 40,000 17,500 1 0%

Wagner 7500 20,000 32,500 30,000 80,000 130,000 120,000 320,000 520,000 140,000 6 700%

Manne 3675 9800 15,925 14,850 39,600 64,350 59,700 159,200 258,700 69,533 5 297%

Stafford 2500 2500 2500 10,000 10,000 10,000 40,000 40,000 40,000 17,500 1 0%

Wilson 7500 20,000 32,500 30,000 80,000 130,000 120,000 320,000 520,000 140,000 6 700%

Seda 2500 2500 2500 10,000 10,000 10,000 40,000 40,000 40,000 17,500 1 0%

Number of continuous variables

MILP-P 301 551 801 601 1101 1601 1201 2201 3201 1284 3 10%

Samarghandi
Model I

250 500 750 500 1000 1500 1000 2000 3000 1167 1 0%

Wagner 501 1001 1501 1001 2001 3001 2001 4001 6001 2334 6 100%

Manne 6376 12,751 19,126 25,251 50,501 75,751 100,501 201,001 301,501 88,084 7 7450%

Stafford 450 950 1450 900 1900 2900 1800 3800 5800 2217 4 90%

Wilson 251 501 751 501 1001 1501 1001 2001 3001 1168 2 0%

Seda 500 1000 1500 1000 2000 3000 2000 4000 6000 2333 5 100%

Total number of variables

MILP-P 2,851 3,101 3,351 10,701 11,201 11,701 41,401 42,401 43,401 18,901 2 1%

Samarghandi
Model I

2,750 3,000 3,250 10,500 11,000 11,500 41,000 42,000 43,000 18,667 1 0%

Wagner 8,001 21,001 34,001 31,001 82,001 133,001 122,001 324,001 526,001 142,334 6 663%

Manne 10,051 22,551 35,051 40,101 90,101 140,101 160,201 360,201 560,201 157,618 7 744%

Stafford 2,950 3,450 3,950 10,900 11,900 12,900 41,800 43,800 45,800 19,717 3 6%

Wilson 7,751 20,501 33,251 30,501 81,001 131,501 121,001 322,001 523,001 141,168 5 656%

Seda 3,000 3,500 4,000 11,000 12,000 13,000 42,000 44,000 46,000 19,833 4 6%

5 Conclusions and future research directions

This study extended the CVRP model for the FFS prob-
lem which involves no-wait, time lags, and release time
restrictions and the objective of minimizing the makespan.
Most of the available MILP models introduced by schol-
ars for flow shop are tailored to handle either permutation
or non-permutation schedules with specific restrictions. In
other words, their MILP methods cannot be applied to solve
both permutation and non-permutation scheduling problems.
Developing MILP formulation according to the CVRP con-
cept would be one of the modeling approaches to remove the
above limitations. The significance of this study lies in its
contribution to the literature by presenting a new and effi-
cient approach based on the CVRP problem to solve FFS
scheduling problems which is the first attempt in the related

literature. Therefore, the models of the present study are ver-
satile enough to be adapted to both types of permutation and
non-permutation schedules in FFS,which can be used to opti-
mize industrial activities. This research not only proposes
multiple MILP models for various FFS problems but also
presents corresponding CP models for these MILP models.
Moreover, the computational performance of these parallel
models is compared in various sizes.

The comparative analysis of various models reveals that
CP models have superior computational performance than
MILP models. However, the MILP models are also timely-
efficient. Moreover, the efficiency of developed models
is also represented in comparison with several bench-
mark datasets. Computational results from the available test
problems in the literature reveal the efficiency of devel-
oped models in achieving solutions of high quality for the
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Fig. 3 Number of decision
variables

Table 7 Comparison of the number of constraints of different models

Number of
Jobs (n)

50 50 50 100 100 100 200 200 200 Average Rank

Number of
Stations
(c)

5 10 15 5 10 15 5 10 15

Stafford 296 541 786 596 1,091 1,586 1,196 2,191 3,186 1,274 1

Seda 305 560 815 605 1,110 1,615 1,205 2,210 3,215 1,293 2

Manne 6,375 12,750 19,125 25,250 50,500 75,750 100,500 201,000 301,500 88,083 3

Samarghandi
Model I

15,201 27,701 40,201 60,401 110,401 160,401 240,801 440,801 640,801 192,968 4

MILP-P 15,252 27,752 40,252 60,502 110,502 160,502 241,002 441,002 641,002 193,085 5

Wilson 500,746 1,126,491 1,752,236 4,001,496 9,002,991 14,004,486 32,002,996 72,005,991 112,008,986 27,378,491 6

Wagner 500,750 1,126,500 1,752,250 4,001,500 9,003,000 14,004,500 32,003,000 72,006,000 112,009,000 27,378,500 7

given problems in a reasonable time. The extended mod-
els can improve many solutions of the small and large
best-known test problems. Based on the findings, while the
objective function values of the MILP and CP models in
non-permutation schedules exhibit lower values than their
respective equivalents in permutation schedules, bothmodels
demonstrate longer runtime in non-permutation schedules.
Therefore, enterprises should assess the computational per-
formance of various models and select the most appropriate
one (case-by-case) based on the problem size and complex-
ity. The extended models can be utilized for a wide range of
real-world FFS scheduling problems in manufacturing pro-
cesses by inputting the related parameters into the MILP or
CPmodel. The models can also assist the enterprise to evalu-
ate various production scenarios (like changing the number of
machines) and compare their impact on the makespan. This

research provides significant insights for decision-makers
and managers in industries that require efficient scheduling
methods. However, a limitation of the research is the lack of
a comprehensive dataset in the literature that considers all the
restrictions in permutation and non-permutation schedules.

Future studiesmay focus on applying these proposedmod-
els to various scheduling problems like the blocking flow
shop scheduling problem or the problems with other objec-
tives or restrictions, like the precedence relations. The flow
shop models presented in the current study are categorized
into identical Parallel Machine Scheduling (PMS) problems.
A future study could be conducted by extending the model-
ing approach proposed in this research to solve uniform and
unrelated PMS problems. Moreover, other time performance
criteria such as flow time, maximum tardiness and mean tar-
diness (or earliness) could be taken into account instead of the
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makespan or as a new objective function. It would be inter-
esting to extend this research to other manufacturing settings
like job shops and open shops.
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