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Abstract

Fused deposition modeling (FDM) is a model of additive manufacturing (AM) which uses layer by layer-based methodology
to fabricate a component. In the current digital manufacturing era, FDM process is widely used as it can construct intricate and
complex part geometries in short time, its simplicity and economical behavior as compared to conventional manufacturing.
Despite of such advantages, literature argued various machine learning approaches adopted to increase the performance
of FDM addressing the issues of irregularities in part properties, accuracy, and reliability due to challenging task of best
parametric selection. In this context, the present study proposed a deep neural network strategy to predict the best parametric
combination with optimized mechanical properties (tensile and compressive strength) of printed parts. In the present research,
the design variables as nozzle diameter, width of print line and layer thickness, print speed are considered as input parameters
with their levels values that are trained to the proposed system. Adhering to ASTM standards with predefined dimensions
total 256 experiments have been carried for each output, in which 204 result data used for training and 52 for testing the model
using PYTHON programming language. Subsequently, the proposed model has gained the accuracy of 88.46% and root mean
square value as 0.3396 is validated by relating the performance with existing models. Hence, the efficient outcomes of the
developed model have been verified by gaining the best combination of process parameters and Taguchi analysis interpreted
their influence on the tensile and compressive strength of FDM printed parts.

Keywords Additive manufacturing - Fused deposition modeling - Deep neural network - Parametric selection - Mechanical
properties

1 Introduction In addition, AM models are continuously utilizing Fused

Deposition Modeling (FDM) [2]. Moreover, the designing

Additive Manufacturing (AM) mechanism is an inexpen-
sive replica for the traditional manufacturing strategy since
those strategies are difficult to design procedures are broadly
complex as well as terrible using traditional replicas [1].
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process of 3D digital statistics is to generate the layer-by-
layer model, which is termed, AM [3]. In FDM process
the polymer substance melted in the warming chamber and
pushed into champers system with the help of tractor wheel
[4]. Finally, the extruded melted polymer is transferred to bed
from nozzle which is programmed mechanism to construct
up through the print, and finally, fused layers were formed
as the finishing line [5].

FDM with ML architecture used in the current model is
demonstrated in Fig. 1. In FDM technology, many limitations
were recorded due to inconsistency in process repeatabil-
ity and part characteristics [6]. The part characteristics are
influenced by slicing parameters, building orientation, tem-
perature conditions of FDM manufacturing process [7]. To
achieve different aims in terms of part quality character-
istics, build time, mechanical properties, cost etc. various
influential parameters like nozzle diameter, build orientation,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12008-023-01369-7&domain=pdf

International Journal on Interactive Design and Manufacturing (1JIDeM)

Design AM with FDM

D\ S

N

Application

Design variables

¥

Manufactured design

Fig. 1 FDM with ML architecture (Developed by authors)

flow rate, raster angle, extrusion temperature, layer thick-
ness, print speed, infill percentage, air gap can be changed
[8]. The selection of best combination of optimized param-
eters is challenging task. Also, to carrying out a greater
number of experiments or 3D simulations is inefficient to
meticulously optimize the FDM process which is possible
by integration of ML with FDM process [9]. Moreover, the
AM procedure includes a lot of data issues and factors, which
are estimated based on machine learning (ML) models [10].
After completion of manufacturing, DL and ML techniques
are used for validation purposes [11]. In present architecture
supervised deep learning algorithm is used which utilizes
the experimental data for training the model. Experiments
are carried out adhering to standard procedures with prede-
fined design variables as an input to neural model. Further,
the classification-based algorithm is validated to gain the
best prediction accuracy in terms of mechanical properties
to achieve best combination of process parameters and can
predict the results under random circumstances. The detailed
explanation about execution of proposed architecture is elab-
orated in further sections.

In past, several techniques have been introduced in various
methodologies like fuzzy systems [12], automated process-
ing [13], decision tree [ 14] and many more. Literature reveals
that the algorithm was developed for fabrication of part
dimension optimization and modelling scheme [15]. To anal-
yse the design properties, the artificial neural network (ANN)
was used [16]. In a study, the comparison of response surface
methodology (RSM) and ANN was analysed for predic-
tion of tensile properties of friction stir-processed surface
composites, and concluded that the ANN model’s predic-
tive capability is far better than the RSM model in regards
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with tensile strength [17]. Ashutosh Kumar Gupta et al.
investigated the effect of process parameters on dimensional
accuracy of FDM printed parts and results show that ANN
model predicts the results with very less error in comparison
of existing models [18]. Jayant Giri et al. optimized the crit-
ical process parameters like layer thickness, air gap, raster
width, build orientation, raster angle, and the number of con-
tours for enhancing the properties of FDM printed part such
as tensile strength, surface roughness, and build time using
ANN. The researchers were found that the tensile strength
was increased with zero-degree build orientation of the part,
lesser layer thickness and higher raster width [18]. Litera-
ture have investigated the effect of FDM 3D printing process
parameters on the surface roughness of printed parts using
ANN Hybrid algorithm and RSM, concluded that 0.3 mm of
nozzle diameter achieves the best surface quality [19]. Castro
et al. have introduced the 3D printing strategy for a web-
based replica to accelerate the pharmaceutical application of
the ML model [20]. In another study, the researchers were
developed the adaptive fuzzy logic to analyse the parameters,
which are used in the 3D-based FDM printing substances
[21]. In the present study, the fuzzy logic is initiated to the
neural model to monitor the parameters of the 3D printing.
Those techniques provide poor results due to the design com-
plexity. Therefore, the current work has aimed to construct
an efficient deep neural network to value the designed prod-
ucts in terms of problems, complexity scores. This helps to
improve the prediction system in the future.

The structure of this work is discussed as follows; Sect. 2
describes the experimental details related to proposed system
and adopted research methodology. Section 3 explain the pro-
posed technique deep neural network structure, tuning and
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Fig.2 ML applications in FDM areas [2]

implementation. Section 4 explore the results and discussion
with comparison of obtained outcomes with existing work.
In the last Sect. 5, the conclusion, limitation, and future scope
of research work is discussed.

2 Research gaps

Nowadays, AM process is incorporate with several real-time
applications and rapidly increased in many fields. Consider-
ing other methods, the AM with FDM printing technology
is low cost and easy to use. However, compare the existing
techniques various complexity and lower prediction capabil-
ities are reviewed [22, 23]. In addition, mismatch connection
during the designing process may reduce the prediction accu-
racy rate; therefore, the prediction is very important regarding
those issues and parameter selection. The main aim of this
ML with AM technique is to select the best parameter combi-
nation in the 3D printing design. During the printing process,
the input data is carried randomly then it leads to cause the
overflow issue. These problems have been motivated this
present research work.

To bridge the research gap and to enhance the performance
characteristics of FDM by providing strong interface between
AM & ML, various FDM areas where ML applications have
been implemented is shown in Fig. 2. The pie chart shows
almost 75% studies have been carried out related to quality
monitoring system, mixed studies, and surface roughness in
the FDM process. It is evident from the chart that there is
scope to analyze the effect of process parameters to improve
mechanical properties of parts produced by FDM process
using machine learning applications.

3 Experimental details

The adopted research methodology in this study is shown in
Fig. 3. The key motive of utilizing ML in AM is to find out
the best combination of process parameters and analyze the

mechanical properties of the proposed design. In the present
research work, the design variables are based on nozzle diam-
eter, layer thickness, print speed, distance from each print
line used as an input parameter to train the developed model
in Deep Neural Network. Their level values are represented
in Table 1. The selection of values was based on previous
literature and customized 3D printed FDM machine. Rest
parameters were kept constant is given as per Table 2. Full
factorial experiments with 4 parameters and 4 levels, 4 x 4
X 4 x 4 = 256 has been carried out for each output value
in terms of tensile and compressive strength respectively, as
more data requirement to execute deep neural network and to
attain the best prediction accuracy for the continuous moni-
toring process.

The test specimens have been manufactured with PLA
Material with 1.75 mm diameter with predetermined dimen-
sions strictly adhering to ASTM 638 (type IV) and ASTM
D790 for checking tensile, compressive strength respectively.
Test parts were fabricated using FDM Printer D 300 3DeoM-
etry Make: Build 300 X 300. Drafting of tested parts was
done using CATIA 5.0 software as shown in Fig. 4.Ultimaker
Cura 4.0 was used for slicing & generating G codes to
adjust the mentioned parameters precisely. Tensile testing
was carried out using UNITEK 94100 make universal test-
ing machine and compressive strength testing on Zwick type
(1474). Experimental results were classified accordingly in
two classes. Class 1 for good connection status and Class 2
for others. Seventy percent of experimental data will be used
for training the model and rest for testing of model. Proposed
DNN model and validation part is further elaborated Sects. 3
and 4 respectively.

Tensile test parts are manufactured as per the standard pro-
cedure of ASTM D-638 Part I and for compressive strength
parts followed by ASTM D-695 as shown in Fig. 4.

Table 3 explains about the combinations of four input
parameters and their levels with experimental results in terms
of tensile and compressive strength and their respective class
determination. Due to space limitations, we have just shown
few experimental results amongst the 256 experiments. It is
observed that the maximum tensile strength and compres-
sive strength in the obtained results are 38.13 N/mm? and
27.59 N/mm?, respectively. The best combinations of tensile
and compressive strength both greater than its midrange and
average values correspondingly 35.49 MPa and 25.42 MPa
are taken as Class 1 combination and rest are Class 2.

4 Deep neural network modelling

The deep neural network (DNNs) is a prominent technique
in the computer version to optimized the parameters of any
manufacturing processes [24]. Supervised learning technique
was used to execute the deep neural network. This technique
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Table 1 Experimental
parameters and their level values

Parameters Level 1 Level 2 Level 3 Level 4
Layer thickness (mm) 0.1 0.2 0.3 0.4
Nozzle diameter (mm) 0.15 0.2 0.25 0.3
Distance of each layer (mm) 0.3 0.5 0.7 0.9
Print speed (mm/s) 20 40 60 80

Table 2 Constant experimental parameters

Parameter Value
Air gap 0
Raster angle 0°
Extrusion temperature 210 °C
Infill density 100%
Infill pattern Linear
Wall thickness 1 mm
Top thickness 1 mm
Bottom thickness 1 mm

utilizes part of experimental data for training the model.
Once the machine learning algorithm is trained it updates
the parameters and the rest data can be used for testing. Pre-
diction accuracy can be tested after validating the model. In
this study, the training procedure of the DNNs is defined by
using Eq. (1).

m
P=h) Vixj+a €]
j=1

Table 3 Part of obtained experimental results

Here, output of the training layer was determined by P,
layer weight is represented as Vj, Xj was mentioned to denote
the input values and the parameters of neural layer was
expanded using the variable a. The sum of weights Vjxj,
bias a, and activation function h (Softmax, RELU) shown
in Eq. (1). In every neuron which is connected to previous
one input variable xj is multiplied by weights and bias ‘a’ is
added to control neuron activation. Output will be obtained
after passing the weighted sum and bias to activation func-
tion. Figure 5 explains the inner layer of neural model &
Fig. 6 shows some part of developed algorithm.

Here input variables are print speed, distance from each
print line, layer thickness, and nozzle diameter. One input
layer, 5 hidden layers, 1 output layer. RELU activation
function was used for hidden layers as it reaches to the con-
vergence faster and no gradient vanishing issues [25] and
SoftMax for output layer as it adds to sum 1 by normalizing
the values in the range (0,1). Prediction accuracy in training
data and testing data will be evaluated in model as shown
in Fig. 6. Categorical cross entropy was used as an objective
function, Adam as an optimizer, batch size 10 for epochs 500.

Nozzle diameter Print speed Layer thickness Distance from Classes Tensile strength Compressive
(mm) (mm/s) (mm) each print line N/mm? strength N/mm?2
(mm)

0.15 20 0.1 0.3 2 33.87 26.07

0.15 40 0.2 0.5 2 33.66 24.54

0.15 60 0.3 0.7 2 32.89 26.64

0.15 80 0.4 0.3 2 33.58 27.57

0.2 20 0.2 0.7 1 36.95 25.57

0.2 40 0.1 0.7 2 35.03 24.81

0.2 60 0.2 0.5 1 36.89 26.31

0.25 80 0.2 0.5 1 38.13 25.86

0.25 20 0.4 0.3 2 35.65 24.17

0.25 20 0.4 0.5 2 35.22 25.54

0.3 20 0.2 0.3 1 37.32 26.25

0.3 40 0.2 0.3 2 35.11 26.07

0.3 40 0.4 0.7 1 36.69 27.59
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5 Results and discussion

This section presents the obtained results during 256 experi-
ments which consisting seventy percent data for training the
proposed model and remaining for testing. The experimental
results are classified in classes based on tensile & compres-
sive strength measured with different combinations. Class
1 for good connection status and Class 2 for others. Actual
connection status and predicted connection status is inter-
preted as shown in Fig. 7. The real class and predicted class
is shown by blue and orange points respectively. Overlaying
points can be considered as no discrimination between actual
and predicted class. Prediction accuracies after 500 epochs
0.8654 were obtained on trained data and 0.8846 achieved for
test data. RMSE value for tested model observed is 0.3396
is which validates the performance of model and can predict
the results under random circumstances.

Strictly speaking when the data fed is more this model
will gain higher prediction accuracy. From the overall result
assessment, the proposed model has achieved good perfor-
mance in prediction accuracy, tensile strength, and compres-
sive strength. Thus, the developed technique is effectively
applicable in all mechanical fields.

Best connections of printing parameters were predicted
by the proposed model amongst which we further evaluated
the influence of parameters on the mechanical properties
of printed parts by using Taguchi method. The outcome
obtained through Taguchi method in the form of Signal to
Noise (S/N) ratio diagram for tensile strength and compre-
hensive strength is shown in Figs. 8 and 9, respectively. From
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the S/N Ratio diagram, it is evident that the most influenc-
ing parameter is nozzle diameter for tensile strength & for
compressive strength layer thickness.

B.M. Castro et al. utilized 3D printing scheme using
ML web-based pharmaceutical software for pharmaceu-
tical application which helps to improve the fabrication
procedure. But it lacks in predicted key fabrication parame-
ters with low accuracies of 76% and 67% for the printability
and the filament characteristics. Proposed model of Adaptive
fuzzy logic by R.K Gupta et al. [17] error rate recorded dur-
ing the design process. Grace et al., proposed autonomous
correction structure but the design process is complex [26].
Mohamed et al. proposed the optimization of modeling
scheme and ANN optimization Definitive screening design
(DSD). This study confirmed the capability of an inte-
grated DSD and the ANN for optimizing AM conditions
to avoid problems typically encountered in multiple exper-
iments [15]. Error recorded in Predicted and actual results
8.7%.Kaushik Yanamandra, et al., utilized Imaging strategy
where high similarity rates was recorded for original and
reconstruction model but it takes more duration to execute the
function [27]. Samie Tootooni et al. utilized Laser-Scanned
3D Point Cloud Data using Machine Learning. Here Sam-
pling done with Sparse Representation-based Classification
(SRC), k-Nearest Neighbors (kNN), Naive Bayes (NB), Neu-
ral Network (NN), Support Vector Machine (SVM), Decision
Tree but required large real time data. The major limita-
tion was found that the scanning an entire part, which can
be time consuming and inefficient for sample size 500 and
obtained maximum accuracy up to 84.71% [28]. Gardner
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get = np.array(y_target)
t =

rain and test set
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+

X_train.shape,X_test.shape

((204, 4), (52, 4))
x_data = np.asarray(x_data).astype('float32')

#train the model
model = Seguential()
model.add(Dense(1@, input_shape = (4,) ,activation =
model.add(Dense(20, activation ‘relu'))
model.add(Dense(3@, activation ‘relu'))
model.add(Dense(2@, activation ‘relu'))
model.add(Dense(10, activation
model.add(Dense(5, activation = 'so

keras.utils.np_utils.to_categorical(y, num_classes=5)

pL t
train, X_test, y_train, y_test = train_test_split(x_data, y_target, test_size = 0.2)

‘relu’ ))

model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])

model.summary()

Model: "seguential"

In [15]:

model.fit(X_train, y_train, epochs

500, batch_size = 10)

Epoch 1/500©

21/21 [============cc===cccccccc=====

Epoch 2/500
21/21 [==================
Epoch 3/500

21/21 [==============================]

Epoch 4/500

21/21 [===================—=———-—-oo

Epoch 5/500

21/21 [==============================

Epoch 6/500

21/21 [============s====zz=z=z=======]

Epoch 7/500
21/21 [
Epoch 8/500

21/21 [====s=============ss===========)

Epoch 9/500

21/21 [==============================

Epoch 10/500

S

In [16]: model.evaluate(X_test, y_test)

1s 2ms/step - loss: 1.4783 - accuracy: ©.1618
©s 3ms/step - loss: 1.1033 - accuracy: ©.7206
9s 3ms/step - loss: ©.6260 - accuracy: ©0.8578
©s 3ms/step - loss: ©.4548 - accuracy: ©.8578
©s 3ms/step - loss: ©.4258 - accuracy: ©.8578
0s 2ms/step - loss: ©.4217 - accuracy: 0.8578
©s 3ms/step - loss: ©.4270 - accuracy: 0.8578
Os 3ms/step - loss: ©.4130@ - accuracy: ©0.8578

9s 3ms/step - loss: ©.4225 - accuracy: ©.8578

O S A — " VR S e ———————

2/2 [==============================] - Os 3ms/step - loss: ©.3389 - accuracy: 0.8846
y

out[16]:

Fig. 6 Proposed Deep Neural Network Algorithm

et al. implemented image classification for improvement the
part quality in better extent. They were focused on using the
tool to optimize for visible print flaws, but other metrics,
such as road width and dimensional stability, could also be
addressed assuming the effects can be measured locally. Cor-
relations between local flaws and overall part performance,
such as mechanical properties can be addressed [29]. Gupta
and Taufik, investigated the effect of process parameters on
dimensional accuracy of FDM printed parts and results shows
that ANN model predicts the results with very less error in
comparison of existing models [19]. In a study, the effect of

[©.3389059901237488, ©.8846153616905212]

FDM 3D printing process parameters on the surface rough-
ness of printed parts was investigated using ANN Hybrid
algorithm and RSM [30]. Literature presents the deep learn-
ing model where different complex problems were studied
with short duration and wide range of accuracy and accuracy
rate recorded was 83% [31, 32].

In the present study, the proposed Deep neural network
model is trained with less analyzed input variables as noz-
zle diameter, width of each print line helped to gain better
result 88.64% in terms of prediction accuracy by detecting
the finest combination in the printing layer. Moreover, the
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faults were detected with good accuracy. RMSE value for
tested model observed is 0.3396 is which validates the per-
formance of model and can predict the results under random
circumstances.

6 Conclusion, limitation, and future research
direction

AM mechanism is the process of fabrication, which includes
the connection of materials commonly layer-by-layer to gen-
erate the structure from FDM. Advantages of this technology
involve new design structures, low economic volumes, etc.
Moreover, the AM mechanism includes numerous types of
machinery to manufacture flexible materials. Nevertheless,
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during the 3D printing process, if the printing parameter
selection at the same time is mismatched, the raise of faulty
connection is tremendously affecting the entire performance.
Therefore, in this research, a deep learning model is devel-
oped for detecting the best connection between process
parameters. For example, high dimensional accuracy, high
surface finish and better tensile strength can be achieved by
setting low layer thickness but can affect the compressive
strength adversely. Print speed affects the mechanical prop-
erties; build time affects the overall cost of product. Here,
design parameters are taken as inputs that are trained to the
system. Hence, the developed model is processed on and
finally detects the best combination of parameters to improve
mechanical properties. Best combination achieved in this
study for tensile strength (i.e. 38.13 Mpa) is 0.25 mm nozzle
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Fig.9 S/N Ratio diagram for
compressive strength
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diameter, 80 mm/min print speed, 0.2 mm layer thickness,
0.5 mm distance from each print line while for compressive
strength (27.59 Mpa) the corresponding values are 0.3 mm,
40 mm/min, 0.4 mm, 0.7 mm respectively. Nozzle diameter
is influential parameter for tensile strength and layer thick-
ness dominates compressive strength predicted by Taguchi
analysis. In addition, the proposed model gained 88.64% out-
comes in prediction accuracy. When the data fed is more this
model will gain higher prediction accuracy. Limitation of
this study is huge number of data is needed to accurately
process the neural network model. In future this model can
be used analyze the best combination for the optimization
of other mechanical properties. Theoretically, the proposed
deep neural model can be processed and tuned (like num-
ber of neurons and layers, activation functions, optimizers,
dropouts, normalization, batch size) to select optimized para-
metric combination to achieve different aims in terms of
part quality characteristics, build time, cost etc. In future,
researchers can adopt other Al techniques like Big-data,
Cloud computing, IoT (Internet of Things) to enhance the
accuracy in parametric selection of FDM process.

References

1. Oliveira, J.P., Santos, T.G., Miranda, R.M.: Revisiting fundamental
welding concepts to improve additive manufacturing: from theory
to practice. Progress Mater. Sci. (2020). https://doi.org/10.1016/j.
pmatsci.2019.100590

2. Equbal, A., Akhter, S., Equbal, M.A., Sood, A.K.: Application of
machine learning in fused deposition modeling: a review. In: Dave,
H.K., Davim, J.P. (eds.) Fused Deposition Modeling Based 3D

Main Effects Plot for SN ratios

20

10.

11.

12.

Data Means
PR SP LAY TH DIST
P e o
\ /\ /\
\ ‘y \ @ \
[
| ||/
\ /
. \ ¢
\

40 60 80 01 02 03 04 03 05 07 09

Printing. Materials Forming, Machining and Tribology. Springer,
Cham. (2021). https://doi.org/10.1007/978-3-030-68024-4_23

. Nagesha, B.K., Dhinakaran, V., Varsha Shree, M., Manoj Kumar,

K.P., Chalawadi, D., Sathish, T.: Review on characterization and
impacts of the lattice structure in additive manufacturing. Mater.
Today Proc. 21, 916-919 (2020). https://doi.org/10.1016/j.matpr.
2019.08.158

. Bajaj, P., Hariharan, A., Kini, A., Kiirnsteiner, P., Raabe, D., Jdgle,

E.A.: Steels in additive manufacturing: areview of their microstruc-
ture and properties. Mater. Sci. Eng. A (2020). https://doi.org/10.
1016/j.msea.2019.138633

. Travitzky, N., et al.: Additive manufacturing of ceramic-based

materials. Adv. Eng. Mater. 16(6), 729-754 (2014). https://doi.org/
10.1002/adem.201400097

. Tan, JHK., Sing, S.L., Yeong, W.Y.: Microstructure modelling

for metallic additive manufacturing: a review. Virtual Phys. Pro-
totyp. 15(1), 87-105 (2020). https://doi.org/10.1080/17452759.
2019.1677345

. Oliveira, J.P,, LalL.onde, A.D., Ma, J.: Processing parameters in

laser powder bed fusion metal additive manufacturing. Mater. Des.
(2020). https://doi.org/10.1016/j.matdes.2020.108762

. Wu, H., et al.: Recent developments in polymers/polymer

nanocomposites for additive manufacturing. Prog. Mater. Sci.
(2020). https://doi.org/10.1016/j.pmatsci.2020.100638

. du Plessis, A., Yadroitsava, I., Yadroitsev, I.: Effects of defects on

mechanical properties in metal additive manufacturing: a review
focusing on X-ray tomography insights. Mater. Des. (2020). https://
doi.org/10.1016/j.matdes.2019.108385

Pang, Y., et al.: Additive manufacturing of batteries. Adv. Funct.
Mater. (2020). https://doi.org/10.1002/adfm.201906244

Yang, Y., et al.: Laser additive manufacturing of Mg-based compos-
ite with improved degradation behaviour. Virtual Phys. Prototyp.
15(3), 278-293 (2020). https://doi.org/10.1080/17452759.2020.
1748381

Singh, M., Rathi, R., Antony, J., Garza-Reyes, J.A.: Lean six sigma
project selection in a manufacturing environment using hybrid
methodology based on intuitionistic fuzzy MADM approach. IEEE
Trans. Eng. Manag. (2021). https://doi.org/10.1109/TEM.2021.
3049877

@ Springer


https://doi.org/10.1016/j.pmatsci.2019.100590
https://doi.org/10.1007/978-3-030-68024-4_23
https://doi.org/10.1016/j.matpr.2019.08.158
https://doi.org/10.1016/j.msea.2019.138633
https://doi.org/10.1002/adem.201400097
https://doi.org/10.1080/17452759.2019.1677345
https://doi.org/10.1016/j.matdes.2020.108762
https://doi.org/10.1016/j.pmatsci.2020.100638
https://doi.org/10.1016/j.matdes.2019.108385
https://doi.org/10.1002/adfm.201906244
https://doi.org/10.1080/17452759.2020.1748381
https://doi.org/10.1109/TEM.2021.3049877

International Journal on Interactive Design and Manufacturing (1JIDeM)

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Singh, M., Goyat, R., Panwar, R.: Fundamental pillars for indus-

try 4.0 development: implementation framework and challenges
in manufacturing environment. TQM J. (2023). https://doi.org/10.
1108/TQM-07-2022-0231

Singh, M., Rathi, R.: Implementation of environmental lean six
sigma framework in an Indian medical equipment manufacturing
unit: a case study. TQM J. (2023). https://doi.org/10.1108/TQM-
05-2022-0159

. Elbadawi, M., et al.. M3DISEEN: a novel machine learning

approach for predicting the 3D printability of medicines. Int. J.
Pharm. (2020). https://doi.org/10.1016/j.ijpharm.2020.119837
Yadav, D., Chhabra, D., Gupta, R.K., Phogat, A., Ahlawat, A.:
Modeling and analysis of significant process parameters of FDM
3D printer using ANFIS. Mater. Today Proc. 21, 1592-1604 (2020).
https://doi.org/10.1016/j.matpr.2019.11.227

Butola, R., Singari, R.M., Murtaza, Q., Tyagi, L.: Comparison
of response surface methodology with artificial neural network
for prediction of the tensile properties of friction stir-processed
surface composites. Proc. Inst. Mech. Eng. Part E J. Process.
Mech. Eng. 236(1), 126-137 (2022). https://doi.org/10.1177/
09544089211036833

Mutyala, R.S., et al.: Effect of FFF process parameters on
mechanical strength of CFR-PEEK outputs. Int. J. Interact. Des.
Manuf. 16(4), 1385-1396 (2022). https://doi.org/10.1007/s12008-
022-00944-8

Gupta, A.K., Taufik, M.: Investigation of dimensional accuracy
of material extrusion build parts using mathematical modelling
and artificial neural network. Int. J. Interact. Des. Manuf. (2023).
https://doi.org/10.1007/s12008-022-01186-4

Li, X., Jia, X., Yang, Q., Lee, J.: Quality analysis in metal addi-
tive manufacturing with deep learning. J. Intell. Manuf. 31(8),
2003-2017 (2020). https://doi.org/10.1007/s10845-020-01549-2
Goudswaard, M., Hicks, B., Nassehi, A.: The creation of a neu-
ral network based capability profile to enable generative design
and the manufacture of functional FDM parts. Int. J. Adv. Manuf.
Technol. 113(9-10), 2951-2968 (2021). https://doi.org/10.1007/
s00170-021-06770-8

Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias,
A.: Design of FDM 3D printed polymers: an experimental-
modelling methodology for the prediction of mechanical prop-
erties. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2019.
108414

Shanmugam, V., et al.: Fatigue behaviour of FDM-3D printed poly-
mers, polymeric composites and architected cellular materials. Int.
J. Fatigue (2021). https://doi.org/10.1016/].ijfatigue.2020.106007
Jin, Z., Zhang, Z., Gu, G.X.: Autonomous in-situ correction of
fused deposition modeling printers using computer vision and deep
learning. Manuf. Lett. 22, 11-15 (2019). https://doi.org/10.1016/j.
mfglet.2019.09.005

@ Springer

25.

26.

217.

28.

29.

30.

31.

32.

Moradi, M., Beygi, R., Yusof, N.M., Amiri, A., da Silva, L.EM.,
Sharif, S.: 3D printing of acrylonitrile butadiene styrene by fused
deposition modeling: artificial neural network and response surface
method analyses. J. Mater. Eng. Perform. 32(4), 20162028 (2023).
https://doi.org/10.1007/s11665-022-07250-0

Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Modeling, analy-
sis, and optimization of dimensional accuracy of FDM-fabricated
parts using definitive screening design and deep learning feedfor-
ward artificial neural network. Adv. Manuf. 9(1), 115-129 (2021).
https://doi.org/10.1007/s40436-020-00336-9

Choi, J.Y., Yanamandra, K., Shetty, A., Gupta, N.: Measurement of
viscoelastic constants and Poisson’s ratio of carbon fiber reinforced
composites using in-situ imaging. J. Reinf. Plast. Compos. (2022).
https://doi.org/10.1177/07316844221136843

Tootooni, M.S., Dsouza, A., Donovan, R., Rao, PK., Kong, Z.J.,
Borgesen, P.: Classifying the dimensional variation in additive
manufactured parts from laser-scanned three-dimensional point
cloud data using machine learning approaches. J. Manuf. Sci. Eng.
Trans. ASME (2017). https://doi.org/10.1115/1.4036641

Gardner, J.M., et al.: Machines as craftsmen: localized parame-
ter setting optimization for fused filament fabrication 3D print-
ing. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.
201800653

Zhu, Q., Yu, K., Li, H., Zhang, Q., Tu, D.: Rapid residual stress pre-
diction and feedback control during fused deposition modeling of
PLA. Int. J. Adv. Manuf. Technol. 118(9-10), 3229-3240 (2022).
https://doi.org/10.1007/s00170-021-08158-0

Giri, J., Shahane, P., Jachak, S., Chadge, R., Giri, P.: Optimization
of fdm process parameters for dual extruder 3d printer using arti-
ficial neural network. Mater. Today: Proc. 43, 3242-3249 (2021).
https://doi.org/10.1016/j.matpr.2021.01.899

Zhang, J., Wang, P, Gao, R.X.: Deep learning-based ten-
sile strength prediction in fused deposition modeling. Comput.
Ind. 107, 11-21 (2019). https://doi.org/10.1016/j.compind.2019.
01.011

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.


https://doi.org/10.1108/TQM-07-2022-0231
https://doi.org/10.1108/TQM-05-2022-0159
https://doi.org/10.1016/j.ijpharm.2020.119837
https://doi.org/10.1016/j.matpr.2019.11.227
https://doi.org/10.1177/09544089211036833
https://doi.org/10.1007/s12008-022-00944-8
https://doi.org/10.1007/s12008-022-01186-4
https://doi.org/10.1007/s10845-020-01549-2
https://doi.org/10.1007/s00170-021-06770-8
https://doi.org/10.1016/j.matdes.2019.108414
https://doi.org/10.1016/j.ijfatigue.2020.106007
https://doi.org/10.1016/j.mfglet.2019.09.005
https://doi.org/10.1007/s11665-022-07250-0
https://doi.org/10.1007/s40436-020-00336-9
https://doi.org/10.1177/07316844221136843
https://doi.org/10.1115/1.4036641
https://doi.org/10.1002/admt.201800653
https://doi.org/10.1007/s00170-021-08158-0
https://doi.org/10.1016/j.matpr.2021.01.899
https://doi.org/10.1016/j.compind.2019.01.011

	Optimized deep neural network strategy for best parametric selection in fused deposition modelling
	Abstract
	1 Introduction
	2 Research gaps
	3 Experimental details
	4 Deep neural network modelling
	5 Results and discussion
	6 Conclusion, limitation, and future research direction
	References


