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Abstract
Continuous growth of the manufacturing sector is resulting in to higher energy demand due to which the manufacturing costs
and greenhouse gas emissions are also increasing. Beside reduction in energy consumption; improvement in energy efficiency,
power factor and reduction in cutting temperatures are also vital to ensure better sustainability of the machining sector. This
work evaluates the trade-offs between energy, heat generation and cutting quality duringmilling ofmedium carbon steel (EN8)
alloy steel. The effects of input process parameters viz. spindle speed, feed rate, axial depth of cut, radial depth of cut and
tool helix angle has been studied on the energy consumption, energy efficiency, power factor, cutting temperatures, surface
roughness response parameters. The inclusion of helix angle as an input factor and, using energy efficiency and power factor
as output parameters are the major highlights of this work. Themachining experiments were conducted using response surface
methodology for design of experiments. The multi objective optimization was carried out by using desirability approach, for
three different groups of response variables considering the different importance of energy consumption, cutting temperatures
and surface roughness, under different manufacturing circumstances. The predictability of the multiple regression approach
was found to be more than 90% for all the responses which highlights model significance. The direct and interaction effect
were studied and discussed in details for all the responses. The values of the composite desirability achieved in all the three
types of optimization problems were on higher side (0.813, 1 and 0.794). The results of the optimization were confirmed by
conducting the experiments the optimized settings. The percentage error between experimental and RSM predicted result was
found to be within acceptable limits. This study can be helpful for reducing the energy consumption and cutting temperature
without compromising on surface roughness, in the machining of medium carbon steel.
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Abbreviations

ANOVA Analysis of variance
CE Cutting energy
CCD Central composite design
CCRD Central composite rotatable design
DoE Design of experiment
EE Energy efficiency
F Feed rate
GA Genetic algorithm
H Helix angle
MRR Material removal rate
N Spindle speed
NSGA-II Non-dominated sorting genetic algorithm-II
PF Power factor
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PCM Power consumed for actual cutting of material (in
Watt)

PCA Power consumed by the machine during air cut-
ting (no workpiece)

PC Power consumed for cutting
Ra Surface roughness
SEC Specific energy consumption
SA Simulated annealing
TECM Total energy consumption during machining
T Workpiece surface temperature rise
Y Radial depth of cut
Z Axial depth of cut

1 Introduction

As the manufacturing sector is growing, the energy demand
by this sector is also growing. Higher consumption of energy
results in increase in the manufacturing costs as well as the
greenhouse gas emissions. Among the diverse segments of
manufacturing, machining is responsible for massive energy
consumption. Thus, in the recent years, reduction in the
energy demand in this segment, is a major challenge for
industries as well as the researchers [1]. The optimum value
of cutting parameters if chosen, could reduce about 6 to 40%
energy during machining [2, 3], so this selection is vital
for all the major machining operations. Milling; particularly
the end milling is one amongst the foremost versatile and
major machining operations used in aerospace and automo-
tive industries for creating deep slots, profile recesses, steps
etc.[4]. In the last few years, the researchers have started
focusing on the reduction in the energy consumption of
milling processes.

Kuram et al. [5], have used the D-optimal design of exper-
iment (DoE) for developing second order models for tool
wear, specific energy, and surface roughness during end
milling of AISI 304. Cutting speed, feed, depth of cut and
type of cutting fluid were used as the input variables. Both
mono objective and multi objective optimization were car-
ried out for minimization of consumed energy, tool wear and
surface roughness. In anotherwork, Campatelli et al. [6] have
developed response surface models for energy consumption
for spindle and axis and specific energy consumption (SEC).
Also, the models for total energy consumption and total SEC
were developed. The input variables were the spindle speed,
feed rate, radial depth of cut and axial depth of cut. It was
recommended to use higher values of process parameters in
order to get minimum specific energy consumption.

Yan et al. [7], have developed models for addressing the
trade- off between energy, production rate and surface quality
for C-45 steel using spindle speed, feed rate and radial depth
of cut and axial depth of cut as input variables. The multi

objective optimization problem was solved using weighted
Gray relational analysis. The results were compared with the
results of traditional optimization with MRR and roughness
as objective functions and it was found that there was sig-
nificant reduction in the cutting energy with the proposed
analysis. Zhang et al. [8], have carried out experimental
investigation and multi objective optimization for minimiza-
tion of surface roughness, SEC, and maximization of MRR
using hybrid non –dominated Sorting Genetic algorithm-II
(NSGA-II). Ozturk et al. [9] have also carried out optimiza-
tion of the cutting speed, feed rate and depth of cut for
simultaneous minimization of surface roughness and energy
consumption for aluminium alloy-6061.

Kadirgama et al. [10, 11] have proposed first and sec-
ond order models for power consumption, torque and cutting
force using RSM. Cutting speed, feed, radial depth of cut
and axial depth of cut were the input parameters used for
milling of stainless steel. The prediction accuracy of the sec-
ond order models was noticed to be better as compared to
first order models. Bagcı et al. [12] have carried out experi-
mental studies using full factorial design with cutting speed,
feed, and depth of cut as input parameters and tool wear,
cutting force and power as response parameters during sym-
metric and asymmetric milling of Stellite-6 using coated and
uncoated inserts. Ahmed et al. [13] have used Taguchi’s L9
orthogonal array for minimization of the surface roughness
and energy consumption with the cutting speed, feed rate,
and depth of cut as the process variables. In another study
by Rizal et al. [14] carried out experimental work for min-
imization of material removal rate and power consumption
during slot milling of aluminium 6061 alloy using the feed
rate, axial depth of cut and radial depth of cut as the process
parameters.

In the work carried by, Sahu et al. [15], Ti-6Al-4V tita-
nium alloy was machined using cutting speed, feed, and
depth of cut as input parameters and surface roughness, tool
wear, power consumption andMRR as responses. Themulti-
objective optimization of the developed regression models
was carried out using the desirability function approach. The
error in the predicted and experimental results was found
to be less than 8.2%. Malghan et al. [16] have carried out
milling on aluminiummatrix compositeswith feed rate, spin-
dle speed and depth of cut as input factors and cutting force,
surface roughness andpower consumption as responses using
RSM. The optimization was carried out using the desirabil-
ity approach and particle swarm optimization (PSO). It was
noticed that spindle speed has played major role on all the
responses which was followed by feed rate and depth of cut.

The major focus of researchers was on the reduction of
energy consumption and SEC, but the important parameters
like energy efficiency (EE) and power factor are overlooked.
The energy efficiency is defined as; the ratio of the effec-
tive energy consumed during actual cutting process to total
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energy consumed by the machine in the same time. Increas-
ing the value of power factor (PF) by selecting the suitable
process parameters during machining is also recognized as a
potential green machining strategy [17]. Also, it was noticed
that inmost of the research related to energy consumption for
milling the geometry of the cutting tool was rarely used as
the input parameters whereas, the geometrical features were
used as input parameters in turning operations [3, 18, 19].

Another important problem faced by the machinists while
achieving the higher production rates using the higher cutting
speed, is the heat generation and the subsequent rise in the
temperatures, which is detrimental to both the tool life and
the surface quality. The energy used for metal cutting mostly
gets converted into heat, which increases the temperatures in
the machining zones [20, 21]. There are mainly three regions
in which the heat generation occurs during the metal cutting
processes; along the shearing plane due to plastic deforma-
tion of the metal; at line of contact between the tool and
workpiece because of friction and at tool flank face because
of the friction between the flank face and the machined sur-
face. Beside the process parameters like cutting speed, feed,
and depth of cut, the cutting temperature also depends on
specific energy requirement, ductility, thermal conductivity,
thermal diffusivity of the work material and tool geometry
[22].

In the last few years, the researchers have started focus-
ing on the reduction in the cutting temperatures during the
machining processes. Tamilarasan et al. [23], formulated a
multi objective optimization problem for the response vari-
ables like cutting zone temperature, tool wear and MRR.
Themodel adequacy was confirmed through analysis of vari-
ance (ANOVA) and evolutionary algorithms like Genetic
Algorithm (GA) and Simulated Annealing (SA) were used
for optimization. Tamilsaran et al. [24, 25] also carried out
multi objective optimization of workpiece surface tempera-
ture, cutting forces and sound pressure level for the tool steel
material, using the work material hardness, nose radius, feed
per tooth, radial and axial depth of cut as the input variables.
Themost influential parameterwas feed rate, then,workpiece
hardness and depth of cut. Multi objective GA was used by
Hazza et al. [26] for minimization of the cutting tempera-
ture and surface roughness during end milling of AISI H 13
steel, using cutting speed, feed, and depth of cut as input
variables and RSM for design of the experiments. The opti-
mum values of cutting speed, feed and depth of cut were
found to be 263 m/min, 0.07 mm/tooth and 0.11 mm respec-
tively. The cutting temperature was found to be dependent on
many factors like tool material, work piece material, process
parameters like cutting speed, feed, and depth of cut.

The research of Le Coz et al. [27], Li et al. [28], Lazoglu
et al. [29], highlights the importance of tool geometry
for controlling the cutting temperatures, but the geometri-
cal parameters as input variables were rarely used for the

modelling of the temperatures. The energy consumption,
temperature, cutting forces and induced stresses are affected
by the geometrical features of the milling tool [30]. During
energy and temperature related studies for milling; the cut-
ting tool geometry is occasionally considered as an input
parameter. It was noticed that the controllable machining
parameters like cutting speed, feed rate and depth of cut are
affecting the heat generation, energy consumption aswell the
surface quality. So, the selection of such parameters is vital
in order to improve the overall performance of the machin-
ing processes. This selection is normally dependant on the
recommendations in specialized handbooks along with the
experience of the process engineers [7], but it fails to give
the optimal values [3]. So, it is required to find the optimum
values of the process parameters.

As compared to turning tools the end mill cutters are hav-
ingmany additional features which makes its geometry more
complicated and so, to study the effect of such additional
parameters is more important. In order to ensure smooth cut-
ting action, in milling, the teeth are normally helical which
allows engagement of more than one tooth and makes cut-
ting smother resulting in better finish [31]. Helix angle is
the angle between a plane passing through the cutter axis
and a tangent to the helix. The cutting tool’s helix angle
was not considered as a process parameter during the studies
related to energy consumption in milling but its effect on cut-
ting temperature rise was studied. Researchers have used the
helix angle as input factor in other studies like Sivasakthivel
et al.[32, 33, 34, 35] inmodelling of vibration amplitude, tool
wear, cutting forces and surface roughness; Hrikova et al.[36]
and Tsao [37] for surface roughness; Kalidas et al. [38, 39]
for surface roughness and tool wear. The variation in helix
angle causing variation in machining performance, mainly
regarding the energy consumption and heat generation, have
not been discovered much. So, it is decided to include helix
angle of the milling cutter as a input parameters for the cur-
rent work, along with the controllable machining parameters
like spindle speed, feed rate, axial depth of cut, radial depth
of cut.

The literature review reveals that, beside the energy con-
sumption; the energy efficiency and power factor are also
important response parameters as they have direct influ-
ence on sustainability of machining. In the studies related to
milling operation, these two response parameters were over-
looked in the previous researches. The appropriate selection
ofmachiningparameters and tool geometry is needed in order
to evaluate trade-offs between energy, heat generation and
cutting quality and for thismulti objective optimization prob-
lems needs to be formulated. Thus, in the current work, five
objectives are considered; simultaneous minimization of the
total energy consumption during machining (TECM), work-
piece surface temperature rise (T) and surface roughness (Ra)
and maximization of the energy efficiency (EE) and power
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Fig. 1 AMS milling machine

factor (PF). The response surface methodology was used for
developing the mathematical models which were used as the
input for the optimization. The direct and interaction effects
of the input parameters on the response parameterswere stud-
ied and discussed in details.

The inclusion of helix angle as an input factor and, using
energy efficiency and power factor as output parameters are
the major highlights of this work. This work also evaluates
the trade-offs between energy, heat generation and cutting
quality. Also, under different manufacturing circumstances
different importance is given for energy consumption, cutting
temperatures and surface roughness, so here, themulti objec-
tive optimizationwas carried out for three different situations
by using desirability approach. Firstly, the energy parame-
ters and surface quality was considered; in second situation
only the workpiece surface temperature and surface rough-
ness were the targets; and in third situation all the responses
were considered for the multi objective optimization.

2 Experimental details

2.1 Workpiece, cutting tool, andmachine tool
description

The experiments were conducted on AMS make (model
tool room) vertical, 3 axes CNC milling machining centre

Fig. 2 Sample workpieces of medium carbon steel (EN 8)

(Fig. 1) having maximum spindle speed of 6000 rpm and
7.5 kW drive motor. The machining centre was a general
purpose, compact, flexible, productive, robust, and high pre-
cision machine. The work table size of machine was 330 ×
500 mmwith XYZ travels of 300 mm× 250 mm× 250 mm.
The work piece was placed in the machining centre using a
machine vice and the cutting parameters were set according
to the design of experiments.

The workpiece material selected for the experimentation
was EN 8. It is a widely used medium carbon steel suitable
for the all-general engineering applications requiring a higher
strength than mild steel. It has good tensile strength and is
often used in applications such as: general-purpose axles,
shafts, gears, bolts and studs, spindles, automotive and gen-
eral engineering components like stressed pins keys etc. The
properties for EN 8 are listed in Table 1.

The test specimens were machined to a size of 150 mm
length and 25 mm × 25 mm cross section from square bar
(Fig. 2). In order to eliminate the rust and hardened top layer
from the surface and to reduce effects of non-homogeneity
on the experimental results; a pre-cut of 1 mm depth was
performed on each workpiece prior to actual milling using
different cutting tools. Solid uncoated tungsten carbide end
mill cutters of 12 mm diameter (Fig. 3) were used for the
experiments. Eight end mill cutters with five different helix
angles cut on both the ends of the cutters were utilized. These
tools were specially designed and manufactured by a local

Table 1 Properties of EN 8
Tensile
strength
(MPa)

Yield
strength
(MPa)

Elongation % Hardness
HBW

Specific
heat J/kg K

Density
kg/m3

Thermal
conductivity,
W/m K

585.24 506.37 22.19 170–172 500 7850 46
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Fig. 3 END mill Cutter

Table 2 Specifications of the end mill cutters

(i) Number of flutes 4

(ii) Diameter of cutter 12 mm

(iii) Flute length 30 mm

(iv) Rake angle 7°

(v) Primary and secondary relief
angles

9 and 18°

(vi) Dish angle 2°

(vii) Helix angle 10°, 20°, 30°, 40°, 50°

leading tool manufacturer. The specifications of the end mill
cutters are as shown in Table 2.

2.2 Measuring instruments

HIOKImake, 3-Phase 4-Wire portable clamp on power qual-
ity analyzer PQ 3197 (basic accuracy: for active power,
voltage and current: ± 0.3%) was used for the measurement
of the energy consumption and power factor. This portable
power quality analyser was the best-in-class power measur-
ing instrument with a high degree of precision and accuracy.
It was a portable power quality analyzer for monitoring and
recording power supply anomalies, allowing their causes to
be quickly investigated. The power analyser was connected
to the main electric supply of the CNC milling machine.
Figure 4, shows the power quality analyser and connection
made in electric control panel of milling machine.

The rise in workpiece surface temperature (T) was
recorded with the help of non-contact type infrared (IR) ther-
mometer (HTC Make, Model IRX-67, least count 0.1 °C)
equipped with smart sight laser system. The optical sensor
can emit, reflect, and transmit energy, which is collected and
focused on a detector, then translate it into the temperature
reading by the electronics systems and displayed on the LCD
screen. The smart sight laser system was used for aiming the
target. The thermometer needs to bemounted as close as pos-
sible from the target, this was attained by using a specially
designed holder for the thermometer.

Figure 5 shows the position of the thermometer with
respect to the work piece. The surface roughness was

Fig. 4 aPower quality analyser bElectrical connections in control panel
of milling machine

Fig. 5 Non-contact type thermometer

measured (Fig. 6) using SURFCOM 130A (Straightness
accuracy- 0.3m/50mm) at themetrology lab ofNashik Engi-
neering Cluster, Nashik, MS, India.

2.3 Design of experiment

After selecting the material, machine and cutting tool and
measuring devices, machining experiments were conducted
as per the scheme of runs determined by central composite
design (CCD) used in response surface methodology (RSM)
for design of experiments (DoE). The use the DoE gives con-
clusive results with reduced efforts, cost, and time. There are
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Fig. 6 Setup for surface roughness measurement

threemajor types of design of experimentsmethods; factorial
DoE, RSM and Taguchi method. In the comparative stud-
ies[40, 19] the RSM was noticed to be better than Taguchi
approach as it enables the experimenters to study the direct
as well as interaction effects of the parameters and it also has
got better visualization tools. RSM is useful for modelling
and statistical analysis of the response parameters which are
affected by a greater number of variables and responses [15].
It is usually used for developing the mathematical models for
the response variables and to find out the influencing input
variables and interactions [41]. For most RSM studies, cen-
tral composite design (CCD) method which is a special case
of factorial designs often used for design of the experiments.
CCD needs five levels of each factor:− α,− 1, 0, 1, and+ α.
The selected design consists of 32 experiments. This central
composite rotatable design (CCRD) is having five factor and
five levels for each factor. This CCRD consists of ½ replica-
tion of 25 (= 16) factorial design points, six centre points and
ten-star points [42]. As it is a rotatable design, to maintain
rotatability, the value of α depends upon the number of exper-
imental runs in the factorial portion of the central composite
design, α becomes, 2 (k−1)/4 Where k= number of factors. As
total number of parameters are five, α = 2. The centre point
was replicated to provide ameasure of experimental error and
hence while using second order rotatable designs no replica-
tions were needed in order to find the mean square error.

The selection of machining input process parameters was
madeby taking into consideration the capacity of themachine
tool, tool manufacturer’s recommendations and recommen-
dations in the literature. Spindle speed (N), feed rate (F),
Radial depth of cut (Y), axial depth of cut (Z) and helix
angle (H) were the input process parameters chosen for the
research. The initial levels of cutting speed and feed rate
were decided using the recommendation of Li et al. [7] and
Kadirgama et al. [10]. The method adopted by Patel et al.
[43] was used for the calculations of the other levels. The
average cutting speed was taken as 100 m/min and feed per
tooth was taken as 0.025 mm/toot. For the average cutting
speed 100m/min and for a tool diameter of 12mm; the corre-
sponding spindle speed was calculated as 2500 rpm and feed
per minute as 250 m/min and both were varied by+/−20%.

The axial and radial depth of cut values were decided using
recommendation of the tool manufacturer and through the
results of the pilot experimentations. The helix angle range
was decided using recommendation of the tool manufacturer
and the using the recommendations in literature by Sivasak-
thivel et al. [44] and Vikas et al. [30]. Table 3 shows the
machining parameters and the levels for each parameter.

Table 4 shows the scheme of the experimentation with the
uncoated factors values.

2.4 Measured responses

The experimentation was carried out using the scheme of the
experimentation as shown in Table 4 and the measurement
systems were employed for measuring and recording of the
data. The cycle time, power consumption during the cycle
with andwithout workpiece, workpiece surface temperatures
were recorded at the time of experimentation. The details of
the calculation methodology is explained below.

Using the power quality analyser PQ 3197; the value of
power consumed when the actual cutting of material was
taking place by the machine (PCM in Watt) was recorded.
Similarly, the power consumed by the machine during air
cutting (no workpiece) was also recorded (PCA in Watt).
The difference in these two power readings was called as
power consumed for cutting (PC). The power factor during
machining cycle and cycle time in seconds were recorded
simultaneously. The total energy consumed for machining
(TECM) was the product of PCM and cycle time and was
in Joules. The product of PC and cycle time was termed as
cutting energy (CE). The energy efficiency (EE) was the ratio
of CE and TECM expressed in percentage.

EE (%) = CE

T ECM
× 100 (1)

The initial andmaximum temperatureswere recorded dur-
ingmachining, and the difference between themwas referred
as temperature rise. The surface roughness of all the samples
was measured using SURFCOM 130A after the experimen-
tation. Surface roughness was measured at three places on
the machined surface and average value was taken in order
to reduce error in measurements. The results obtained from
experimentation and calculations, are summarised in the
Table 5.

3 Results and discussions

3.1 Response surfacemethodology

The first stage for the RSM is to find out a suitable function
which represents the relationship between input and output
variable. Generally, two important models are used in RSM.
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Table 3 Level of input process
parameters for EN8 Levels Lowest Low Centre High Highest

Coding − α − 1 0 + 1 + α

Spindle speed, N, rpm 1500 2000 2500 3000 3500

Feed, F mm/min 150 200 250 300 350

Radial depth of cut, Y mm 2 40 6 8 10

Axial depth of cut, X mm 0.5 1 1.5 2 2.5

Helix angle, H ° 10 20 30 40 50

Table 4 Uncoated factors values for experiments

Std
order

Spindle
speed, N,
rpm

Feed F,
mm/min

Radial
depth of
cut, Y,
mm

Axial
depth of
cut Z,
mm

Helix
angle
H, °

Std
order

Spindle
Speed,
N, rpm

Feed F,
mm/min

Radial
depth of
cut, Y,
mm

Axial
depth of
cut Z,
mm

Helix
angle
H, °

1 2000 200 4 1 40 17 1500 250 6 1.5 30

2 3000 200 4 1 20 18 3500 250 6 1.5 30

3 2000 300 4 1 20 19 2500 150 6 1.5 30

4 3000 300 4 1 40 20 2500 350 6 1.5 30

5 2000 200 8 1 20 21 2500 250 2 1.5 30

6 3000 200 8 1 40 22 2500 250 10 1.5 30

7 2000 300 8 1 40 23 2500 250 6 0.5 30

8 3000 300 8 1 20 24 2500 250 6 2.5 30

9 2000 200 4 2 20 25 2500 250 6 1.5 10

10 3000 200 4 2 40 26 2500 250 6 1.5 50

11 2000 300 4 2 40 27 2500 250 6 1.5 30

12 3000 300 4 2 20 28 2500 250 6 1.5 30

13 2000 200 8 2 40 29 2500 250 6 1.5 30

14 3000 200 8 2 20 30 2500 250 6 1.5 30

15 2000 300 8 2 20 31 2500 250 6 1.5 30

16 3000 300 8 2 40 32 2500 250 6 1.5 30

1. First-degree model (d = 1).
2. Second-degree model (d = 2).

If the response of the system under consideration can be
sufficientlymodelled using a linear function of the input vari-
ables, a first-order model is used. Mathematically, this can
be expressed as Eq. (2);

y = bo + b1X1 + b2X2 + . . . bi Xi + e (2)

For more complex response a second-order model is used.
The second order model is given by Eq. (3);

y = bo +
k∑

i=1

bii Xi +
k∑

i=1

bii X
2
i +

∑

i< j

bi j Xi X j + e (3)

where, the term “e” represents the error or noise in the
response y and b’s are the regression coefficients to be calcu-
lated using the least square technique [45]. The least square
method is used to determine the parameters in the models.
In present study, statistical analysis is done and models are
developed for aal the responses in terms of process parame-
ters. The adequacy of themodelwas confirmedusing analysis
of variance (ANOVA). The models generation, the direct and
interaction effects of process parameters on the response vari-
ables are analysed and discussed in the subsequent sections.

3.2 Model generation for total energy consumption

The results of the experimentation were used for the gen-
eration of the second-degree polynomial empirical models.
Least square technique was used for the estimation of the
regression coefficients. Analysis of variance was carried to
find the effective parameters in the developed model and the
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Table 5 Experimental results for EN8

Std order Cycle time, s PCM, W PCA, W PC, W TECM, J EE % PF T °C Ra, μm

1 53 538 495 43 28,514 7.99 0.785 20.2 0.319

2 53 561 501 60 29,733 10.70 0.791 23.2 0.220

3 37 546 488 58 20,202 10.62 0.788 32.2 0.321

4 37 594 519 75 21,978 12.63 0.804 19.6 0.245

5 53 560 482 78 29,680 13.93 0.794 50.4 0.373

6 53 590 502 88 31,270 14.92 0.809 32.6 0.310

7 37 609 496 113 22,533 18.56 0.811 42.6 0.387

8 37 613 517 96 22,681 15.66 0.808 46.8 0.379

9 53 568 476 92 30,104 16.20 0.795 37.8 0.334

10 53 649 504 145 34,397 22.34 0.831 63.8 0.420

11 37 621 493 128 22,977 20.61 0.821 47.8 0.532

12 37 687 583 104 25,419 15.14 0.845 41 1.273

13 53 691 477 214 36,623 30.97 0.856 87.4 0.430

14 53 675 503 172 35,775 25.48 0.834 70.6 0.942

15 37 773 537 236 28,601 30.53 0.862 73 1.130

16 37 823 518 305 30,451 37.06 0.865 109.4 0.959

17 43 638 527 111 27,434 17.40 0.834 51.4 0.290

18 43 723 579 144 31,089 19.92 0.848 39.6 0.140

19 69 603 523 80 41,607 13.27 0.818 39.4 0.088

20 33 639 535 104 21,087 16.28 0.815 35.6 0.369

21 43 579 541 38 24,897 6.56 0.811 17 0.456

22 43 704 527 177 30,272 25.14 0.84 60.8 0.347

23 43 558 533 25 23,994 4.48 0.768 14.2 0.490

24 43 736 518 218 31,648 29.62 0.851 93 1.150

25 43 635 513 122 27,305 19.21 0.815 41.4 0.590

26 43 708 511 197 30,444 27.82 0.846 73 0.488

27 43 607 523 84 26,101 13.84 0.814 40.2 0.248

28 43 617 527 90 26,531 14.59 0.798 39.6 0.303

29 43 592 518 74 25,456 12.50 0.797 40.2 0.311

30 43 580 515 65 24,940 11.21 0.802 41.2 0.239

31 43 573 515 58 24,639 10.12 0.802 42.6 0.116

32 43 590 515 75 25,370 12.71 0.797 31.2 0.238

non-effective parameters were removed by backward elimi-
nation method [15, 42]. The model significance was checked
using theF- values andp- values. The residual plotswere used
for checking the fitness of the model. Finally, the analysis of
the effects of the input process parameters on the response
variables was carried out using the main effects plots and
surface plots.

Table 6 shows the ANOVA results for the TECM along
with the model summary.

The higher value of the coefficient of determination, R-sq
for this model (95.05%) shows that the experimental data
was well described by this model. The R-sq value for the
model was close to the adjusted coefficient of determination

value of the model (R-sq (adj) = 93.03%). Also, the value of
R-sq (pred) was in reasonable agreement with the R-sq (adj)
value. The model F-value of 46.97 implies that model was
significant and there was very little possibility that model
F-Value this large could occur due to noise. P value of the
model was less than 0.05 which also indicates model was
fitting all the design points well. The F value for lack of fit
is 3.92 and p value was 0.069 indicates insignificant lack of
fit. The second order model in uncoded units is as shown in
Eq. (4).

TECM = 85532 − 10.32N − 309.3F

− 471Y − 384Z − 248H
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Table 6 ANOVA results for
TECM Source DF Seq SS Adj SS Adj MS F-value P-value

Model 9 687,718,940 687,718,940 76,413,216 46.97 0.000

Linear 5 627,641,950 627,641,950 125,528,390 77.16 0.000

N 1 16,302,017 16,302,017 16,302,017 10.02 0.004

F 1 436,002,602 436,002,602 436,002,602 267.99 0.000

Y 1 51,158,400 51,158,400 51,158,400 31.44 0.000

Z 1 117,324,504 117,324,504 117,324,504 72.11 0.000

H 1 6,854,428 6,854,428 6,854,428 4.21 0.052

Square 3 49,811,374 49,811,374 16,603,791 10.21 0.000

N*N 1 7,218,689 10,649,539 10,649,539 6.55 0.018

F*F 1 35,107,148 37,276,160 37,276,160 22.91 0.000

H*H 1 7,485,537 7,485,537 7,485,537 4.6 0.043

2-way interaction 1 10,265,616 10,265,616 10,265,616 6.31 0.020

Y*Z 1 10,265,616 10,265,616 10,265,616 6.31 0.020

Error 22 35,792,840 35,792,840 1,626,947

Lack-of-fit 17 33,295,149 33,295,149 1,958,538 3.92 0.069

Pure error 5 2,497,691 2,497,691 499,538

Total 31 723,511,780

S R-sq R-sq(adj) Press R-sq(pred)

Model summary

1275.52 95.05% 93.03% 96,653,370 86.64%

+ 0.002395N ∗ N + 0.4480F ∗ F

+ 5.02H ∗ H + 801 Y (4)

The model adequacy was examined using the residuals.
The residual means the differences between the observed
value and the predicted value of the response. Figure 7 shows
the residual plot for TECM for checking themodel adequacy.

In the normal probability plots the residuals were follow-
ing a straight line and in the versus fit plot the residuals
were randomly scattered about the zero line. For an ade-
quate model, the points on the normal probability plots of
the residuals should form a straight line. Figure 7 also illus-
trates that the residuals were not showing a particular trend
and the errors were distributed normally. The residual ver-
sus the predicted response plot also shows that there is no
noticeable pattern and unusual structure. The nature of the
histogram and residuals versus order graphs shows that fitted
model values were closer to the experimental values.

Figure 8, shows the effect of various input parameters on
TECM. The feed rate was the most significant parameter
affecting the TECM followed by axial depth of cut. It was
noticed that the TECM reduces as the feed rate increases. As
the feed rate increases the cycle time gets reduced as axis of
the motors needs to move faster, which results in to reduc-
tion in energy consumed. Similar observations were made
by Negrete et al. [46], Bilga et al. [3], Mativenga et al. [47].

The smaller spindle speed was also contributing to reduced
energy [18, 19, 48]. The smaller values of radial as well as
axial depth of cut were resulting in to smaller energy con-
sumption because as the depth of cut increases, more forces
are needed to remove thematerial for the hardermaterials like
EN8 as the contact area between the workpiece and the tool
increases and thus, more power is needed for cutting of the
material [3, 49]. The similar results were obtained by Yusoff
et al. [50] during milling of cast iron. The helix angle was not
having much significant effect on the energy consumption,
but still helix angle around 30° was resulting in minimum
energy consumption. Like the findings of Altintas et al. [51],
low spindle speed and higher feed rates was resulting in to
lower energy consumption.

The surface plot for effect of axial and radial depth of
cut on TECM (Fig. 9) demonstrates that the combination
of higher radial and axial depth of cut was resulting in to
higher energy consumption as more material removal needs
more energy consumption. The increase in the axial depth
of cut at larger value of the radial depth was resulting in to
more energy consumption. The effect of axial depth of cut
was more significant as compared to radial depth of cut, so
by controlling axial depth of cut energy consumption can be
reduced.
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Fig. 7 Residual plots for TECM

Fig. 8 Main effects plot for TECM

4 Model generation for energy efficiency

Like the previous analysis, the ANOVA was used to find out
the effective parameters in the mathematical model and the
non-effective parameters were removed by backward elimi-
nation method. Table 7 shows the ANOVA results along with
the model summary. The second order model in uncoded
units is as shown in Eq. (5),

EE = 112.3 − 0.03355N − 0.1350F − 5.05Y

− 19.27Z − 2.222H + 0.000006N ∗ N

+ 0.000200F ∗ F + 0.1926Y ∗ Y

+ 4.278Z ∗ Z + 0.02687H ∗ H

+ 0.000164N ∗ H + 0.00921F ∗ Y

Fig. 9 Effect of axial and radial depth of cut on TECM

+ 1.789Y ∗ Z + 0.2557Z ∗ H (5)

Here, higher R-sq value (98.58%)was observed and it was
found to be close to the adjusted coefficient of determination
value of the model (R-sq (adj) = 97.40%). Also, the value
of R-sq (pred) was in reasonable agreement with the R-sq
(adj) value. The F-value of was 84.09, it means that model
was significant and there was a very slight chance that model
F-Value this high could occur due to noise. P value of the
model was less than 0.05 which was also an indicator of
model fitting all the design points well. The F value for lack
of fit was 0.4 and p value was 0.910 signifies insignificant
lack of fit. Figure 10 shows the residual plots for EE for
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Table 7 ANOVA results for EE
Source DF Seq SS Adj SS Adj MS F-value P-value

Model 14 1836.02 1836.02 131.144 84.09 0.000

Linear 5 1454.88 1454.88 290.975 186.57 0.000

N 1 3.8 3.8 3.799 2.44 0.137

F 1 24.6 24.6 24.603 15.78 0.001

Y 1 486.29 486.29 486.292 311.8 0.000

Z 1 859.36 859.36 859.36 551.01 0.000

H 1 80.82 80.82 80.822 51.82 0.000

Square 5 279.44 279.44 55.889 35.84 0.000

N*N 1 38.74 63.52 63.518 40.73 0.000

F*F 1 0.93 7.33 7.332 4.7 0.045

Y*Y 1 6.88 17.4 17.404 11.16 0.004

Z*Z 1 21.13 33.56 33.56 21.52 0.000

H*H 1 211.76 211.76 211.758 135.78 0.000

2-way interaction 4 101.7 101.7 25.426 16.3 0.000

N*H 1 10.75 10.75 10.754 6.9 0.018

F*Y 1 13.58 13.58 13.577 8.71 0.009

Y*Z 1 51.23 51.23 51.225 32.85 0.000

Z*H 1 26.15 26.15 26.147 16.77 0.001

Error 17 26.51 26.51 1.56

Lack-of-fit 12 13 13 1.083 0.4 0.910

Pure error 5 13.52 13.52 2.703

Total 31 1862.54

S R-sq R-sq (adj) Press R-sq(pred)

Model summary

1.24884 98.58% 97.40% 78.4652 95.79%

checking the model adequacy, in the normal probability plot
the residuals were following a straight line and in the versus
fit plot the residuals were randomly scattered about the zero
line.

Figure 11 shows the main effects plot of various input
parameters on EE. The EE was found to be increasing with
the feed rate, axial depth of cut and radial depth of cut. The
Effect of feed rate on EE was comparatively smaller. Simi-
lar observations was also reported by Bilga et al. [3] during
CNC rough turning of EN 353 alloy steel. The higher value
of EE was noticed for higher helix angle. So, higher energy
efficiency during milling of EN 8 can be obtained with com-
bination of higher depth of cut, feed rate, and helix angle. In
the surface plot of effect of helix angle and spindle speed on
EE (Fig. 12), the higher EE was observed at higher spindle
speed with the tool with higher helix angle. The energy effi-
ciency was proportional to the power consumed in cutting,
PC [3]. It means, more power was required to cut thematerial
with higher helix angle tool at higher spindle speed.

As shown in Figs. 13 and 14, the higher value of energy
efficiency was obtained for high radial and axial depth of cut
because for higher depth of cuts more power was required for
the machining as the contact area between the workpiece and
the tool increases which increases load on the electric motor
[49] So, higher feed rate, and depths of cut were found to be
improving the energy efficiency.

Figure 15 shows the effect of helix angle and axial depth
of cut variation the energy efficiency. The highest value of EE
was seen at the top right corner of the figure. It can be noticed
that, the cutting process becomes more energy efficient with
increase in both the helix angle and the axial depth of cut.
Thus the combination of high depth of cut and higher helix
angle was helpful for improvement in EE of the process.

4.1 Model generation for power factor

Analysis of variance was carried out to find out the effec-
tive parameters in the developed model and the non-effective
parameters were removed by backward elimination method.
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Fig. 10 Residual plots for EE

Fig. 11 Main effects plot of input
parameters on EE

Fig. 12 Effect of helix angle and spindle speed on EE Fig. 13 Effect of radial depth of cut and feed on EE
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Fig. 14 Effect of axial and radial depth of cut on EE

Fig. 15 Effect of helix angle and axial depth of cut on EE

Table 8 shows the ANOVA results for the PF along with the
model summary. The second order model in uncoded units
is as shown in Eq. (6),

PF = 0.8164 − 0.000110N + 0.000345F

+ 0.00100Y + 0.0138Z − 0.00030H

+ 0.000000N ∗ N + 0.000933Y ∗ Y

+ 0.000050H ∗ H − 0.000006N ∗ Y

− 0.000009F ∗ H + 0.00444Y ∗ Z (6)

This model has R-sq value = 91.98%; R-sq (adj) =
87.57% andR-sq (pred) 77.68%, which depict that the exper-
imental data was well fitted by this model. The F-value of
was 20.85, it means that model was significant and there was
little chance that model F-Value this high could occur due
to noise. P value of the model was less than 0.05 which was
also an indicator of model fitting all the design points well.
The F value and p value for lack of fit were 2.08 and 0.215
respectively, indicating insignificant lack of fit.

Figure 16 shows the residual plots for power factor in order
to check the model adequacy, in the normal probability plot

the residuals were following a straight line and in the ver-
sus fit plot the at random spread of residuals was observed.
The histogram and residuals versus order graphs also indi-
cates that fitted model values were closer to the experimental
values.

The main effects plot of the control parameters on power
factor is shown in Fig. 17, the axial depth of cut was the most
significant parameter followed by radial depth of cut and
helix angle. The effects of spindle speed and feed rate were
less significant. Higher axial and radial depths of cut were
leading into higher power factor values. The similar results
were reported by Bilga et al. [3]. The power factor is pro-
portional to the active power drawn from the electrical drive
motor. When the load on the drive motor increases, more
power is required to overcome the load and this increases the
power factor [52]. So, higher spindle speed, feed rate, and
depth of cut which increases the load on motor results in to
increase in the value of power factor.

The surface plot of the effects of spindle speed and radial
depth of cut on PF is shown in Fig. 18. The highest value of
PF was realized when the spindle speed was less and radial
depth of cut was higher. Higher depth of cut increases load on
the motor which results in to higher PF. However, the higher
PF was also noticed at high spindle speed and less radial
depth of cut combination. It can also be observed that, for
the smaller radial depth of cut increase in the spindle speed
beyond 2500 rpm suddenly increases the value of PF which
indicated that for higher spindle speeds the lower radial depth
needs to preferred in order to get better power factor values.

From Fig. 19, it can be observed that larger value of helix
angle and smaller feed rate results in increase in the value of
the power factor. The power factor was also seen to be higher
for the combination of high feed with less helix angle. For
less helix angle the PF increases steadily with increase in the
feed rate and for higher helix tool as the feed rate increases
the power factor reduces. The surface plot for radial and axial
depth of cut (Fig. 20) illustrates that, the axial depth of cut
was having more impact on PF, as compared to radial depth
of cut. Higher PF was obtained at larger value of axial depth
of cut. The PF was not getting affected much; if the radial
depth of cut was increased keeping axial depth of cut smaller.

4.2 Model generation for workpiece surface
temperature rise

Second order quadratic model was developed using the
response surface method. Analysis of variance was carried
to find out the effective parameters in the developed model
and the non-effective parameters were removed by backward
elimination method. Table 9 shows the ANOVA results for
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Table 8 ANOVA results for PF
Source DF Seq SS Adj SS Adj MS F-value P-value

Model 11 0.01736 0.01736 0.001578 20.85 0.000

Linear 5 0.0137 0.0137 0.00274 36.19 0.000

N 1 0.00044 0.00044 0.000442 5.84 0.025

F 1 0.00044 0.00044 0.000442 5.84 0.025

Y 1 0.00234 0.00234 0.00234 30.91 0.000

Z 1 0.0098 0.0098 0.009801 129.46 0.000

H 1 0.00067 0.00067 0.000672 8.88 0.007

Square 3 0.00256 0.00256 0.000853 11.26 0.000

N*N 1 0.00148 0.00172 0.001719 22.71 0.000

Y*Y 1 0.00034 0.00041 0.000414 5.46 0.030

H*H 1 0.00074 0.00074 0.000737 9.74 0.005

2-way interaction 3 0.00111 0.00111 0.000369 4.88 0.011

N*Y 1 0.0005 0.0005 0.000495 6.54 0.019

F*H 1 0.0003 0.0003 0.000298 3.93 0.061

Y*Z 1 0.00032 0.00032 0.000315 4.16 0.055

Error 20 0.00151 0.00151 0.000076

Lack-of-fit 15 0.00131 0.00131 0.000087 2.08 0.215

Pure error 5 0.00021 0.00021 0.000042

Total 31 0.01888

S R-sq R-sq (adj) Press R-sq (pred)

Model summary

0.0087009 91.98% 87.57% 0.00421 77.68%
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Fig. 16 Residual plots for Power factor
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Fig. 17 Main effects plot for
Power factor

Fig. 18 Effects of spindle speed and radial depth of cut on PF

Fig. 19 Effects of feed rate and helix angle on PF

the temperature rise along with the model summary. The sec-
ond order model in uncoded units is as shown in Eq. (7),

T =264.3 − 0.0757N − 0.27Y − 123.9Z

− 5.94H + 0.000007N ∗ N + 15.52Z ∗ Z

+ 0.0478H ∗ H + 0.01550N ∗ Z + 0.000490N ∗ H

+ 4.55Y ∗ Z + 1.545Z ∗ H (7)

The R-sq valuewas 96.07%which explains that the exper-
imental data was well fitted by this model. The R-sq value
for the model was close to R-sq (adj). Also, the value of R-sq

Fig. 20 Effects of radial and axial depth of cut on PF

(pred) was in reasonable agreement with the R-sq (adj) value.
The F-value of model was 44.45, it means that model is sig-
nificant and there is very small chance that model F-Value
this high could occur due to noise. P value of the model was
less than 0.05 which was also an indicator of model fitting
all the design points well. The F value for lack of fit was 2.13
and p value was 0.207 indicates insignificant lack of fit.

Figure 21, shows the residual plots for temperature rise
in order to check the model adequacy, in the normal prob-
ability plot the residuals were following a straight line and
in the versus fit plot the residuals were randomly scattered
about the zero line. The histogram and residuals versus order
graphs also indicates that fitted model values were closer to
the experimental values.

The main effects plot for temperature rise is shown in
Fig. 22. The most significant effect was of the axial depth of
cut followed by radial depth of cut and helix angle. It was
observed that the temperature rise increases with increase
in both the axial and radial depths of cut. The increase of
these depths of cut results in to increase in the contact area
of the tool with the workpiece which results in more heat
generation and higher temperature [53]. Feed rate and spin-
dle speed were less significant for the temperature rise. The
similar observations were reported by Kus et al. [54] and
Gosai et al. [55] during turning of steel, and Patel et al. [56]
during milling of mild steel. Slightly reducing trend in the

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Table 9 ANOVA results for the
temperature rise Source DF Seq SS Adj SS Adj MS F-value P-value

Model 11 14,752.3 14,752.3 1341.12 44.45 0.000

Linear 4 12,028.8 12,028.8 3007.19 99.68 0.000

N 1 2.7 2.7 2.67 0.09 0.769

Y 1 4129.1 4129.1 4129.13 136.87 0.000

Z 1 7378 7378 7378.03 244.56 0.000

H 1 518.9 518.9 518.94 17.2 0.000

Square 3 1101.2 1101.2 367.08 12.17 0.000

N*N 1 48.9 102.1 102.12 3.38 0.081

Z*Z 1 373.7 447.1 447.06 14.82 0.001

H*H 1 678.6 678.6 678.6 22.49 0.000

2-way interaction 4 1622.3 1622.3 405.58 13.44 0.000

N*Z 1 240.3 240.2 240.25 7.96 0.011

N*H 1 96 96 96.04 3.18 0.09

Y*Z 1 331.2 331.2 331.24 10.98 0.003

Z*H 1 954.8 954.8 954.81 31.65 0

Error 20 603.4 603.4 30.17

Lack-of-fit 15 521.7 521.7 34.78 2.13 0.207

Pure error 5 81.7 81.7 16.34

Total 31 15,355.7

S R-sq R-sq (adj) Press R-sq (pred)

Model summary

5.4926 96.07% 93.91% 2146.94 86.02%
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Fig. 21 Residual plots for temperature rise

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 22 Main effects plot for
temperature rise

Fig. 23 Effects of spindle speed and axial depth of cut on T

Fig. 24 Effects of spindle speed and helix angle on T

temperature rise with the increase in helix angle up to 30°
was observed, the trend was reversed for higher helix angle.
This was like the observations of Sivasakthivel et al. [44].
The friction of tool-chip interface increases with increase in
helix angle, resulting in to the obstruction to chip flow and
the slowness of dispersal out of cutting heat, resulting in the
increasing of temperature [57]. The lower depth of cut with
moderate helix angle and spindle speed was found to help in
reducing the temperature rise.

The surface plot of effects of spindle speed and axial depth
of cut on temperature rise is shown in Fig. 23. The rise in the

Fig. 25 Effects of radial and axial depth of cut on T

Fig. 26 Effects of axial depth of cut and helix angle on T

temperature was found to be smaller when the combination
of the higher spindle speed and smaller depth of cut was
used. At higher spindle speed and higher depth of cut the
temperature rise was higher. The surface plot of the effects
of spindle speed and helix angle on rise of the temperature
(Fig. 24) also shows that the temperature rise reduces when
the spindle speed increases. The moderate value of the helix
angle and higher spindle speed combination resulted in to
reduction in the temperature. The surface plot of the effects
of radial and axial depth of cut on temperature rise (Fig. 25),
shows that increase in the values of the depth of cut resulted
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in to the increase in the value of rise in temperature. It can
also be seen that the effect of axial depth of cut is stronger
than the effect of radial depth of cut. The effect of the axial
depth of cut on rise in temperature was found to bemore with
higher helix angle tool (Fig. 26). For higher helix angle the
temperature rise was more significant particularly for larger
axial depth of cut. It indicates that, the higher helix angle
tool with smaller axial depth of cut can control the rise in
temperature effectively.

4.3 Model generation for surface roughness

The surface roughness was measured after the completion
of all the experiments. Second order quadratic model was
developed using the response surface method. Analysis of
variance was done to find out the effective parameters in
the developed model and the non-effective parameters were
removed by backward elimination method. Table 10 shows
the ANOVA results for Ra along with the model summary.
The second order model in uncoded units is as shown in
Eq. (8).

Ra =3.752 − 0.000478N − 0.00418F

− 0.1212Y − 2.857Z − 0.0312H + 0.01189Y ∗ Y

+ 0.6087Z ∗ Z + 0.000819H ∗ H + 0.000353N ∗ Z

+ 0.00415F ∗ Z − 0.01633Z ∗ H (8)

Thismodel has got the R-sq value of 91.28%whichmeans
the model explains that the experimental data well. Also, the
R-sq value for the model was close to the adjusted coefficient
of determination value of the model (R-sq (adj) = 86.48%)
and value of R-sq (pred) was in reasonable agreement with
the R-sq (adj). The F-value of model was 19.02, it means
that model was significant. The F value for lack of fit was
3.11 and p value was 0.108 indicates insignificant lack of
fit. Figure 27 shows the residual plots for surface roughness
in order to check the model adequacy, in the normal prob-
ability plot the residuals were following a straight line and
in the versus fit plot the residuals were randomly scattered
about the zero line. The histogram and residuals versus order
graphs also indicates that fitted model values were closer to
the experimental values. The main effects plot for the surface
roughness (Fig. 28) shows that the spindle speed has little
effect on the surface roughness value and Ra value increases
with increase in speed and feed rate. The increase in spindle
speed reduces tendency of formation of built-up edge but will
also results in tomore vibrations so surface get deteriorated at
higher spindle speed [34]. The surface gets deteriorated with
higher feed rate as the tool transverse the workpiece too fast
at the higher feed rate [58]. The similar observations were
also reported by Reddy et al. [59] and Singh et al. [60]. The

moderate values of depth of cut and helix angle were pro-
ducing better surface. During the light finish cuts; built edge
formation, feed marks and vibrations are less as a smaller
amount of material is removed, which gives better finish. As
helix angle increases the Ra value reduces as the increase in
helix angle reduces the shock load and vibrations and thus
results in to better surface [39].

The effects of axial depth of cut and spindle speed on Ra
are shown in Fig. 29. The Ra value was found to be lower for
smaller depth of cut and higher spindle speed. The surface
deterioration was more severe when the large axial depth of
cut was used along with higher spindle speed. The Fig. 30
shows effects of axial depth of cut and feed rate on Ra, here
also, lower Ra value was noticed for smaller depth of cut and
higher spindle speed, the increase in the axial depth of cut
was resulting in deterioration of the surface [60].

Figure 31 shows the effects of axial depth of cut and helix
angle on Ra. The Ra value was found to be lower when depth
of cut was around 1.5 mm and helix angle of 30°. The rough-
ness was found to be more when large depth of cut was used.

5 Multi-objective optimization

In the current work, multi-objective optimization was per-
formed for minimization of optimization of total energy
consumed, surface roughness, rise of workpiece surface tem-
perature and formaximization of energy efficiency andpower
factor. Individual response functions found out after back-
ward elimination method (Eqs. 4, 5, 6, 7, 8) were used. The
desirability analysis was used for finding out the optimum
values of the process parameters.

5.1 Response optimization with desirability
approach

The multi objective problems are normally complex to
solve, to simplify it, the desirability function analysis (DFA)
method was proposed by Derringer et al. [61] and currently,
this method is extensively adopted by the industries for the
multi-objective optimisations[62, 63]. It is an interesting
method to find out the apt settings of the input parameters in
order to get the optimum results and particularly useful for
multi objective problems. [32, 64]. Initially each response
variable is converted into a dimensionless scale-free desir-
ability value (di) (using Eqs. 8 and 9) in the scale of zero to
one; where zero means an entirely undesirable response and
one means an entirely desired response [64]. Equation (9)
is used for larger the better characteristic and Eq. (10) for
smaller is better characteristic [65].

di =
(

fi − fimin

fimax − fimin

)w

(9)
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Table 10 ANOVA results for Ra
Source DF Seq SS Adj SS Adj MS F-value P-value

Model 11 2.63871 2.63871 0.23988 19.02 0

Linear 5 1.36586 1.36586 0.27317 21.66 0

N 1 0.01612 0.01612 0.01612 1.28 0.272

F 1 0.24807 0.24807 0.24807 19.67 0

Y 1 0.04403 0.04403 0.04403 3.49 0.076

Z 1 0.95441 0.95441 0.95441 75.68 0

H 1 0.10323 0.10323 0.10323 8.19 0.01

Square 3 0.86948 0.86948 0.28983 22.98 0

Y*Y 1 0.03061 0.06718 0.06718 5.33 0.032

Z*Z 1 0.63944 0.68808 0.68808 54.56 0

H*H 1 0.19942 0.19942 0.19942 15.81 0.001

2-way interaction 3 0.40337 0.40337 0.13446 10.66 0

N*Z 1 0.12496 0.12496 0.12496 9.91 0.005

F*Z 1 0.17181 0.17181 0.17181 13.62 0.001

Z*H 1 0.1066 0.1066 0.1066 8.45 0.009

Error 20 0.25222 0.25222 0.01261

Lack-of-fit 15 0.2278 0.2278 0.01519 3.11 0.108

Pure error 5 0.02442 0.02442 0.00488

Total 31 2.89093

S R-sq R-sq (adj) Press R-sq (pred)

Model summary

0.112299 91.28% 86.48% 0.84104 70.91%
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Fig. 27 Residual plots for surface roughness
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Fig. 28 Main effects plot for Ra

Fig. 29 Effects of axial depth of cut and spindle speed on Ra

Fig. 30 Effects of axial depth of cut and feed rate on Ra

The individual desirability,di = 1 when f i ≥ f i max;di =
0, when f i ≤ f i min.

di =
(

fimax − fi
fimax − fimin

)w

(10)

The individual desirability,di = 0 when f i ≥ f i max;di =
1, when f i ≤ f i min.

Here, ‘i’ designates the response and ‘f’ designates the
value of response, f i min indicates the minimum value of the
response, f imax indicates the maximum value of the response
and ‘w’ is a weight used to determine scale of desirability

Fig. 31 Effects of Axial depth of cut and helix angle on Ra

[15]. The overall desirability (D) is determined with the help
of geometric mean as shown in Eq. (11) as,

D =
(

n∏

i=1

dwi
i

) 1∑
wi

(11)

Here wi is weight of individual response which changes
between 1 to 5. The higher value of the overall desirability
means best response function of the problem [15, 18].

The multi objective optimization was carried out for three
different groups of response variables considering the differ-
ent importance of energy consumption, cutting temperatures
and surface roughness, under different manufacturing cir-
cumstances.

Group I: Simultaneousminimization of TECMandRa; along
with the maximization of EE and PF;
Group II:Minimization of theworkpiece surface temperature
and surface roughness were the targets;
Group III: All the responses were considered for the multi
objective optimization.
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Table 11 Optimization criteria
and desirability for Group I Name Goal Lower

limit
Upper
limit

Lower
weight

Upper
weight

Importance Desirability

N Is in range 1500 3500 1 1 3 1

F Is in range 150 350 1 1 3 1

Y Is in range 2 10 1 1 3 1

Z Is in range 0.5 2.5 1 1 3 1

H Is in range 10 50 1 1 3 1

TECM Minimize 20,202 41,607 1 1 5 0.846

EE Maximize 4.480287 37.0595 1 1 5 0.908

Ra Minimize 0.088 1.273 1 1 3 0.449

PF Minimize 0.768 0.865 1 1 5 0.997

Composite
desirabil-
ity

– – – – – – 0.813

Fig. 32 Bar chart for desirability for Group I

5.2 Multi objective optimization for TECM, PF, EE,
and Ra (Group I)

The lower limit, upper limit, and the weight of all the process
parameters for this multi objective optimization are shown in
Table 11. Here equal importance was given to TECM, PF and
PF because these parameters were directly affecting sustain-
ability of machining operation and slightly less importance
was given to Ra as the operation was a roughing operation
[15, 52].

The optimum values of parameters were found as: spindle
speed: 1500 rpm, feed rate: 350 mm/min, axial depth of cut:
1.27mm, radial depth of cut: 7.15mmandhelix angle: 10° for
better machining performance in terms of minimum TECM,
minimumRa,maximumEE, andmaximumPF. The response
parameters obtained with these input factors were, TECM =
23,496.7 J, EE = 34.08%, PF = 0.865 and Ra = 0.74 μm.

Figure 32 shows the bar graph for each factor and each
response individually, the bottom histogram bar is the overall
desirability of all the responses. The contour plots for overall
desirability is as shown in Fig. 33. The composite desirability
value of 0.813 was located on the top left-hand side region of
the plot and Fig. 34 shows the desirability ramp for numerical

optimisation indicating the desirability for each factor and
each response, as well as the combined desirability.

5.3 Multi objective optimization for T and Ra (Group
II)

The lower and upper limits along with the weight of all the
process parameters for this multi objective optimization are
shown in Table 12. Here more importance was given to T
and slightly less importance was given to Ra as the operation
was a roughing operation. The optimum values of param-
eters are found as: Spindle speed: 3257.46 rpm, feed rate:
291 mm/min, axial depth of cut: 0.71 mm, radial depth of
cut: 4.50 mm and helix angle: 30° for better machining per-
formance in terms of minimization of rise in the workpiece
surface temperature and Ra.

The response parameters obtained with these input factors
were, T = 10.91 °C and Ra = 0.077 μm.

Figure 35 shows the bar graph for each factor and each
response individually, the bottom histogram bar is the overall
desirability of all the responses. The contour plots for overall
desirability is as shown in Fig. 36. The composite desirability
value of 1.00 was located on the top right-hand side region
of the plot. Figure 37, shows the desirability ramp for each
factor and response, along with the combined desirability.

5.4 Multi objective optimization for all responses
(Group III)

The lower limit, upper limit, and the weight of all the process
parameters for this multi objective optimization are shown
in Table 13. Here equal importance was given to TECM, EE,
PF and T because these parameters were affecting sustain-
ability of machining operation and slightly less importance
was given to Ra as the operation was a roughing operation.
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Fig. 33 Contour plots of overall
desirability for Group I

Fig. 34 Desirability ramp for
TECM, PF, EE, and Ra
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Table 12 Optimization criteria
and desirability for Group II Name Goal Lower

limit
Upper
limit

Lower
weight

Upper
weight

Importance Desirability

N Is in range 1500 3500 1 1 3 1

F Is in range 150 350 1 1 3 1

Y Is in range 2 10 1 1 3 1

Z Is in range 0.5 2.5 1 1 3 1

H Is in range 10 50 1 1 3 1

T Minimize 14.2 109.4 1 1 5 1

Ra Minimize 0.088 1.273 1 1 3 1

Composite
desirabil-
ity

1

Fig. 35 Bar chart for desirability for Group II

The optimum values of parameters are found as: spindle
speed: 3500 rpm, feed rate: 350 mm/min, axial depth of cut:
0.74 mm, radial depth of cut: 2.86 mm and helix angle: 50°
for better machining performance in terms of minimum T,

minimum TECM, minimum Ra, maximum EE, and maxi-
mum PF. The response parameters obtained with these input
factors were, T= 21.32, TECM= 25,601.9 J, EE= 26.67%,
PF = 0.857 and Ra = 0.454 μm.

Figure 38 shows the bar graph for each factor and each
response individually, the bottom histogram bar is the com-
posite desirability of all the responses. The contour plots for
overall desirability is as shown in Fig. 39. The composite
desirability value of 0.794 was located on the top right-hand
side region of the plot. The desirability ramp for all the fac-
tors and responses, in addition to the composite desirability
is shown in Fig. 40.

5.5 Confirmation experiments

In order to verify the adequacy of the model developed and
for the confirmation of the optimized results, milling oper-
ations were carried out on EN 8 at the optimized settings

Fig. 36 Contour plots of overall
desirability for Group II

Design-Expert® Software

Desirability

X1 = A: N
X2 = B: F

Actual Factors
C: Y = 4.50
D: Z = 0.71
E: H = 30.28

1500.00 2000.00 2500.00 3000.00 3500.00

150.00

200.00

250.00

300.00

350.00
Desirability

X1: A: N
X2: Feed

0.722

0.778 0.833 0.889
0.944

0.976

0.990

Prediction 1.000
X1 3257.46
X2 291.10

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

N = 3257.46

1500.00 3500.00

2000.00 3000.00

F = 291.10

150.00 350.00

200.00 300.00

Y = 4.50

2.00 10.00

4.00 8.00

Z = 0.71

0.50 2.50

1.00 2.00

H = 30.28

10.00 50.00

20.00 40.00

T = 10.9129

14.2 109.4

Ra = 0.0774661

0.088 1.273

Desirability = 1.000

Fig. 37 Desirability ramp for T and Ra

Table 13 Optimization criteria
and desirability for all responses Name Goal Lower

limit
Upper
limit

Lower
weight

Upper
weight

Importance Desirability

N Is in range 1500 3500 1 1 3 1

F Is in range 150 350 1 1 3 1

Y Is in range 2 10 1 1 3 1

Z Is in range 0.5 2.5 1 1 3 1

H Is in range 10 50 1 1 3 1

T Minimize 14.2 109.4 1 1 5 0.925

TECM Minimize 20,202 41,607 1 1 5 0.747

EE Maximize 4.48029 37.0595 1 1 5 0.681

Ra Minimize 0.088 1.273 1 1 3 0.690

PF Maximize 0.768 0.865 1 1 5 0.918

Composite
desirability

0.794

Fig. 38 Bar chart for desirability for Group III

for all the scenarios considered and average values of all the
responses for of two actual experiments were calculated. The
comparison of test results and the predicted values obtained
by using the regression equations was made and presented
in Table 14. The predicted values and the experimental val-
ues are found to be very near to each other. For dependable
statistical analyses, percentage error between the predicted
values and the experimental values must be less than 20%
[66]. It was found within the acceptable limits.
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Fig. 39 Contour plots for overall
desirability for Group III

Fig. 40 Desirability ramp for all responses
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Table 14 Validation results with optimized parameters for EN 8

Response
parameter

Predicted by
RSM

Experimental
average value

%
error

a. For TECM,
EE, PF and Ra

TECM 23,496.7 22,000 − 6.80

EE 34.087 32.58 − 4.63

PF 0.865 0.859 − 0.70

Ra 0.74 0.7755 4.58

b. For T and Ra

T 10.91 12.05 9.46

Ra 0.077 0.086 10.47

c. For all
responses

T 21.31 19.7 − 8.17

TECM 25,601 23,232 −
10.20

EE 26.675 24.58 − 8.52

PF 0.857 0.827 − 3.63

Ra 0.454 0.5 9.20

6 Conclusions

In the present study, a successful application of RSM for
analysing the response parameters like total energy consump-
tion, energy efficiency, power factor, workpiece temperature
rise and surface roughness in milling process is demon-
strated. Five levels of each input process parameters viz,
spindle speed, feed rate, radial depth of cut, axial depth of cut
and helix angle were used for the experimentation. Predictive
models were formulated and effects of these process parame-
ters on the responses were studied and presented in graphical
form. The optimization of process parameterswas carried out
by desirability analysis. Themulti objective optimizationwas
carried out for three different situations as the weightage of
the response parameters is altering under diverse manufac-
turing conditions. This work evaluates the trade-offs between
energy, heat generation and cutting quality.

Based on above work, following conclusions are drawn:

1. During the experimentation on EN 8, it was established
that RSM is a powerful tool in order to develop predic-
tive mathematical models to predict responses correctly
and to analyse the effects of the process parameters by
plotting response surfaces.

2. The predictability of the multiple regression approach
was found to be more than 90% showing capability of
the models to explain the experimental data. All the
models were having p values less than 0.05 and lack of

fit p values more than 0.05, indicates that the models
were significant within 95% confidence interval.

3. The feed rate was most significant parameter for total
energy consumption, followed by axial and radial depth
of cut. The energy consumption was reducing with
increase in feed rate; due to reduction in total cycle time.
The lesser values of depth of cuts and spindle speeds
were also contributing in reducing energy consumed.
The role of helix angle was found to be insignificant
with respect to the energy consumption.

4. The most significant factors affecting energy efficiency
and power factor in descending order were axial depth
of cut, radial depth of cut and helix angle. Better effi-
ciency was observed for larger values of depth of cuts,
helix angle and feed rate. Power factors was found to be
increasing when the motor was drawing more power.

5. The axial depth of cutwas highly significant for the tem-
perature rise followed by radial depth of cut and helix
angle. Higher the depth of cut result; more is the contact
area between the tool and workpiece; which results in
more temperatures. Spindle speed and feed rate were
not having much effect on temperature rise.

6. The surface roughness was mainly getting affected by
axial depth of cut, followed by feed rate and helix angle.
Better surface finish was obtained at smaller spindle
speed and feed rate along with medium values of depth
of cut and helix angle.

7. The values of the composite desirability achieved in all
the three types of optimization situations were on the
higher side (0.813, 1 and 0.794). This highlights capa-
bility of the desirability approach to achieve the desired
goals of minimization and maximization. During the
first situation of the optimization the individual desir-
ability of surface roughness was less (d= 0.449), which
suggests that the desired reduction was not achieved for
surface roughness under the given conditions.

8. The results of the optimization were confirmed by con-
ducting the experiments the optimized settings. The
maximum percentage error between experimental and
RSMpredicted results was around 10%,which is within
acceptable limits.

9. This study can be helpful formachine operators improv-
ing the sustainability by reducing the energy consump-
tion and cutting temperatures and improving the power
factor and energy efficiency without compromising on
surface roughness, in the machining of medium carbon
steel.

10. In future, researchers may consider the other geometri-
cal features of the end mill like rake angle, dish angle
etc. for this medium carbon steel EN-8, the use of
coated tools may also be considered. These results can
also be analysed using other evolutionary optimization
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techniques such as genetic algorithm, teaching learning-
based algorithm etc. The works can be carried out on
advanced and difficult to machine materials like tita-
nium alloys, nickel alloys and composites materials.
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