
International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:2869–2880
https://doi.org/10.1007/s12008-023-01352-2

ORIG INAL PAPER

An energy-aware optimisation model to minimise energy
consumption and carbon footprint in a flexible manufacturing system

Kiran V. Sagar1 · J. Jerald1 ·Muhammed Anaz Khan2

Received: 2 March 2023 / Accepted: 18 April 2023 / Published online: 24 May 2023
© The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2023

Abstract
This paper proposes an energy-aware production schedule model for flexible manufacturing systems (FMSs) that aims
to minimise energy costs and carbon tax while considering rising energy costs and environmental policies motivated by
climate change concerns. The model is based on a sequence-dependent five-machine FMS scheduling problem, which is
flexible in levels of parts, tools, machines, and routings. The proposed model is solved as a multi-objective problem, with
tardiness and energy consumption as primary goals and carbon footprint reduction policies incorporated into the framework
as control strategies. The machine ON/OFF strategy is also introduced to reduce idle energy. The study analyses the trade-off
between minimising tardiness and carbon emissions to achieve both service level and environmental sustainability of the
FMS. The proposed model reduced total energy consumption and carbon emissions by 20% and 21%, respectively, without
compromising manufacturing deadlines. Future research may explore the integration of renewable energy sources and storage
systems, considering more complex manufacturing scenarios, such as stochastic demands, machine failures, and workforce
constraints.

Graphical abstract

Keywords Multi-objective scheduling · Makespan · Energy consumption · Tardiness · Carbon footprint

B Kiran V. Sagar
kiranvsagar@gmail.com

1 Department of Production Engineering, National Institute of
Technology, Tiruchirappalli 620015, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12008-023-01352-2&domain=pdf
http://orcid.org/0000-0002-3186-0586


2870 International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:2869–2880

1 Introduction

Industrial growth has escalated energy demand and green-
house gas emissions in recent years. According to Energy
Information Administration, USA, 2016, businesses con-
sume 31.8% of the world’s energy and 29% of electricity-
related CO2 emissions, Environmental Protection Agency,
USA, 2019. International Energy Outlook (2019) predicts
that industrial energy use will increase by over 30% from
2018 to 2050, reaching about 315 quadrillion British thermal
units by 2050 (EIA) [1]. But the unexpected outbreak of the
novel coronavirus disease (COVID-19) in 2019 has changed
the economy, energy supply, and demand scenario in 2020
[2], which is expected to make a comeback in these years.
Electrical energy consumption and carbon dioxide emis-
sions are known to be intimately connected. Manufacturers
can reduce CO2 emissions by conserving energy, indirectly
addressing the current global warming scenario [3].

Many nations, including Sweden, Germany, Finland,
and France, have implemented policies such as time-of-
use (TOU) tariffs and carbon taxes to focus on rising
energy demand and greenhouse gasses. Most typical carbon-
reduction strategies, such as emissions taxes, baseline emis-
sions, and emissions trading systems, compel industries to
pay the price for each tonne of carbon emissions they emit
and compensate them for staying within emission limits.
Foumani and Smith-Miles [4] investigated the influence of
carbon reduction rules on the industrial sector’s economic
edge from the standpoint of an environmental policymaker.
The research centred on flow shop scheduling in an effort to
reduce lead times and carbon emissions. The study of Ding
et al. [5] demonstrates a multi-objective optimisation frame-
work for lowering total CO2 emissions and makespan.

In the manufacturing industry, there are four main types
of manufacturing shop facilities: the job shop, the flow shop,
the flexible job shop, and the flexible manufacturing system
(FMS). An FMS has a high potential for energy-efficient
scheduling due to their greater flexibility in the machine,
operational, andmaterial handling levels than job-shop, flow-
shop, and flexible job-shop. There is very little research in
energy-efficient scheduling of the FMS that is primarily ori-
ented on lowering energy consumption and makespan [6–9].
There is room for research on FMS scheduling with energy
price and carbon footprint reduction approach. Reducing
the use of electricity during the manufacturing process can
reduce the total energy consumption of manufacturing enter-
prises, which can be accomplished through energy-efficient
scheduling [10]. Prior to 2011, there was just a few research
on the control and scheduling of the production process to
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reduce environmental effects [11]. Production scheduling
was used to decrease energy consumption and overall tardi-
ness inmanufacturing, as reported by [12, 13]. Also,methods
like theON/OFF strategy in idlemachines forminimising the
total energy consumption in production systems and thereby
limiting the peak load were introduced [14, 15]. For an FMS-
specific case, the earliest work onmulti-objective scheduling
that takes alternate route options for mitigating tardiness
and idleness is addressed in [16]. In order to increase envi-
ronmental sustainability, Barak et al. [17] researched the
energy-efficient scheduling of an FMS.

Lee et al. [18] projected one of the very first works in
CO2 mitigation by comparing three distinct carbon tax sce-
narios in different industries. In order to regulate total carbon
quantity and reduce carbon intensity, Zhu et al. [19] tested a
variety of carbon mitigation strategies. Zhang et al. [20] pre-
sented a low-carbon scheduling model for a flexible job shop
that took into account both production and carbon emission
parameters. Other relevant works to lower carbon footprint
and makespan can be found in [21–24]. There are strategies
to reduce an industry’s carbon footprint by replacing old
machinery with greater efficiency machines based on low-
carbon technologies. On the other hand, modern low-carbon
technologies can fail, and the transfer from theory to reality
is always lengthy [25]. Scheduling has a significant chance
of improving energy efficiency in this circumstance.

In recent years, several studies have been conducted to
address energy-efficient scheduling in the manufacturing
industry. Guo et al. [26] proposed a novel approach for
flow-shop scheduling that incorporates an ultra-low idle sta-
tus for machine tools and a hybrid genetic algorithm with
energy-saving strategies. Tian et al. [27] proposed an inte-
grated optimisation model for flexible job shop scheduling
that considers machining power and tool life prediction and
an energy-saving strategy to minimise production cost and
energy consumptionwhile accounting for cutting-tool degra-
dation. Duan et al. [28] presented a collaborative scheduling
model for large metallic components manufacturing, aiming
to minimise makespan and carbon emissions, which showed
significant improvements over non-collaborative workshops.

However, a research gap remains in integrating time-based
scheduling objectives with energy-environmental policies
such as emission taxes and carbon trading in a flexible route
scheduling framework. The relationship between the order
and scheduling of tasks and energy use is rarely investigated,
and further investigation is required into the feasibility of
using the ON/OFF technique at the machine level to reduce
idling energy usage. To address this gap, this paper pro-
poses an integrated approach that optimises both scheduling
and energy consumption, taking into account environmental
policies and the impact of machine ON/OFF strategy. This
approach contributes to the field by highlighting the impor-
tance of incorporating carbon emission cost leverage points
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for energy efficiency and green production while ensuring
on-time delivery and service standards in a practical indus-
trial setting.

This paper provides a practical production scheduling
framework for a five-machine flexible manufacturing sys-
tem in order to address the challenges mentioned above. The
model considers the reduction of total tardiness and energy
consumption as the primary scheduling objectives, with car-
bon footprint reduction strategies acting as the scheduling
control strategy. Production plans are created by identifying
alternative routes and machinery for every manufacturing
operation. The optimal solution developed by the frame-
work is used with an ON/OFF approach to reduce further
total energy consumption, and consequently, the carbon foot-
print. The proposed method is founded on the fact that the
retrieved solution is highly compliant with time, energy,
and environmental-based parameters. The study shows how
energy and environmental regulations influence a produc-
tion system’s time, cost, and energy-based performance. The
contributions of this paper are outlined as follows:

1. A multiple-objective strategy to lower tardiness and high
energy requirements in an FMS.

2. Carbon footprint regulations, such as emissions taxes and
carbon trading, are implemented into the framework to
achieve a cost-effective and environmentally responsible
solution.

3. A multi-objective whale optimisation algorithm (WOA)
to generate Pareto optimal solutions at an opportune time
for the proposed model.

4. The effectiveness of the suggested approach in meeting
consumer and environmental restrictions is evaluated and
depicted in terms ofmakespan, energy cost, emission tax,
and carbon trading.

The paper is structured as follows: Section 2 gives an
overview of the methodology and algorithm used. Section 3
presents the FMS model. Section 4 describes the proposed
model evaluation and discussion. Section 4.3 Conclusion and
future insights.

2 Methodology

2.1 Notation.
The following input parameters and decision variables are

used across the whole text to represent the adaptive frame-
work in detail.

CET Total carbon emissions of a given sequence. λ CO2

conversion factor
TEC The total energy consumption of a given sequence
CT i Completion time of job i.
DDi Due date for the job i.

U PCi Unit penalty cost for the job i.
BSi Batch size of job i.
XP Total penalty costs paid to complete all delayed jobs

after their target date.
MPP Maximum Permissible Penalty.
PT ji Processing time of i th job with J th machine.
EmP j Energy use for operation p on machine J.
Ew, j Idle power Ew of machine J j tw, j Idle time tw on

machine J j
W1 Weightage factor for tardiness.
W2 Weightage factor for energy consumption.
F1 The objective function for reducing tardiness.
F2 The objective function for reducing energy consump-

tion.
TCE Total carbon emissions of a given sequence.
Qmax Carbon emission baseline.θ Carbon credit price
This work presents an adaptive energy-aware multi-

objective scheduling optimisation model that can be
employed to lower carbon footprint through effective
machine scheduling. The suggested approach is based on
a five-machine route-dependent FMS scheduling model.
The model balances customer needs and environmental
constraints by managing production floor-level scheduling
objectives such as makespan and energy consumption. The
framework’s scheduling decisions are affected by the organ-
isation’s carbon footprint reduction efforts, which include a
carbon price. The proposed model uses a Whale Optimisa-
tion Algorithm (WOA) to optimise the objectives mentioned
above to create a Pareto solution. The generated solution
is examined critically in terms of time, total energy cost,
and carbon footprint parameters. The framework searches for
alternate solutions if the best one falls short of the standards
set by the customer ormanufacturer formakespan, peak load,
and carbon footprint. Whenever the machine is idle for more
than 60 min, the model’s ON/OFF strategy kicks in. Figure 1
depicts the proposed framework’s model.

2.1 Mathematical model

An FMS scheduling event consists of J = 1, 2…, j machines
and N = 1, 2…, n jobs. P = 1, 2…, p operations are nec-
essary to complete each job. As long as the requirement for
alternative routes is met, an operation PNJ on a job, N is pro-
cessed bymanymachine types. Because of the uniqueness of
each machine, the identical operation on different machines
may require different processing times and energy consump-
tion (EC). This study considers two levels of machine energy
usage (Idle EC and Processing EC). AGV is used to transfer
a job from a machine Jx to the following machine Jz when
a job N’s operation PNJ ends on machine Jx. The solution to
the problem is to allocate machines to each operation simul-
taneously. The order of tasks for each machine is chosen
to reduce tardiness and energy consumption. One or more
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Fig. 1 Overview of the proposed model

machines can perform four operations for each job. As illus-
trated below, some restrictions must be met to simplify the
problem at hand [29, 30].

1. A machine can only execute one process at a time.
2. There are no machine breakdowns or production inter-

ruptions.
3. Each part type has a specific processing sequence, due

date, and penalty cost for missing the target date.
4. Since computers control all operations, each part’s pro-

cessing time is known deterministically.
5. All machines are available at time 0.
6. The time required to set up the machine is avoided.

The basic contextual definitions of the electricity price,
carbon footprint, and FMS shop-level scheduling objectives
are described ahead.

The delay in finishing a task prior to its due date is mea-
sured by tardiness in scheduling. Machines are scheduled for
a set of jobswith specific due dates. If a job is finished beyond
the deadline, it is subjected to tardiness costs. Penalties for
tardiness are proportional to processing delays. In addition
to financial liabilities, the delay substantially influences cus-
tomer satisfaction [30, 31].

The first manufacturing objective of this study is to reduce
tardiness, as stated by the equation below [32]:

Tardiness, T = XP =
J∑

j=1

[
max

{
0, Tj − DD

}]
(1)

F1 = min(T) (2)

The second manufacturing objective is to reduce overall
energy consumption (kWh), which is influenced by machin-
ing energy Em of the working machines and energy E Im ,
which is the energy used by machines when they are not
machining or waiting for work to arrive. Equation 4 deter-
mines the Total Energy Consumption (TEC) for a schedule
in an FMS that includes ‘m’ machines, ‘n’ jobs, and ‘i’ activ-
ities.

Em =
J∑

j=1

Emj×Xmj (3)

Total energy consumption TEC =
M∑

m=1

Em +
m∑

m=1

E Im × tm

(4)

F2 = min(TEC) (5)

According to Mouzon et al. [12], an idle machine wastes
13% of the total energy consumed by the schedule. An
ON/OFF strategy can aid in the reduction of total idle energy
consumption. The FMS schedule optimisation problem for
mitigating tardiness and total energy consumption is classi-
fied as an NP-hard problem [33].

2.2 Flat price electricity tariff structure

A flat rate energy tariff is a type of energy tariff where the
customer pays a fixed rate for each unit of energy they use.
The customer pays the same price per unit of energy regard-
less of how much energy is consumed under a flat rate tariff.
The advantage of this type of tariff is that it is easy to budget
for and can provide a more predictable energy bill. Flat price
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electricity tariff is computedbymultiplying energy consump-
tion with the price of electricity over time, Eq. 6.

Total energy price, CE = BC × TEC (6)

Electricity retail prices for industrial clients are often close
to wholesale prices. In this study, the energy base price (BC)
was fixed at $0.0726 $/kWh [34].

2.3 Carbon footprint reduction structure

The carbon footprint may be explicated as “the quantity of
greenhouse gases expressed in terms of CO2, emitted into the
atmosphere by an individual, organisation, process, prod-
uct, or event from within a specified boundary” [35]. The
carbon footprint restrictions are classified into three broad
categories. The “Scope 1” boundary includes the organisa-
tion’s direct emissions from activities like burning fuel. In
contrast, the ‘Scope 2’ boundary stretches to the carbon emis-
sions on the energy supplier side created by the purchased
energy. Scope 3 comprises any further indirect emissions
inside an enterprise’s value chain. Our research focuses on
the Scope 2 emissions induced by the consumption of elec-
tricity by machines.

Reducing the carbon footprint of operations and processes
in the global industrial sector is becoming increasingly crit-
ical. This study investigates three typical carbon reduction
strategies for FMSscheduling: “taxes on emissions, baselines
on emissions, and emissions trading schemes” [4]. Such ini-
tiatives can replace conventional scheduling strategies with
environmentally responsible scheduling methods. The eco-
nomic performance of the industrial sector may be affected
by pollution abatement policies. A tax on emissions for each
tonne of carbon produced could pressure large emitters to
pay or limit emissions below the consented baseline.

2.3.1 Tax on emissions (ToE) policy

The government taxes manufacturing systems based on the
quantity of carbon dioxide generated throughout the man-
ufacturing process [4]. In this study, the emission fee is $
33.55/tonne CO2 [36]. As C O2 generation is essentially
determined by the energy consumption of industrial systems,
and Eq. (7) can compute it. In this work λ (C O2 conversion
factor) is assigned as 0.785 kg C O2/kWh [3].

CET = λ × T EC (7)

2.3.2 Baseline on emissions (BoE) policy

Theproduction schedules are boundby strict baselines (upper
limits) for the amount of carbon emitted during production.

The boundaries may well aid in controlling the emission at a
specific instant in time [4].

2.3.3 Emissions trading (ET) policy

The schedules under consideration that fall below the carbon
baselines may get a credit for carbon emissions throughout
the schedule rather than a penalty to reach or exceed the
baseline, as appropriate. It can be determined using Eq. 8
[4].

ET = θ.(TCE − Qmax ) (8)

If the schedules don’t comply with the emission baseline,
emission trading can have a positive value, but if they do,
it can have a negative value. Positive values may start the
penalty,while negative valuesmay start the industry a reward.
The carbon credit cost in this study is $0.050 per kilogramme
of CO2 [4].

2.4 Whale optimisation algorithm (WOA)

WOA is a swarm intelligence algorithm based on population
that has been presented for continuous optimisation prob-
lems. The social behaviour of humpback whales, the giant
creatures on the planet, inspires the WOA technique. It has
been demonstrated that this method outperforms or is com-
parable to specific existing algorithmic strategies [37]. The
hunting behaviour of humpback whales inspiredWOA. Each
solution is regarded as a whale in WOA. In this solution, a
whale tries to occupy a new location in the search space by
utilising the best member of the group as a reference.Whales
use two procedures to locate prey and attack. The prey is
encircled in the initial step, and bubble nets are created in
the second. In terms of optimisation, as whales look for prey,
they explore the search space, and exploitation occurs in the
attack behaviour.

2.4.1 Amathematical-based model and optimisation
algorithm

In the first phase of this section, a mathematically oriented
model is offered from encircling prey, searching for prey,
and spiral bubble-net feeding operations. The WOA heuris-
tic, like other swarm-based heuristics, begins by arbitrarily
generating a set of NP potential solutions, as shown below:

xt=0
i , j = Xi ,min + randi , j (0, 1) × (xi ,mix−xi ,min) (9)

where t represents the generation or iteration number, j =
1, …, NP, i = 1,…, D (D, the size of the problem), xi, min

and xi, max is the lowest and highest values of the ith design
variable, individually.
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Fig. 2 Humpback whales’ bubble-net feeding behaviour [37]

The WOA also includes (1) the encircling mechanism
around the prey, (2) the development of the bubble net for
trapping the prey, and (3) the approach for searching for the
prey. The various stages are detailed below.

Encircling prey mechanism The first step in hunting is to
encircle the prey. Clearly, the detected candidate is presumed
to be the present strong candidate. Then, its position is itera-
tively adjusted to the optimal global solution. This behaviour
is described by Eqs. (10) and (11) below:

D = ∣∣C .x∗(t) − x ≥ (t)
∣∣ (10)

x(t + 1) = x ∗ (t) − A.D (11)

where t represents the present iteration, x* is the optimal
solution, and x is the actual solution. Equations (12) and (13)
provide the coefficient vectors A and C.

A = 2 × a.r − a (12)

C = 2 × r (13)

where a is decreased linearly from 2 to 0, and r is randomly
distributed within the interval [0,1].

Bubble-net attacking method (exploitation phase) The
approach adopted by humpback whales to capture prey
involves the formation of a spiralling, shrinking bubble net,
as depicted in Fig. 2. The first process is modelled mathe-
matically by lowering the value of ‘a’ in Eq. (14) over time
as described below:

a = 2 − 2t

tmax
(14)

where t represents the present iteration count, and tmax is
the one given by the criterion. Similarly, the spiral updating

position is expressed as:

D
′ = ∣∣x∗(t) − x(t)

∣∣ (15)

x(t = 1) = D
′
.ebl .cos(2πl) + x∗(t) (16)

where b is the constant that governs the shape of the loga-
rithmic spiral, and l is a random number between − 1 and
1. During the optimisation process, shrinking encircling is
given a 50% probability, and the spiral-shaped route is given
a 50% chance, as represented in the equations below [37]:

x(t + 1) =
{

x∗(t) − A.D, i f p < 0.5
D

′
.ebl .cos(2πl) + x∗(t), i f p ≥ 0.5

(17)

Search for prey During the exploration stage, a strategy is
used to divert a solution away from the most well-known
search agent using vector A, which has random values in the
interval [−1, 1]. This is expressed as follows [37]:

x(t + 1) = xrand − A.D (18)

where xrand is a randomwhale selected from the current pop-
ulation.

The WOA-based energy-aware model in this article is
compared to the NSGA II [38] model with the same schedul-
ing goals and carbon footprint policy in order to validate
efficiency.

3 Description of the FMSmodel

The FMS under consideration consists of two AGVs, an
automated storage retrieval system (AS/RS), five computer
numerical control machines (CNCMs), an input buffer (I/B),
and an output buffer (O/B) at each machine [39]. The
input/output buffer serves as a short-term repository for
unfinished components and raw materials. The material
handling between the CNCMs is accomplished by AGVs,
transporting the finished product from any CNCM to the
unloading station and the loaded pallets from the L/U station
to any CNCmachines. AGVs offer directional flexibility and
can move one pallet at a time. The AGVs start at the load-
ing/unloading station, and after staring at the schedule, they
park at their last delivery station. The loading station gets
parts for manufacturing, while the unloading station receives
components that have been manufactured [29, 39]. The FMS
layout is portrayed in Fig. 3, drawn in Blender 2.80.
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Fig. 3 FMS layout [29]

Table 1 Power consumption of each machine

Machine number Idle power(W) Machining power (W)

1 1000 2260

2 1100 1680

3 1220 1360

4 800 1970

5 700 1200

4 Model evaluation and discussion

4.1 Base case introduction

MATLAB� R2019a solves the WOA algorithm and optimi-
sation model. Hewlett-Packard Notebook PCwith Intel Core
i5(R) 6200, 2.80 GHz processor with 8 GB,1600MHzmem-
ory, and NVIDIA GeForce940M, 2 GB GPU are used for all
experiments.

4.2 Problem parameters

The idle and machining power of machines is given in Table
1. The FMS can handle eight-part verities with four oper-
ations per part. Table 6 (Appendix) demonstrates various
routing plans for each part type and their process times. Table

1 depicts idle and machining power. The route data matrix
for the distance between each machine tool is shown in Table
7 (Appendix). Table 2 depicts the part mix of eight different
parts with a batch size of 100, which is used to test the pro-
posed model.

The suitability of the optimal schedule is analysed for
makespan, energy price and carbon footprint reduction poli-
cies. Table 3 shows the maximum allowable limits for
makespan (Cmax), energy price, the baseline of emission,
and maximum permissible ToE for this model’s testing.

4.3 Model results

The production schedule selected by the presented model
is portrayed in Table 4. Table 5 displays the compara-
tive scheduling outcomes and cost breakdown based on the
Makespan, total energy consumption, Total energy cost ($),
Carbon tax, and Carbon trading. The solution space is exten-
sive, as the makespan extends from 3200 to 3420 min for
WOA and NSGA II, respectively. The range of total energy
usage values is 232.13 kWh to 278.91 kWh.As demonstrated
in Table 5, the proposed framework with an ON/OFF strat-
egy output solution has the lowest total cost. The framework
assigns jobs to machines so that the schedule’s total energy
consumption and carbon footprint may be below the base-
line of emission constraints, as shown in Fig. 4. As shown
in Table 1, M/C 1 is the highest energy-consuming machine
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Table 2 The demand for part types for different production volumes Chan [39]

Production volume (Nos.)/part variety The demand of part (Nos.)

1 2 3 4 5 6 7 8

100 14 14 10 10 10 14 14 14

Table 3 Time-energy and carbon footprint-based limiting constraints

Parameter Maximum permissible limit

Cmax 4000 min

Energy price 20$

BoE 0.101 kg CO2/kWh

ToE 10 $

Table 4 Part order and alternate route selected by the model

Part number (alternate route
no.)

5(1),
6(3),4(1),2(2),1(2),3(1),8(3),7(2)

in the FMS model, which is managed by the framework in
periods of time to idle to minimise the total energy con-
sumption (Fig. 4a). At the same time, the ON/OFF strategy
further reduces energy consumption by turning the machines
off Fig. 4b. As shown in Fig. 4b,machineM2, themodel, kept
the machine in the ON state despite being idle at the 184th
minute since the idle duration was less than 60min. This lim-
itation is imposed because regularly switching the machines
ON and OFF can harm the system. Heavy machinery can
take a long time to power up and configure.

In Fig. 5, the Pareto solution with and without an ON/OFF
strategy is examined for electrical load and makespan. The

graphical representation clearly shows that the ON/OFF
method has significantly decreased energy use at a single
point in time by lowering the idle energy consumption of the
machines. As a result, when the schedule with an ON/OFF
strategy is compared to the usual schedule, there is a −
20.41%optimality gap in total energy consumption, resulting
in a 21.23% savings in total energy cost. Figure 4 demon-
strates how the framework has configured the machines to
turn off after 60 min of inactivity.

The carbon footprint is highly proportionate to energy
consumption. The optimal schedule is analysed for carbon
footprint andmakespan with an upper bound for carbon foot-
print called Baseline on Emissions (BoE) for the presented
strategies. The following observations are made from the
carbon footprint analysis graph; Fig. 6b with the ON/OFF
strategy, carbon emission levels followed the Baseline on
Emissions with aminor violation comparedwith Fig. 6a. The
model with WOA and ON/OFF strategy performed better
than the model with NSGA II, demonstrating the effec-
tiveness of the suggested framework. The analysis of the
results indicates that the suggested framework can make
existing facilities more energy-efficient and environmentally
friendly without requiring substantial capital expenditures.
The model has a broad scope for fulfilling the anticipated
increase in energy demand in the near future.

Table 5 Scheduling results for WOA and NSGA II with and without ON/OFF strategy

Parameter Whale optimisation algorithm (WOA) NSGA II

Without an
ON/OFF
strategy

With an ON/OFF
strategy

Optimality gap
(%)

Without an
ON/OFF
strategy

With an ON/OFF
strategy

Optimality gap
(%)

Running time of the
algorithm (sec.)

12.42 13.12 5.64 14.26 15.23 6.80

Cmax (min.) 3200 3200 0 3420 3420 0

TEC (kWh.) 294.68 232.13 − 20.41 316.18 278.91 11.79

Total energy cost ($) 21.39 16.85 − 21.23 22.95 20.25 11.79

TCE (tonCO2) 0.23 0.18 − 21.23 0.25 0.22 11.79

Carbon tax ($) 7.75 6.10 − 21.23 8.31 7.33 11.79

Carbon trading ($) − 3.89 − 6.35 − 63.08 − 2.41 − 4.62 91.70

Overall cost ($) 25.25 16.6 34.26 28.85 22.96 20.42
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Fig. 4 Analysis of machine-level energy consumption for optimal schedule with (b) and without (a) ON/OFF strategy

5 Conclusion and future insights

Industries face significant challenges due to the rising energy
costs and global warming policies. In this study, we propose
an adaptive energy optimal production scheduling model for
flexible manufacturing systems (FMS) that aims to reduce
energy costs and carbon footprint emissions while account-
ing for the flexibility of routes in FMS scheduling problems.
Weemphasise the importanceof considering carbon footprint
policies, whether imposed by corporate or governmental
organisations, in manufacturing scheduling decisions. Our
proposed model is formulated as a multi-objective optimisa-
tion problem and solved usingmetaheuristics, demonstrating
superior performance over existing scheduling optimisation
algorithms such as NSGA II.

Our study highlights the significance of incorporating
environmental policies and energy costs in manufacturing
scheduling decisions to achieve sustainable and efficient
production.While the proposed adaptive energy optimal pro-
duction scheduling model can lower production costs by
reducing energy consumption and carbon footprint, it may
require compromises on traditional time-based targets such
as makespan, which can impact customer satisfaction. How-
ever, our case study shows that the energyaware adap- tive
model can meet makespan, energy price, and carbon tax
objectives, while avoiding additional expenses related to
missing the deadlines.

We compare the optimal schedule from the adaptivemodel
using the whale optimisation algorithm (WOA) andON/OFF
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Fig. 5 Electric load analysis of optimal schedule with (b) and without
(a) ON/OFF strategy

Fig. 6 Carbon footprint analysis of the optimal schedule with (b) and
without (a) ON/OFF strategy

approach to a model incorporating NSGA II with the same
objectives and control strategies. Results show that the adap-
tive model with WOA and ON/OFF approach effectively
reducesmakespan, energy cost, and carbon costs to 3200min,
$16.85, and $6.10, respectively, while meeting all mandated
scheduling parameters. Moreover, the model can earn $6.35
for carbon trading, encouraging industries to implement the
developed framework and benefit from its sustainability. This
study concludes that integrating an adaptive energy-efficient
scheduling framework can effectively reduce demand-side
energy and carbon emissions without halting production, as
activities on a job can still be performed on other machines
in the FMS. This research contributes to ongoing efforts to
mitigate the impact of manufacturing on the environment
and supports the transition towards sustainable production
practices in the industry.

The future scope of the model could include multi-level
peak load (Time-of-Use energy Scheme) and varying carbon
footprint control strategies, as [4] proposed. Besides, it can
also include scheduling under a dynamic production environ-
ment with new part addition and machine breakdown. The
proposed approach can also be adapted to different produc-
tion systems, such as flexible job shops with inherent routing
and operational flexibility. In addition, future studies could
investigate the economic and social impacts of carbon foot-
print reduction policies on manufacturing operations. This
would provide a more comprehensive understanding of the
potential benefits and challenges of implementing sustain-
able production practices in the industry.
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Table 6 All possible alternative routes and processing times for each part Chan [1]

Part
type

Alternate
route no.

Operation
no. 1 M/c
no.)

Processing
time (min.)

Operation
no. 2 (M/c
no.)

Processing
time (min.)

Operation
no. 3 (M/c
no.)

Processing
time (min.)

Operation
no. 4 (M/c
no.)

Processing
time (min.)

1 1 1 15 3 24 5 10 2 30

2 2 18 3 24 5 10 2 30

3 1 15 3 24 5 10 1 25

4 2 18 3 24 5 10 1 25

2 1 2 20 3 10 5 35 4 25

2 2 20 2 16 5 35 4 25

3 3 24 3 10 5 35 4 25

4 3 24 2 16 5 35 4 25

3 1 5 40 1 25 4 30 2 15

2 5 40 1 25 3 27 2 15

4 1 4 30 2 30 5 20 3 25

2 4 30 2 30 5 20 1 15

5 1 1 10 3 20 2 15 4 30

2 1 10 3 20 5 20 4 30

6 1 3 25 2 12 1 25 5 10

2 3 25 2 12 1 25 3 23

3 5 20 2 12 1 25 5 10

4 5 20 2 12 1 25 3 23

7 1 4 35 5 10 1 10 2 15

2 4 35 5 10 4 15 2 15

3 1 38 5 10 1 10 2 15

4 1 38 5 10 4 15 2 15

8 1 5 15 4 40 3 25 1 20

2 5 15 5 30 3 25 1 20

3 4 10 4 40 3 25 1 20

4 4 10 5 30 3 25 1 20

Table 7 Route data matrix for
distance in meters Machine 1 2 3 4 5 I/O

1 0 5 11 15 9 6

2 5 0 6 10 4 9

3 11 6 0 6 10 15

4 15 10 6 0 6 11

5 9 4 10 6 0 5

I/O 6 9 15 11 5 0

References

1. (EIA) EIA.: Annual Energy Outlook 2020. In: Department of
Energy U, editor. (2020).

2. Vakil TLB.: Coronavirus Is Proving We Need More Resilient Sup-
ply Chains. Harvard Business Review (2020).

3. Liu, C.G., Yang, J., Lian, J., Li, W.J., Evans, S., Yin, Y.: Sustain-
able performance oriented operational decision-making of single

machine systems with deterministic product arrival time. J. Clean.
Prod. 85, 318–330 (2014)

4. Foumani,M., Smith-Miles,K.: The impact of various carbon reduc-
tion policies on green flowshop scheduling. Appl. Energy 249,
300–315 (2019)

5. Ding, J.-Y., Song, S., Wu, C.: Carbon-efficient scheduling of flow
shops by multi-objective optimisation. Eur. J. Oper. Res. 248,
758–771 (2016)

6. Sadeghian, R., Sadeghian, M.R.: A decision support system based
on artificial neural network and fuzzy analytic network process for

123



2880 International Journal on Interactive Design and Manufacturing (IJIDeM) (2024) 18:2869–2880

selection of machine tools in a flexible manufacturing system. Int.
J. Adv. Manuf. Technol. 82, 1795–1803 (2016)

7. Dai, M., Ji, Z.C., Wang, Y.: Energy-aware integrated optimisa-
tion of process planning and scheduling considering transportation.
Mod. Phys. Lett. B. 32, 7 (2018)

8. Le, C.V., Pang, C.K.: Robust total energy optimization of flexi-
ble manufacturing systems based on renyi mean-entropy criterion.
IEEE Trans. Autom. Sci. Eng. 13, 355–367 (2016)

9. Pach, C., Berger, T., Sallez, Y., Trentesaux, D.: Reactive control
of overall power consumption in flexible manufacturing systems
scheduling: a potential fields model. Control Eng. Pract. 44,
193–208 (2015)

10. Rajemi, M., Mativenga, P., Aramcharoen, A.: Sustainable machin-
ing: selection of optimum turning conditions based on minimum
energy considerations. J. Clean. Prod. 18, 1059–1065 (2010)

11. Fang, K., Uhan, N., Zhao, F., Sutherland, J.W.: A new approach
to scheduling in manufacturing for power consumption and carbon
footprint reduction. J. Manuf. Syst. 30, 234–240 (2011)

12. Mouzon, G., Yildirim, M.B., Twomey, J.: Operational methods for
minimisation of energy consumption of manufacturing equipment.
Int. J. Prod. Res. 45, 4247–4271 (2007)

13. Mouzon,G., Yildirim,M.B.: A framework tominimise total energy
consumption and total tardiness on a singlemachine. Int. J. Sustain.
Eng. 1, 105–116 (2008)

14. Dai, M., Tang, D., Giret, A., Salido, M.A., Li, W.D.: Energy-
efficient scheduling for a flexible flow shop using an improved
genetic-simulated annealing algorithm. Robot. Comput. Integr.
Manuf. 29, 418–429 (2013)

15. Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., Ortega-Mier,
M.: Optimising the production scheduling of a single machine
to minimise total energy consumption costs. J. Clean. Prod. 67,
197–207 (2014)

16. Jawahar, N., Aravindan, P., Ponnambalam, S.G.: A genetic algo-
rithm for scheduling flexible manufacturing systems. Int. J. Adv.
Manuf. Technol. 14, 588–607 (1998)

17. Barak, S.,Moghdani, R.,Maghsoudlou, H.: Energy-efficientmulti-
objective flexible manufacturing scheduling. J. Clean. Prod. 283,
14 (2021)

18. Lee, C.F., Lin, S.J., Lewis, C., Chang, Y.F.: Effects of carbon taxes
on different industries by fuzzy goal programming: a case study
of the petrochemical-related industries, Taiwan. Energy Policy 35,
4051–4058 (2007)

19. Zhu, Z.-S., Liao, H., Cao, H.-S., Wang, L., Wei, Y.-M., Yan, J.: The
differences of carbon intensity reduction rate across 89 countries
in recent three decades. Appl. Energy 113, 808–815 (2014)

20. Zhang, C.Y., Gu, P.H., Jiang, P.Y.: Low-carbon scheduling and
estimating for a flexible job shop based on carbon footprint and
carbon efficiency of multi-job processing. Proc. Inst. Mech. Eng.
Part B J. Eng. Manuf. 229, 328–342 (2015)

21. Lin, W.W., Yu, D.Y., Zhang, C.Y., Liu, X., Zhang, S.Q., Tian, Y.H.,
et al.:Amulti-objective teaching-learning-basedoptimisation algo-
rithm to scheduling in turning processes for minimising makespan
and carbon footprint. J. Clean. Prod. 101, 337–347 (2015)

22. Liu, Q.O., Zhan, M.M., Chekem, F.O., Shao, X.Y., Ying, B.S.,
Sutherland, J.W.: A hybrid fruit fly algorithm for solving flexible
job-shop scheduling to reduce manufacturing carbon footprint. J.
Clean. Prod. 168, 668–678 (2017)

23. Shao, C., Ding, Y., Wang, J.: A low-carbon economic dis-
patch model incorporated with consumption-side emission penalty
scheme. Appl. Energy 238, 1084–1092 (2019)

24. Abikarram, J.B., McConky, K., Proano, R.: Energy cost minimisa-
tion for unrelated parallel machine scheduling under real time and
demand charge pricing. J. Clean. Prod. 208, 232–242 (2019)

25. He, S., Yin, J., Zhang, B.,Wang, Z.: How to upgrade an enterprise’s
low-carbon technologies under a carbon tax: the trade-off between
tax and upgrade fee. Appl. Energy 227, 564–573 (2018)

26. Guo, J., Wang, L.M., Kong, L., Lv, X.T.: Energy-efficient flow-
shop scheduling with the strategy of switching the power statuses
of machines. Sustain. Energy Technol. Assess. 53, 102649 (2022)

27. Tian, Y., Gao, Z.X., Zhang, L., Chen, Y.J., Wang, T.Y.: A multi-
objective optimisation method for flexible job shop scheduling
considering cutting-tool degradation with energy-savingmeasures.
Mathematics 11, 31 (2023)

28. Duan, J.G., Feng,M.Y.,Zhang,Q.L.:Energy-efficient collaborative
scheduling of heterogeneous multi-stage hybrid flowshop for large
metallic component manufacturing. J. Clean. Prod. 375, 14 (2022)

29. Chan, F.T.S.: Effects of dispatching and routeing decisions on the
performance of aflexiblemanufacturing system. Int. J.Adv.Manuf.
Technol. 21, 328–338 (2003)

30. Jerald, J., Asokan, P., Saravanan, R., Rani, A.D.C.: Simultane-
ous scheduling of parts and automated guided vehicles in an FMS
environment using adaptive genetic algorithm. Int. J. Adv. Manuf.
Technol. 29, 584–589 (2006)

31. Jerald, J., Asokan, P., Prabaharan, G., Saravanan, R.: Schedul-
ing optimisation of flexible manufacturing systems using particle
swarm optimisation algorithm. Int. J. Adv. Manuf. Technol. 25,
964–971 (2005)

32. Kim, D.W., Kim, K.H., Jang, W., Chen, F.F.: Unrelated parallel
machine scheduling with setup times using simulated annealing.
Robot. Comput. Integr. Manuf. 18, 223–231 (2002)

33. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine
scheduling problems. J Stud. Integer Program. 1, 343–362 (1977)

34. EIA.: Electric PowerMonthly. In: AdministrationUSEI, editor. US
Energy Information Administration, USA, (2022)

35. Pandey, D., Agrawal, M., Pandey, J.S.: Carbon footprint: cur-
rent methods of estimation. Environ. Monit. Assess 178, 135–160
(2011)

36. OECD SG.: Effective Carbon Rates. Pricing CO2 through Taxes
and Emissions Trading Systems. OECD, Paris (2016).

37. Mirjalili, S., Lewis, A.: The whale optimisation algorithm. Adv.
Eng. Softw. 95, 51–67 (2016)

38. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast
and elitist multi-objective genetic algorithm: NSGA-II. IEEE Tran.
Evol. Comput. 6, 182–197 (2002)

39. Chan, F.T.S.: Evaluation of combined dispatching and routeing
strategies for a flexible manufacturing system. Proc. Inst. Mech.
Eng. Part B J. Eng. Manuf. 216, 1033–1046 (2002)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	An energy-aware optimisation model to minimise energy consumption and carbon footprint in a flexible manufacturing system
	Abstract
	1 Introduction
	2 Methodology
	2.1 Mathematical model
	2.2 Flat price electricity tariff structure
	2.3 Carbon footprint reduction structure
	2.3.1 Tax on emissions (ToE) policy
	2.3.2 Baseline on emissions (BoE) policy
	2.3.3 Emissions trading (ET) policy

	2.4 Whale optimisation algorithm (WOA)
	2.4.1 A mathematical-based model and optimisation algorithm


	3 Description of the FMS model
	4 Model evaluation and discussion
	4.1 Base case introduction
	4.2 Problem parameters
	4.3 Model results

	5 Conclusion and future insights
	Appendix
	References




