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and moved to neighboring cities to work in factories. It 
was believed to have started in Britain before spreading 
to the rest of Europe and America [2]. The late 1800s and 
the early 1900s witnessed the onset of the second indus-
trial revolution which was characterized by the widespread 
science-based inventions such as mechanization of agri-
culture, textile industries, railroads, machinery, internal 
combustion engines, electric power, and the iron and steel 
production [229]. Vaclav Smil, a Czech Canadian scientist, 
professor, and policy analyst called the period between 1867 
and 1914 the “age of synergy” during which the founda-
tion for the 20th -century advancements was laid [3]. How-
ever, the drawback of both these industrial revolutions was 
associated with the poor and dangerous working conditions 
which resulted in the formation of labor unions and factory 
regulations to safeguard workers.

The third industrial revolution began in the 1950s with 
the inventions of transistors and microprocessors that paved 
the way for automated production, which was supported 

1  Introduction

In the early 1800s, the world witnessed the beginning of 
the industrial revolution through which the agrarian soci-
ety shifted to industrialization and urbanization [1]. Coal, 
water, and steam were predominantly used to drive large 
steam engines that were used in the textile and manufactur-
ing industries. During this time, people who worked on the 
farms and spun textiles by hand abandoned their villages 
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by various electronic devices. Digital sensors and comput-
ers became a part of the shop floor. Although the work-
ing conditions improved tremendously during this period, 
exploitation of labor continued, cities became overcrowded, 
and widespread pollution and environmental degradation 
became common across the world. The ongoing fourth indus-
trial revolution which is commonly referred to as Industry 
4.0 or 4IR is built upon the third industrial revolution which 
relied on transistors, sensors, and micro-electronics to gen-
erate data. The term Industry 4.0 was coined by German 
Professor Wolfgang Wahlster, in the year 2011 at the Han-
nover Fair. It is the digital transformation of manufacturing 
industries that focuses on automation, interconnectivity, and 
real-time process optimization using enabling digital tech-
nologies such as Internet of Things (IoT), Machine Learning 
(ML), Artificial Intelligence (AI), Cyber-Physical Systems 
(CPS), Cloud computing, Additive Manufacturing (AM), 
Digital twins,  Cybersecurity and so on to communicate and 
control each other [4, 5]. In other words, it can be called 
the computerization of manufacturing in which advanced 
digital technologies are married to industrial machines and 
processes. The interconnection of these technologies into 
the manufacturing setup is to achieve operational efficiency, 
productivity, and automation to the highest possible extent 
[6]. This in turn creates a manufacturing ecosystem that is 
smart, connected, and driven by data.

The fundamental model of Industry 4.0 can be divided 
into digital or computing technologies that are married 
with the systems of the physical world. While AI, ML, Big 
Data, Cloud Computing, and cyber security form a part of 
the core computing technologies, other technologies such 
as Automation and Robotics, IoT, CPS, and AM form the 
physical part. These technologies together realize the ben-
efits of Industry 4.0 systems to enable agile, flexible, and 
on-demand manufacturing which is an essential part of 
smart manufacturing or smart factories. While there are 

tremendous advantages for the industries in implementing 
these technologies to achieve competitive advantage and 
higher operational efficiency, there is widespread apprehen-
sion about the potential job loss for low-skilled laborers due 
to the high level of automation which can cause economic 
imbalance and greater inequality in the society [7]. The vari-
ous stages of the Industrial Revolution with their timeline, 
driving force, and technologies are shown in Fig. 1.

While the world is still trying to adapt and realize the 
potential of Industry 4.0, some industrialists and scholars 
have started envisioning and discussing the next Industrial 
Revolution, Industry 5.0. If Industry 4.0 is about digitally 
connecting machines to enable a seamless flow of data and 
the highest possible optimization, Industry 5.0 is believed 
to bring humans back into the game for collaboration and 
introduce the human touch to manufactured products while 
simultaneously focusing on sustainable manufacturing [8, 
9]. Elon Musk, a visionary entrepreneur and CEO of one 
of the most highly automated factories in the world, Tesla 
Inc., has acknowledged the downside of excessive automa-
tion through his tweet in April 2018, “Yes, excessive auto-
mation at Tesla was a mistake. To be precise, my mistake. 
Humans are underrated”. He went on to admit that robots 
have slowed down production, and humans, not machines, 
were the solution. This is in line with the predictions that the 
next big thing would be the collaboration between humans, 
robots, and digital technologies.

1.1  Need for the study

Despite the ongoing adaptation of Industry 4.0 in vari-
ous sectors and growing discussions on Industry 5.0, this 
paper aims to provide a brief background on the enabling 
technologies of Industry 4.0 and their application in vari-
ous functions of manufacturing industries, the prospective 
Industry 5.0 technologies and their potential applications 

Fig. 1  The various stages of the Industrial Revolution
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and attempts to answer the following five research ques-
tions (RQ),

RQ1. What are the enabling technologies of Industry 4.0 
and their application in manufacturing industries?

RQ2. What are the socio-economic challenges of Indus-
try 4.0 technologies? Why must the industries overlook 
these technologies and upgrade to the prospective Industry 
5.0 technologies?

RQ3. What are the prospective technologies of Industry 
5.0 and their application in manufacturing industries?

RQ4. What is “sustainability trilemma” and how does 
Industry 5.0 technologies help to overcome it?

RQ5. Why “Industry 5.0” must be called “Industry 
4.0S”?

The above questions are answered through various sec-
tions of this article. The Sect.  2 introduces the various 
enabling technologies of Industry 4.0 and their application 
in manufacturing industries which aims to answer RQ1. The 
socio-economic challenges of Industry 4.0 technologies and 
the reason to overlook these technologies and upgrade to 
the prospective Industry 5.0 technologies are explained in 
Sect. 3 which answers RQ2. The Sect. 4 of the article dis-
cusses the predictions from industry leaders and provides 
the definitions of Industry 5.0 as quoted by industries and 
scholars. The scholarly articles related to the prospective 
Industry 5.0 technologies and their application in manu-
facturing industries are discussed in Sect. 5 which answers 
RQ3. The definition of “sustainability trilemma” a new 
term coined by the authors, the sustainability dimension 
of Industry 5.0 technologies, and how the industries can 
embrace sustainable development using the technologies 
are discussed in Sect. 6 which answers RQ4. The key dif-
ference between Industry 4.0 and Industry 5.0 technologies 
in terms of sustainable development (economic, social, and 
environmental sustainability) forms the core ideology of the 
paper. The article concludes with the justifications for call-
ing the next industrial revolution “Industry 4.0S” rather than 
“Industry 5.0” which answers RQ5.

1.2  Methodology and structure

To understand the enabling technologies of Industry 4.0, 
prospective Industry 5.0 technologies, and their respective 
application in various functions of manufacturing indus-
tries, a comprehensive literature review was performed. 
The various search terms combinations such as “Indus-
try 4.0”, “Industry 5.0" and various technologies such as 
Artificial Intelligence, Machine Learning, Digital twins, 
and so on were used to find the relevant articles in Google 
Scholar, Scopus, and Web of Science. A preliminary screen-
ing of the articles to identify their relevance to the study 
was conducted by reading the title and abstract. The main 

findings and conclusions are summarized in a narrative or 
descriptive format. It should be noted that the study does not 
include all the articles published on the topic but is focused 
only to cover the latest and important progress in the area, 
to summarize and provide an overview to the readers on the 
status and future direction. The article follows a descriptive 
review approach, and the overall structure of the paper is 
shown in Fig. 2.

2  Enabling technologies of industry 4.0

2.1  Artificial intelligence (AI)

Artificial Intelligence (AI) is an algorithm-based intelli-
gence fed to machines to impart problem-solving, decision-
making skills, and perform human-like assignments [229]. 
In other words, AI make computers think and behave like 
humans. It is a combination of several digital and software 
technologies that acts as the driving force of Industry 4.0. 
The origin of AI can be traced back to the 1940s [10] and 
took the first big leap in the 1980s [11]. The subsequent 
inventions such as statistical learning [12], Greedy learn-
ing algorithm [13], Recurrent Neural Network [14], Graph 
Transformer Network [15], Deep Belief Network [16], and 
Convolutional Neural Network [17] paved the way for vari-
ous new algorithms that are currently been used and are 
being developed on a regular interval.

The application of AI in Industry 4.0 has shown great 
potential in predictive maintenance, predictive analytics, 
inventory management, machine vision, industrial robotics, 
and supply chain management  [231]. Liu et al. [18] have 
reviewed the application of various AI-driven algorithms 
such as k-NN, Naive Bayes, ANN, and Deep Learning 
in fault diagnostics of rotating machinery that helped in 
reducing the machine downtime, cost of maintenance, and 
eliminating safety threats. As each of the algorithms have 
their strengths and limitations such as accuracy, speed, and 
robustness, they propose to develop a hybrid intelligent sys-
tem to address future challenges.

Zhao et al. [19] have used Recurrent Neural Networks 
(RNN) based algorithm as a predictive maintenance tool to 
monitor the health of the machine and successfully applied 
the technique to predict tool wear in a milling operation, and 
fault diagnosis in gearbox and bearings. Wang et al. [20] 
have applied Deep Belief Network (DBN), a data-driven 
technique to build an accurate relationship between various 
operational parameters used in a polishing operation and the 
amount of material removed. The same technique was also 
used by Deutsch [21] to predict the useful life of a hybrid 
ceramic bearing. As the various operations of manufactur-
ing industries are nonlinear, stochastic, and have a lot of 
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Fig. 3  Opportunities of AI in a manufacturing system
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neuron to mimic the human brain. Machine learning meth-
ods can be broadly classified into supervised and unsuper-
vised learning, although few literatures show two more 
categories, semi-supervised and reinforcement learning. 
The classifications of ML and a few common algorithms are 
shown in Fig. 4.

ML allows the connected systems to transfer data between 
them and improve the process on its own based on algo-
rithms. The repeated learning and optimization loop lead 
to unprecedented performance that converts a traditional 
automated factory into a smart factory. Condition monitor-
ing of machinery, health monitoring of structures, predictive 
maintenance, predictive quality control, and supply chain 
management are some of the applications of ML in the 
manufacturing industry  [231]. The data collected through 
various sensors are processed using machine learning algo-
rithms to recognize the pattern of failure and even predict 
future failures which can eliminate the routine manual 
inspections. By combining machine vision with ML algo-
rithms, real-time monitoring and identification of defective 

uncertainties many researchers have tried different AI-based 
techniques to enable the optimal material flow. The poten-
tial opportunities of artificial intelligence in the manufactur-
ing industry are shown in Fig. 3.

2.2  Machine learning (ML)

Machine learning is a subset of artificial intelligence that 
uses data, algorithms, and software to predict the outcome 
accurately through statistical learning. The historical data is 
used to train the system to make predictions and improve 
gradually to increase the prediction accuracy. Although 
machine learning, deep learning (DL), and neural network 
or artificial neural network (ANN) are all a subset of artifi-
cial intelligence, IBM classifies DL as a branch of ML, and 
ANN as a branch of DL. While traditional machine learn-
ing is dependent on human teaching to learn, deep learning 
can do it automatically. ANN has an input node layer, out-
put node layer, and numerous intermediate hidden layers. 
Each node that is connected to the other acts as an artificial 

Fig. 4  Supervised and unsupervised machine learning algorithm

 

1 3

951



International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) 17:947–979

(bot-controlled chat messenger), computer vision (self-driv-
ing cars), recommendation engines (internet search engines, 
and product search tools in e-commerce websites), and 
automated stock trading.

2.3  Big data & analytics

The wide Variety and Volume of data that comes at a high 
Velocity (also known as 3Vs) is Big Data. In simple words, 
big data is an enormous amount of data that is usually mea-
sured in petabytes or zettabytes. The advanced analytic tech-
nique that is used systematically to identify the unknown 
patterns behind the data and correlate them with certain 
behavior that helps to make decisions is Big Data Analytics. 
Researchers have added additional “V”s to the original 3Vs 
to define the characteristics of Big Data. For instance, Liao 
et al. [31] defined it as 4Vs (3V + Variability), while Gan-
domi and Haider [32] emphasized on 6Vs (4V + Veracity 
and Value). Perhaps, with the emergence of artificial intelli-
gence, sensor-based connected systems, social networking, 
and digital communication devices, a massive amount of 
data is generated every second that requires real-time pro-
cessing to predict the outcome and make faster decisions.

The concept of Big Data can be traced back to the early 
1960s when the first database management system and data 
centers were created to collect and store data. Over the 
years with the widespread availability of high-speed inter-
net, more and more physical objects got connected to the 
internet (IoT) which started collecting an enormous amount 

parts can be performed automatically without human inter-
vention. Predicting consumer behavior and managing the 
supply chain is another area of the business that has a higher 
impact on profitability due to unsold inventory or lack of 
inventory, both of which affect the manufacturer. Machine 
learning algorithms have been successfully used in demand 
forecasting and inventory management. A few success-
ful applications of machine learning-based algorithms in a 
manufacturing environment are shown in Table 1.

Other real-world common-man applications include 
speech recognition (Alexa, Siri), customer service 

Table 1  Successful applications of machine learning based algorithm
S# Authors Application
1 Cao et al. [22] Predict rolling force in hot rolling of 

electrical steel
2 Reddy et al. [23] Predict temperature distributions in 

electron beam–welded plates
3 Shahani et al. [24] Predict slab behavior in the hot roll-

ing process
4 Hu et al. [25] Predicting failure pressure of com-

posite cylinders for hydrogen storage
5 Kazan et al. [26] Prediction model for spring back in 

wipe-bending process
6 Umbrello et al. [27] Predict optimal cutting conditions 

and residual stresses in machining
7 Jun et al. [28] Stress prediction in SLA additive 

manufacturing process
8 Patil et al. [29] Deep learning algorithms for condi-

tion monitoring of milling tools
9 Fahle et al. [30] Machine learning algorithms for 

various manufacturing processes

Fig. 5  Various challenges associated with Big Data
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the entire infrastructure is managed by professional IT ser-
vice providers, the business organizations and individuals 
can get on-demand access through heterogeneous internet 
services. As shown in Fig. 6 the three major service mod-
els of cloud computing are, Software as a Service (SasS), 
Platform as a Service (PaaS), and Infrastructure as a Service 
(IaaS), and the three major deployment models are public, 
private, and hybrid clouds.

The manufacturing sectors adopted cloud computing in 
two different ways-one is the direct adaptation of digital 
technologies to enable “cloud computing in manufacturing” 
and the other is “cloud manufacturing”. The integration 
of distributed and distribution of integrated manufactur-
ing resources such as software applications, machines, and 

of user and machine data. The development of ML and AI 
further accelerated the growth of data creation which sky-
rocketed the volume of data that is handled and processed. 
So basically, artificial intelligence, machine learning, and 
big data are all interconnected, and one cannot exist inde-
pendently without the other. As the raw data doesn’t provide 
any value, to unlock its potential, industries perform differ-
ent analyses which are fundamentally classified as descrip-
tive, inquisitive, predictive, prescriptive, and preemptive 
[33]. Such analysis helps large organizations to acquire 
and retain customers, targeted advertisements, develop new 
products, optimize product prices based on customer behav-
ior, supply chain management, risk management, and faster 
decision making [229].

However, storing and handling a large volume of data 
comes with its challenges. A report by Oracle shows that 
organizations are struggling to handle the data as the vol-
ume of data that is getting generated is doubling every year. 
It is not just the storing of data, but the real challenge lies 
in data curation. To be precise, cleaning up unwanted data, 
processing, analyzing, and securing the data to give granu-
lar level access to get more insight and make a meaningful 
decision out of it. The various other challenges associated 
with Big Data as classified by Akerkar [34] and Zicari [35] 
are summarized in Fig. 5.

2.4  Cloud computing and cloud manufacturing

The delivery of networking and computing services over 
the internet is called cloud computing. As the services like 
server, storage, database, networking, analytics, and intel-
ligence are delivered through the internet (the “cloud”) it 
is cost-effective and highly flexible. Reliability, scalabil-
ity, and centralized management of data and software are 
some of the benefits of adopting cloud computing. While 

Table 2  The major categories of research in cloud manufacturing
Category of 
research

Description Research studies

Architecture 
and platform 
design

Details the fundamental 
structure of the cloud 
manufacturing system 
and its behavior.

Qu et al. [39], Wu et 
al. [40], Liu et al. [41], 
Yang et al. [42], Wang 
et al. [43]

Resource 
description and 
capabilities

Transformation of 
abstract capabilities to 
formalized cloud manu-
facturing services.

Zhang et al. [44], Tao 
et al. [45], Xu et al. 
[46], Xu et al. [47], Lu 
et al. [48]

Service 
selection and 
composition

Integration of distributed 
services into a group that 
can work together.

Lu et al. [49], Zhou et 
al. [50], Zheng et al. 
[51], Zhang et al. [52], 
Zhou et al. [53]

Resource 
allocation 
and service 
scheduling

Allocation of resources 
and scheduling to enable 
multi-tasking.

Liu et al. [54], Wang et 
al. [55], Cao et al. [56], 
Thekinen et al. [57], 
Akbaripour et al. [58]

Service 
searching and 
matching

Search and match the ser-
vice based on customer 
demand and fulfill the 
requirement.

Yuan et al. [59], Tai et 
al. [60], Cheng et al. 
[61], Sheng et al. [62], 
Guo et al. [63]

Fig. 6  Deployment and service 
models of cloud computing
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connected systems from such malicious digital attacks. As 
manufacturing is one of the sectors with less regulated com-
pliance standards the vulnerability to threats is much higher 
when compared to other sectors. Besides, the complexity in 
understanding the security system, disparate technologies, 
and lack of in-house expertise further intensify the threats to 
manufacturing industries.

According to Honeywell’s “Industrial USB Threat 
Report 2021” which details the consolidated findings from 
various industries across more than 60 countries, threats 
that are designed to take advantage of removable storage 
devices such as USB drives have increased from 19% to 
2019 to 37% in 2020. Besides, 79% of the threats were 
capable of completely disrupting the operational technol-
ogy. The report also outlines that the usage of removable 
USB drives has gone up by 30% which shows the level 
of security exposure that these industries are facing [64]. 
Another report from IBM shows that the average cost of a 
data breach has gone up from USD 3.86 M to USD 4.16 M 
globally which is an all-time high in the past 17 years of the 
report’s history [65]. Ransomware, insider attacks, server 
access, theft of credentials, remote access trojans, business 
email compromise, spam, web script, and misconfiguration 
are some of the types of threats that are commonly targeted 
at industries. The eight major widely accepted cybersecurity 
domains to protect against theft of information as outlined 
by IBM are shown in Fig. 7.

Over the past few years, numerous agencies have come 
up with guidelines containing documents to assist industries 
with procedures to address cybersecurity-related issues. 
Some of those guidelines for the businesses that are in the 
process of moving towards Industry 4.0 practices can be 
seen in Table 3.

Researchers have applied various frameworks and meth-
odologies to deal with cybersecurity-related threats in an 
Industry 4.0 environment. Some of them are SDN-based 

capabilities used for design, manufacturing, and fulfillment 
to manage a product’s manufacturing lifecycle is cloud 
manufacturing. The concept of “design anywhere and man-
ufacture anywhere” that was conceptualized in the early 
2000s can be accomplished by cloud manufacturing [36]. It 
provides manufacturers the benefit of high efficiency, cost-
effectiveness, and flexibility in managing their processes. 
The modern digital and computing technologies such as 
IoT, Radio-Frequency Identification (RFID), sensors, 
GPS, cyber-physical systems, and cloud computing come 
together as enablers of cloud manufacturing service [37]. 
Design engineers get access to various design resources 
whenever and wherever they get access to the internet 
which leads to faster lead time while the manufacturing 
engineers can access their resources anytime and anywhere 
to enable uninterrupted manufacturing even from outside 
the factory premises. The efficiency of the supply chain can 
be increased, and the costs lowered by storing parts digitally 
and manufacturing them only when required [38].

The detailed literature review has shown that the numer-
ous studies performed by various researchers on cloud man-
ufacturing can be grouped into five broad categories. They 
are studies on architecture and platform design, resource 
description and capabilities, service selection and composi-
tion, resource allocation and service schedule, and service 
searching and matching [37]. A brief overview of the studies 
is shown in Table 2.

2.5  Cyber security

As many industries have started embracing or preparing to 
embrace Industry 4.0, more and more isolated systems are 
getting connected to the internet which increases the vulner-
ability of them getting exposed to potential security risks 
such as, data theft, malware, denial of service, and device 
hacking. Cyber security is the technique to defend the 

Fig. 7  Various cybersecurity domains
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cyber-attack on Ukraine’s power grid infrastructure in 2015 
through a malware-infected email was the first known attack 
on the power infrastructure which shows the vulnerability 
of physical industrial assets [83]. The various risks, security 
requirements, and the impact of threats to the businesses as 
outlined by Corallo et al. [84] are summarized in Table 4.

The studies show that although implementing digi-
tal technologies on a factory shopfloor has a huge poten-
tial, businesses must be cautious of the increasing cyber 
threats, and they must develop and invest in suitable data 
security programs to get the real benefits of Industry 4.0 
transformation.

2.6  Automation and robotics

Both automation and robotics go hand in hand as their pur-
pose is to work independently and efficiently in the indus-
tries to improve productivity. By connecting robots to a 
centralized computer system, their activities can be con-
trolled which would help them to complete the task without 
the intervention of humans [85]. With the advancements in 
machine vision techniques, they take the advantage of high-
resolution cameras attached to the robotic arms to track 
the movement of objects in real-time and perform visual 
assignments such as identifying and removing defective 
parts from the production line. Although automation and 
robotics are used in industries for many decades, the robots 
that would be used in Industry 4.0 environment would have 
advanced sensors, control algorithms, data communica-
tion channels, navigation and guidance systems, and data 
processing abilities [86]. The major differentiating factors 
between the earlier generation and current generation robots 
are their capabilities to self-learn, flexibility to perform a 
wide variety of operations, and agility which are supported 
by the various complex algorithm-based neural networks.

The significant applications of automation and robotics 
in Industry 4.0 includes performing complex and dangerous 
jobs [87], enabling uninterrupted production [88], improv-
ing productivity and reliability [89], extracting data [90], 
working in unpleasant environments [91], perform monoto-
nous and difficult tasks [92], deliver higher efficiency [93], 
working for long hours [94], material handling [95], cus-
tomer service [96], surveillance [97], manage assembly 
lines and fabrication [98, 99] which all are supported by 
various digital technologies.

Robotic Process Automation (RPA) is another technol-
ogy that has enormous benefits and use-cases in automat-
ing various processes of an organization, especially in 
ERP-related (Enterprise Resource Planning) activities. 
Various technologies such as AI algorithms, text recogni-
tion, and language processing techniques come together to 
achieve this goal. RPA which is also referred to as a “digital 

(software-defined networks) [76], DevOps-based approach 
[77], attack tree approach [78], hierarchical model [79], 
impact assessment model [80], and vulnerability assessment 
based on SCADA [81].

A recent study shows that businesses that are affected by 
cyber-attacks have resulted either in the closure of produc-
tion lines, loss in man-hours, enormous financial damage, 
or all the above. Apart from financial losses, it could also 
lead to loss of reputation, losing customer confidence, and 
even judicial actions. According to a study by IBM, manu-
facturing industries moved to the 2nd position in 2020 (the 
financial sector is at the 1st position) from its 8th position 
in 2019 in the list of most targeted industries [82]. This is 
primarily due to the increase in adaptation to digital tech-
nologies and connected devices. Some typical examples 
of cyber-attacks on big manufacturing industries include 
website breaches in OXO International and Hanesbrands 
Inc., a whaling attack targeting the accounting department 
of FACC AG, ransomware attacks on Norsk Hydro, Visser 
Precision, and Renault-Nissan, and an internet worm infec-
tion on Daimler Chryslers’ manufacturing units. Besides, a 

Table 3  Cybersecurity guidelines
Document Industrial asset Reference
ISA/IEC 62,443 Industrial Automation and Con-

trol Systems (IACS)
Ref [66]

IACS Cybersecurity 
Certification Frame-
work (ICCF)

Industrial Automation and Con-
trol Systems (IACS)

Ref [67]

ANSSI Cybersecurity 
for Industrial Control 
Systems

Industrial Control Systems (ICS) Ref 
[68–70]

API Standard 1164 Supervisory Control and Data 
Acquisition (SCADA)

Ref [71]

ICS Security 
Compendium

Industrial Control Systems (ICS) Ref [72]

Catalog of Control 
Systems Security

Control Systems of critical infra-
structures and key resources

Ref [73]

ICS-CERT 
Assessments

Industrial Control Systems (ICS) Ref [74]

NIST 800 − 82 Industrial Control Systems (ICS) Ref [75]

Table 4  Impact of cyberattacks
Risk Security 

requirements
Business impact

Availability Availability 
of data when 
required

Denial of service, poor 
product quality, and loss of 
production time

Integrity Protection of data 
from alterations

Damage to critical physical 
infrastructure, unsafe work 
conditions for workers, and 
poor product quality

Confidentiality Protection of 
confidential data 
from leaks

Loss of trade secrets and 
competitive advantage, 
damage to reputation, 
breach of data protection 
contracts with partners
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a model to predict the wear of a cutting tool and failure of 
spindle motor bearing. Researchers have shown that IoT 
systems can be used in predictive maintenance of machine 
tools [106], anomaly detection [107], and error prediction 
in machine centers [108]. The IoT system can also be used 
in hazardous work environments such as nuclear power 
plants, chemical factories, wastewater treatment, and manu-
facturing industries to collect critical machine data through 
appropriate sensors that can be used to monitor and con-
trol production and operation. However, as more and more 
“things” are connected, the complexity of protecting sensi-
tive information increases manyfold that needs novel safety 
algorithms [109].

2.8  Cyber-physical systems (CPS)

A cyber-physical system is an intelligent computer system 
that integrates sensing, computation, control, and network-
ing capabilities into physical objects, and connects them 
to the Internet and to each other. While IoT and CPS look 
much similar, there is one major difference between them. 
IoT refers to a physical object embedded with critical sen-
sors (sensing) that can gather data and transmit (network-
ing) it through the internet. On the other hand, apart from 
the sensors and internet, a CPS contains components that 
are required for computation and control that make the sys-
tem highly efficient. The diverse application area of CPS 
includes aviation, self-driving cars, energy, disaster and 
emergency management, healthcare, smart manufacturing, 
and smart city.

In the case of smart manufacturing, CPS can be imple-
mented in a factory for monitoring production and assembly 
lines, monitoring of assets, predictive analysis, and supply 
chain management. A typical CPS framework has a physi-
cal layer that contains the physical sensory, communication, 
and data processing modules. Various physical components 
such as sensors, GPS, RFID, machine vision camera, and 
IoT modules recognize and generates an enormous amount 
of real-time data about their surroundings and send it to the 
communication layer. The middle layer or the communica-
tion layer is responsible for the real-time transfer of data 
from the physical layer to the cyber computation layer. The 
layer has various communication channels such as local 
area network (LAN), wide area network (WAN), Bluetooth, 
Wi-Fi, switches, and routers. It creates a channel between 
external applications, the physical layer, and the cyber layer. 
The computation layer acts as the third layer that is respon-
sible for the intelligent processing of data received from the 
physical layer. It also performs supervisory control, makes 
decisions based on the data, and sends commands back to 
the physical layer [110]. The guidelines of a cyber-physical 

worker” is a software program that is used in the automa-
tion of high volume, routine, and repeatable production 
tasks to boost the overall productivity of an organization. 
Automatic singing-in into software applications, data edit-
ing and migration, autoreply to emails, filling online forms, 
report generation, and automatic invoicing are a few appli-
cations of RPA [100]. The major disadvantage of RPA is that 
it works based on a set of simple rules and is incapable of 
using data or analytical models to work in complex, data-
intensive decision-making systems. However, combining 
RPA with ML can overcome this to some extent [101].

2.7  Internet of things (IoT) and industrial internet 
of things (IIoT)

The network of various physical objects (“things”) inte-
grated with sensors, software, and digital technologies that 
allow them to connect and communicate with each other 
using the internet is termed as Internet of Things (IoT). The 
key difference between IoT and IIoT lies in the “things” that 
are connected to the internet. IoT refers to the connected 
devices or systems that are used in general consumer appli-
cations such as consumer electronics, smart home appli-
ances, personal health tracking devices, etc., while IIoT 
refers to the connected industrial devices or systems used 
to support industrial operations like manufacturing, quality 
control, and supply chain and logistics.

The entire concept of the fourth industrial revolution is 
built around establishing a communication channel through 
the internet that allows a seamless two-way flow of data 
between human-machine and machine-machine [102]. The 
small size and cost-efficient IoT sensors would allow the 
connection of more physical objects that make the system 
work efficiently, smartly, and safely [103]. In a manufac-
turing system, the data from these sensors such as heat, 
temperature, pressure, moisture level, humidity, vibration, 
friction, and movement are collected real-time to build a 
statistical relationship with the product performance. From 
reducing the manufacturing cost to assisting in preventive 
maintenance and providing a safer work environment the 
potential of IoT is enormous in future smart factories. Stop-
ping a production line to fix repairs would result in loss of 
production time and affect the dependent assembly lines. 
Hence, identifying the malfunction in advance using appro-
priate sensors would support manufacturing by eliminating 
failures which in turn results in saving.

Zhang et al. [104] developed models based on Long 
Short-Term Memory (LSTM) network and used 21 sen-
sors placed at different locations to collect and monitor the 
health of an aero propulsion engine system and monitor its 
performance and predict its degradation. Using appropriate 
sensors and AI-based algorithms Lee et al. [105] presented 
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the manufacturing industry to print highly complex func-
tional parts in any required material with very tight preci-
sion and good aesthetics which are critical in industries such 
as aerospace, biomedical, automotive, manufacturing, and 
consumer goods [115]. While conventional additive manu-
facturing is already used by many manufacturing industries, 
the current interest is on the system’s flexibility in adapt-
ing to different challenging applications such as printing of 
smart materials, printable electronics, printable assemblies, 
and hydraulic components.

Soft robotics is one of the emerging fields in robotics that 
is used to manufacture robots from highly compatible flex-
ible materials such as thermoset elastomers that can mimic 
human motion, and additive manufacturing plays a vital role 
as the key technology enabler [118]. Some of the applica-
tions of soft robots in a manufacturing setup include soft 
actuators [119], stiffness-controllable robot links [120], 
inflatable robotic arms [121], continuum robots [122], and 
adaptive graspers [123]. The smart materials (shape mem-
ory alloys and polymers) printed by additive manufactur-
ing technique develop the ability to be flexible and react to 
their surroundings by changing their shapes or properties 
which gives rise to a new technique called “4D printing” 
[124]. MacCurdy et al. [125] have designed and 3D printed 
a novel functional hydraulic force transmitting mechanism 
pre-filled with hydraulic liquid that eliminates the need for 
assembly. In the studies conducted by Ota et al. [126] and 
Macdonald et al. [127] they have demonstrated the possibil-
ities of 3D printing electronics components such as LEDs, 
circuits, temperature sensors, and related control electron-
ics. The other latest addition to the AM portfolio is 5D print-
ing in which the printing head gets additional degrees of 
freedom to print objects from 5 different axis (similar to 
5-axis machining centers), and hybrid manufacturing that 
combines the possibilities of performing both additive and 

system based on 5C architecture as proposed by researchers 
[111, 112] are shown in Fig. 8.

Some of the successful applications of CPS in a manu-
facturing environment includes CPS modules for a machin-
ing cell, plug and work applications, automatic process plan 
generation in a dynamic manufacturing unit, CPS based 
automatic process planning and maintenance system, adap-
tive scheduling and alternative routing, inter-company data 
transfer, and set up pilot systems for research and devel-
opment activities [113]. Despite their tremendous benefits, 
industries and researchers are also wary about the associated 
challenges and risks. Especially the challenges such as the 
complexities in design, testing, and validating the holistic 
functionality of the system, and implementation challenges. 
Besides the safety and security issues that are typical to any 
system connected over the internet like the threat to data 
privacy and confidentiality, data corruption, and malware 
are valid for a CPS as well [114].

2.9  Additive manufacturing (3D printing, 
4Dprinting, and 5D printing)

Additive Manufacturing (AM) is a technique of printing 
3-dimensional solid objects by building a layer of materi-
als one over the other using CAD models [230]. Although 
the technology was developed in the early 1980s it started 
gaining traction in the last decade with the adoption of sup-
porting digital and intelligent technologies in the industries 
[115]. As mass customization is one of the core contexts 
of Industry 4.0 [116], it is critical in developing unconven-
tional manufacturing processes like AM which is expected 
to become a key technology driver to fabricate highly 
sophisticated customized products with advanced features 
that are otherwise not possible to produce with conventional 
manufacturing processes [117]. Over the past few decades, 
the AM technology has matured which currently allows 

Fig. 8  5C architecture of a CPS
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the huge pressure on the low and medium-skilled laborers 
could intensify wage disparity. The study also warns that 
soon AI-enabled robots can replace even high-skilled pro-
fessions such as software programmers, doctors, and archi-
tects [130]. While AI and robots continuously encroaching 
the fields that were previously thought exclusive to humans, 
and UN data estimates a 6 billion working-age population 
by 2050, the increase in threat to human employment is 
highly likely.

3.1.2  Loss of craftsmanship

Since the 1980s the chess competition between human chess 
masters versus computers is a battle that was keenly watched 
by more technocrats rather than sports enthusiasts which is 
believed as a demonstration and successful use case of AI 
algorithms. Besides, there are numerous successful exam-
ples of AI beating humans in visual recognition, reading 
comprehension, complex strategy games, and autonomous 
cars. Some recent demonstrations show that AI can even 
write original melodies, and even beat experienced lawyers 
in accurately identifying issues with legal contracts [131]. 
In 2016, an attempt was made through an AI project named 
“The Next Rembrandt” to replicate the artwork of one of the 
greatest painters, printmakers, and draughtsman of the 17th 
century, Rembrandt. By analyzing and studying the paint-
ings pixel by pixel, AI learned Rembrandt’s style and repro-
duced a highly convincing masterpiece [132]. Recently, the 
AI went further and restored the missing pieces of one of 
Rembrandt’s paintings [133]. The above few examples of 
AI’s capabilities show that AI technologies can compete 
with humans not only in labor-intensive and monotonous 
jobs but also in creative, artistic, niche, human-only jobs.

3.1.3  Wage disparity

The rapid adoption of new technologies over the past few 
decades has significantly affected the wage difference 
between different labor categories. A recent study [134] by 
the World Bank highlights the polarization of the labor mar-
ket with increasing wage disparity and a steady decline in 
the income of medium-skilled occupations since the 1990s. 
This was partly attributed to the rise of information tech-
nologies and the cognitive job market which has increased 
the wages of high-skilled labor. Acemoglu and Restrepo 
[135] studied the impact of automation on the US labor 
market and reported that the employment and wages of low-
skilled labor are highly affected, but the high-skilled labor 
is unaffected. The threat of automation and AI has once 
again brought the old idea of universal basic income which 
ensures a regular and guaranteed sum of money to every 
adult irrespective of income or financial condition [136].

subtractive manufacturing in a single setup to gain the ben-
efits of both the technologies [128].

3  Socio-economic challenges of industry 4.0

Before the Industrial Revolution, communities and societ-
ies were diversified with varieties of occupations, some of 
them are physically demanding while others depend on the 
creativity and intellectuality of the human mind. Although 
the focus of the industrial revolutions was to improve pro-
ductivity and product quality, it has also eliminated humans 
from the hazardous and unpleasant working environment. 
The introduction of automation and robots into the indus-
tries helped humans to channel their focus on jobs that 
demands decision-making, problem-solving, intuition, 
persuasion, or cognitive skills, while the heavy lifting was 
done by the machines. Especially, various artistic occupa-
tions that are based on expressing human creativity such 
as poetry, story, painting, sculpture, architecture and so on 
which are exclusive to humans are considered a prohibited 
zone for machines. However, studies show that recent tech-
nology such as AI has the potential even to challenge and 
even surpass humans in the cognitive space. Hence, apart 
from the technical challenges such as handling exponential 
data growth, interoperability, data sensitivity, data security, 
cost, high processing power and energy consumption the 
other critical challenges like human and social factors that 
can be disrupted by Industry 4.0 technologies are discussed 
on this section.

3.1  Challenges of industry 4.0

3.1.1  Unemployment

Studies have shown that unemployment is predominantly 
influenced by major social events such as the industrial 
revolution, the great depression, and world wars. Although 
the earlier industrial revolutions have increased the demand 
for labor which led to urbanization and population concen-
tration, it also resulted in inequality in the rural and urban 
employment market [129]. The machines and robots of the 
earlier industrial revolution assisted humans by providing 
their muscle power to help industries improve productivity 
while leaving brainpower to humans. But the real threat of 
Industry 4.0 technologies is the challenge of AI’s capability 
to autonomously solve complex problems and attempting 
to substitute even human intelligence. A study by the UN 
Department of Economic and Social Affairs (DESA) shows 
that the risk of job loss due to automation can be over 80% 
in the low- and medium-income group. While the high-
skilled labor stands to gain from the implementation of AI, 
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The European Commission has termed Industry 5.0 as 
the vision of industries to think beyond increasing produc-
tivity and efficiency and contribute to society by placing 
the workers at the center of the production process. The 
emphasis was on research and innovation that is sustainable, 
human-centric, and resilient [137].

Esben H. Østergaard, CTO of Universal Robots has 
termed Industry 5.0 as the transformation of mass cus-
tomization enabled by Industry 4.0 technologies to mass 
personalization and hence labeled it as the “human touch” 
revolution. He also forecasts a return of the pre-industrial 
way of manufacturing that is supported by technologies in 
which humans play a critical role rather than being alien-
ated. The importance of bringing humans back to the manu-
facturing loop to provide personalization and human touch 
was reiterated through collaborative robots or cobots [138].

Nexus Integra, a service provider in Big Data and 
Industrial IoT platforms defines Industry 5.0 as “the next 
step, which involves leveraging the collaboration between 
increasingly powerful and accurate machinery and the 
unique creative potential of the human being” [139].

The Global Electronic Services repairs and services 
define Industry 5.0 as “the revolution in which man and 
machine reconcile and find ways to work together to improve 
the means and efficiency of production” [140].

Levity, a service provider in Artificial Intelligence terms 
Industry 5.0 as something that “adds a personal human 
touch to the two main pillars of Industry 4.0, automation 
and efficiency. It refers to people working alongside robots, 
smart machines, and technologies.” They have also pointed 
out that the core element of Industry 5.0 would be the per-
sonal touch which cannot be provided by technologies 
[141].

Frost & Sullivan calls Industry 5.0 as “a model of the 
next level of industrialization characterized by the return 
of manpower to factories, distributed production, intelligent 
supply chains, and hyper customization, all aimed to deliver 
a tailored customer experience time after time” [142].

Association for Advancing Automation has predicted 
that the need for greater customization and personaliza-
tion would drive the fifth industrial revolution that would 
revolve around a larger collaboration between machines and 
humans to realize the dual benefits of cognitive computing 
and human intelligence [143].

Andreas Eschbach, founder, and CEO of a software solu-
tions provider says that Industry 5.0 would be an evolution 
in the manufacturing process in which humans are assisted 
by machines to realize the dual benefits of accuracy and 
cognitive skills [144].

Neil Sharp of JJS manufacturing, a manufacturing solu-
tion provider has stated that human-centric development, 
sustainability, and resilience would be the three pillars of the 

3.2  Key takeaways

From the various sections discussed till now, it can be 
interpreted that the entire concept of Industry 4.0 revolves 
around collecting, processing, monitoring, storing, and ana-
lyzing data from various sources in digital form to improve 
the process efficiency, make decisions, learn, and improve 
on the go. The data collected from various sensors that are 
connected to a physical system are processed in a central-
ized location using AI and ML algorithms to understand 
the manufacturing processes which helps the industries to 
optimize their operation and even teach the learnings back 
to the system. The in-depth analysis of data collected from 
various processes gives a new level of understanding of the 
process which helps industries to operate at the highest pos-
sible efficiency.

If Industry 3.0 is about generating data, then Industry 4.0 
is about processing and analyzing it to achieve the high-
est possible optimization which improves the quality of the 
manufactured parts to an unprecedented extent. Although 
industries can realize the benefits of adopting these digital 
and computing technologies, the higher implementation 
cost and requirements on the highly skilled workforce are 
a few deterrents to their rapid adaptation. Besides, many 
organizations are still skeptical about how these new-age 
disruptive technologies would benefit their business consid-
ering their size of the business and the cost of restructur-
ing and reskilling requirements. However, rather than the 
cost and technical challenges, the impact of these technolo-
gies on the socio-economic factor is the serious concern. If 
left unchecked, the disruption it can have on society would 
be enormous and irreversible. Hence, business leaders 
and policymakers must urgently investigate the technolo-
gies and identify methods to adopt them without affecting 
people and communities. Hence the current need is to find 
ways to include humans in the game rather than alienating 
them again which may altogether require a different set of 
technologies or a new Industrial Revolution (Industry 5.0) 
which are discussed in the following sections.

4  Industry 5.0: definitions from industries 
and scholars

Many industries that are closely associated with digital 
technologies have come up with different definitions for 
the impending fifth industrial revolution. While Industry 
4.0 concept itself is yet to get a head start in many devel-
oped and emerging economies, these definitions could be 
considered as a wish list or predictions for the upcoming 
revolution.
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5  Prospective technologies and applications 
of industry 5.0

From the previous sections, it can be implied that Industry 
4.0 has solely focused on improving profits by concentrat-
ing only on product quality and process efficiency using dif-
ferent digital technologies. However, it has widely ignored 
the need for human intelligence and failed to acknowledge 
the impact of digital technologies on the environment and 
society. Hence Industry 5.0 is predicted to include the two 
key missing elements, the inclusion of humans and sustain-
able development. In addition, it is also expected to pro-
vide flexibility and agility that industries require to quickly 
respond to the changing market conditions and customer 
preferences. However, although most industrial leaders and 
many scholars have predicted leveraging human creativ-
ity as the key difference of Industry 5.0, few other schol-
ars argue that Industry 5.0 would just be an evolution or an 
incremental advancement of Industry 4.0 technologies and 
practices [150, 151]. The key differentiating factors between 
the industrial revolutions are shown in Fig. 9.

Despite being conceptualized as an incremental advance-
ment, discussions on various enabling technologies and the 

fifth industrial revolution which aims to empower humans 
and not replace them [145].

Eric Howard of Simio LLC, a simulation software pro-
vider has also indicated that combining human capabilities 
and automation to meet the demand for personalization 
would be the driver of the next industrial revolution [146].

Ozdemir and Hekim [147] proposed Industry 5.0 to be a 
much-required evolutionary and incremental development 
that is built on the concept and practices of Industry 4.0.

So far, every industrial revolution had attempted either 
to eliminate or alienate humans who stand to lose against 
the superior productivity and efficiency of automation and 
digital technologies. However, for the first time, most of 
the definitions have confirmed the inclusion of humans and 
sustainability as the additional key pillars of the fifth indus-
trial revolution. Even at the heart of Japan’s “Society 5.0” 
model, they strive to create a human-centered revolution to 
attain economic development by integrating physical and 
cyberspace [148, 149].

Fig. 9  The key differential factors of Industry 3.0 Vs 4.0 Vs 5.0
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need a break in the production line which increases the com-
plexities and compromises its efficiency, quality, and results 
in higher cost. In fact, his black-only strategy has helped 
Ford to reduce the overall cost of the model by more than 
half in a few years. This mass production strategy signifi-
cantly changed the American economy and society and even 
helped Ford’s own factory workers to afford a car which 
was until then possible only for rich and elites. Nearly 
after a century, the concept of mass production has already 
started fading in favor of mass personalization in the name 
of the fifth industrial revolution with the support of digi-
tal technologies which would be discussed in the following 
sections. The diagrammatic representation of prospective 
Industry 5.0 technologies is shown in Fig. 10.

applications of the fifth industrial revolution have already 
gathered pace. The union between the accuracy and effi-
ciency of digital technologies and the creative thinking abil-
ity of humans would create a synergy between humans and 
machines. The increasing customer requirements for highly 
personalized products is believed to be another benefit of 
Industry 5.0 which can leverage various software tools, arti-
ficial intelligence, machine learning, and additive manufac-
turing. If the earlier industrial revolution was about mass 
production, the future is predicted to be driven by mass per-
sonalization as “there is no one size that fits all”.

In his autobiography “My Life and Work”, Henry Ford 
has mentioned that he once said, “any customer can have a 
car painted any color that he wants, so long as it is black”. 
The statement was around the launch of “Model T” in the 
year 1909 when mass production was the buzzword of 
industries. It was an era during which any minor changes 
on the product like even a variation in paint color would 

Fig. 10  The prospective technologies of Industry 5.0
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mid-sized German manufacturer of drying machinery prod-
ucts has reported a tremendous improvement in its produc-
tivity and quality of parts after employing a cobot in their 
welding cell. The welding operation which typically takes a 
day was completed by a 6-axis KUKA KR Cybertech cobot 
with the required precision and top-notch craftmanship in a 
mere 50 min [154]. Few other industries that are realizing 
the benefits of employing cobots in their operations include 
biomedical, agriculture, food processing, electronics man-
ufacturing, warehousing, automotive, metal processing, 
packaging, and logistics. Although cobots prove to be highly 
efficient in an industrial environment, the other aspects such 
as safety, trust, loss of shared emotions between workers, 
and possible job loss for humans still looms large which 
must be addressed [155].

5.2  Smart sensors

A sensor is an electronic device that can sense any changes 
in physical properties and convey them through an appro-
priate change in electrical output. For instance, a thermo-
couple sensor responds to the change in temperature by 
producing a suitable output voltage. While a conventional 
sensor has only the base sensing elements, a smart sensor 
system can independently perform data collection, data 
conversion, data processing, and establish communica-
tion to an external system such as a cloud server which are 
some of the critical requirements of future smart factories. 
Such extended capabilities are achieved through a suitable 
base sensing element, microprocessor, communication, and 
memory modules all embedded in one system. Basically, 
smart sensors and actuators are an integral element of IoT, 
CPS, automation, robotics, and all intelligent systems which 
are the driving force behind Industry 4.0 and Industry 5.0 
technologies. Hence the importance and functionality of a 
smart sensor can be understood from the various sections 
of this article.

5.3  Digital twins

The accurate digital replication of a physical system that 
acts as its virtual counterpart is the digital twins. In gen-
eral, using the data gathered from the original model and 
mirroring it on its replicate model to simulate and under-
stand the real-time behavior is the core concept of twin-
ning [231]. The concept of using “twins” was believed to be 
in practice since the late 1960s when NASA was working 
on the Apollo space mission. NASA scientists have made 
two identical spaceships to allow precise mirroring of the 
conditions that the spaceship in orbit experiences with its 
twin on the earth [156]. However, with the advancements 
in digital technologies, currently, it is possible to mirror the 

5.1  Collaborative robots (cobots)

Although robots are used in industries for many decades 
the highly connected fourth industrial revolution robots are 
designed to work autonomously without human supervi-
sion, and they already play an active role in many factories 
currently. However, instead of working independently, the 
fifth industrial generation robots are expected to collaborate 
with humans and work under his guidance. Thanks to the 
advancement in digital technologies such as artificial intel-
ligence, machine learning, and conventional robotics that 
gave rise to the next-gen collaborative robots or “cobots”. 
Such cobots can sense their surroundings, adapt to them, 
and learn on the go. This makes them highly flexible and 
adapts to the changes instantaneously to support the manu-
facturing of small batch sizes and fulfill highly personalized 
products which would be one of the major requirements of 
future manufacturing. While the current generation robots 
work inside fenced surroundings to perform a predefined set 
of operations, the cobots are released from their confine-
ment to enable 3Cs (Coexist, Cooperate and Collaborate) 
with their human counterparts. These lightweight, sensitive, 
precise, and highly flexible cobots are easily programma-
ble to work aside humans to relieve them from physically 
demanding, hazardous, or monotonous activities.

KUKA, a leading manufacturer of industrial robots 
and automation systems has already introduced their first-
generation lightweight collaborative robot named “LBR 
iiwa” which is currently being used in assembly and pro-
duction lines of Ford, Daimler, BMW, Skoda, and many 
other automotive companies. As the cobots are small and 
mobile, they are capable of working in almost all the areas 
of an industrial setup such as laboratories, handling of raw 
material, production and assembly lines, material handling, 
transportation, packaging, quality control, and shipping of 
finished products to the customers. Their flexibility to adapt 
to different job requirements can reduce the dependency 
on conventional industrial robots that significantly reduce 
the cost of ownership in the manufacturing industries. The 
recent advancements in technologies such as distributed 
artificial intelligence, edge computing, parallel processing, 
and linked data enable cobots to make real-time decisions 
effectively [152]. As the cobots are highly affordable, ver-
satile, and easy to deploy, it gives the advantage of a level 
playing field for the small-scale industries to compete with 
large conglomerates and multinational corporations.

For instance, a cobot installed in Craft and Technik 
Industries in India which is an automotive part manufactur-
ing company has shown a 20% improvement in the prod-
uct quality by handling the monotonous job of loading and 
unloading components from a CNC machine while simul-
taneously performing inspection [153]. Stela Laxhuber, a 
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digital model to track the history and evaluation of data and 
this process is called threading. Cloud computing technol-
ogy is used to store these data [159]. As digital twin is an 
ultra-realistic representation of a physical system, it can be 
combined with other digital technologies such as IoT, Big 
data, Artificial intelligence, and Machine Learning to collect 
real-time data and monitor the health of the system, pre-
dict remaining useful life and in preventive maintenance. 
The various applications of digital twins in the manufac-
turing industries include product design and new product 
development, product manufacturing, asset management, 
process monitoring and optimization, quality control, pre-
dictive maintenance, supply chain management, and assist 
in decision making by supporting cross-functional (engi-
neering, manufacturing, marketing, and sales) collaboration 
[231,160]. The other industries that benefit from the tech-
nology are aerospace, space research, bio-medical, energy 
storage, automotive, electricity production and distribution, 
and autonomous vehicles. As the scope of the article is to 
briefly introduce the different digital technologies of Indus-
try 5.0, the scholars interested to know further details and 
few real-life successful implementations of digital twins can 
refer to these articles [161–171].

condition on a digital model rather than on a physical model 
and hence derived its name, “digital twins”. Even the term 
“digital twins” was first coined by NASA in its 2010 report 
to denote its Simulation-Based Systems Engineering [157].

NASA has defined a digital twin as a system that is 
designed to integrate multi-physics, multi-scale, probabilis-
tic simulation to mirror its twin using sensors and appropri-
ate data derived from the source. The system on the digital 
twin can prevent the failure of a physical system and extend 
its life by suggesting suitable changes and optimizations. 
Although both simulations and digital twins use the digital 
versions of a physical system the main differential factor of 
digital twins is that they can be used to simultaneously run 
and study multiple processes. The different types of digital 
twins as outlined by IBM are shown in Fig. 11.

The three main capabilities of digital twins are mirror-
ing, shadowing, and threading [158]. The capability to 
accurately mirror the physical system to meet the purpose 
of twinning is mirroring. The synchronization between the 
physical and virtual models is shadowing. The data from the 
physical model is transmitted to its digital counterpart at a 
regular interval through appropriate communication chan-
nels to enable synchronization. The data received from the 
physical system are stored in the form of a record in the 

Fig. 11  Types of digital twins
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preferences and insights (“people”) collected from devices 
such as wearables, smartphones, social media, smart appli-
ances, and smart digital systems (“things”) are processed 
and analyzed by artificial intelligence algorithms (“pro-
cess”) to provide a personalized experience back to the 
“people”. Cisco has estimated that the real benefits of IoE 
can be realized once the 99.4% of the currently uncon-
nected physical objects become a part of IoE one day in 
the future. Improving productivity and reduction in costs, 
increase in employee productivity, highly efficient supply 
chain and logistics, innovation in new product development 
and research, and superior customer experience are some of 
the benefits that companies stand to gain from IoE [172].

The lethal union of Artificial Intelligence and Internet 
of Things gives birth to Artificial Intelligence of Things 
(AIoT) which is becoming a new technology topic in indus-
trial automation. A conventional IoT system consists of sen-
sors that have the potential to generate an enormous amount 

5.4  Internet of everything (IoE) and artificial 
intelligence of things (AIoT)

The term “Internet of Everything” was coined by Cisco to 
describe the all-around connectivity between, people, things, 
data, and processes. The hybrid connection enables to gain 
of more valuable information which can be converted into 
new capabilities, rich experiences, and exceptional oppor-
tunities. If IoT refers to the connection of physical objects 
with the internet which is a single technology transition, IoE 
contains many technology transitions in which IoT is one 
of the parts. The philosophy of IoE revolves around con-
necting the billions of devices, objects, and common things 
around the world with sensors that give them wide network-
ing capability and make them smarter. The idea of IoE and 
its data flow is shown in Fig. 12.

The ideology of IoE is a closed loop in which the real-
time data flows through its four key pillars. The user 

Fig. 12  Ideology of IoE
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centralized, it is susceptible to security threats. So, adopt-
ing blockchain architecture would ensure data security by 
providing secure, private, and encrypted data transfer [173]. 
The technology helps in solving trust-related problems and 
enables the automated allocation of resources on a global 
scale. The possibility of distributed data storing, decentral-
ized P2P transactions, automatic approval process, program-
mable smart contracts, eliminating counterfeit products, 
and dynamic encryption algorithms makes Blockchain an 
attractive option for industries to adopt [174, 175]. As this 
technology is a new entrant in manufacturing industries, the 
literature review shows that most of the current research 
on the topics is around the concept of the technology and 
its architecture [176–181]. However, studies have recom-
mended that reducing the size of the blockchain, block size 
optimization, and a lightweight blockchain to reduce trans-
action latency and computing power are the potential area 
of future research to make the technology sustainable [5].

5.6  Edge and fog computing

The current efficiency of cloud-computing technology is 
insufficient in analyzing a large volume of data generated 
in a shorter time which affects the service quality and the 
overall performance of the network and the IoT system 
[182]. Hence, the disadvantages of cloud computing tech-
nology can be overcome by using edge computing. Edge 
computing is a distributed computing and storage frame-
work deployed near the source where the data is created 
which keeps data on the local parts of the network or the 
edge devices, instead of using a centralized data server. It 
allows data from IoT devices to be processed at the edge (in 
the local system itself) before sending it to the cloud which 
improves the response time and saves network bandwidth. A 
schematic showing the typical functioning of edge comput-
ing is shown in Fig. 13.

Edge computing and Fog computing are essentially the 
same in terms of leveraging the computing capabilities that 
are available within a local network. The key difference 
between cloud, edge, and fog computing lies in the place at 
which data processing is done. In cloud computing the data 
processing occurs at the centralized cloud servers that are 
managed by a few service providers at geographically dis-
persed data centers, while in edge computing it occurs at the 
physical device in which the IoT sensors are embedded or 
at a gateway device that is close to the sensors. However, in 
Fog computing, the activities are performed on the proces-
sors that are a part of the LAN hardware which are far apart 
from the sensors. The main advantage of cloud computing is 
in its capability to provide in-depth and advanced process-
ing, while edge and fog are suitable for quick and real-time 

of unstructured data. In an industrial set up as many IoT 
devices are connected to form a network, the volume of 
real-time data that needs to be handled and analyzed gets 
too huge. With AIoT, a connected physical device gains 
the power to solve problems and make decisions that were 
impossible for conventional IoT-enabled devices. It is 
achieved by embedding AI algorithms in the components 
of a physical system such as programs and chipsets which 
all are connected to an IoT network. An appropriate applica-
tion programming interface is deployed to provide interop-
erability between the components at device, software, and 
platform levels. They operate in unison to optimize the sys-
tem and extract the required useful data from it for the data 
analytics functionality, make decisions, optimize the system 
functionality, and learn from it, all without the intervention 
of humans. As the technology is relatively new the further 
capabilities of the system must be explored. However, few 
of the many possible applications of the technology include 
consumer goods, industrial, enterprise, smart health track-
ing devices, smart home appliances, autonomous vehicles, 
and service sectors.

5.5  Blockchain

Blockchain is a digitally managed, distributed, and decen-
tralized ledger used to store both tangible and intangible 
assets in a business network in the form of transactions in 
an immutable format. The characteristics of the technology 
in providing trust, transparency, and traceability make it 
attractive for applications where transactions are involved 
[5]. Each block is a file where the transactions are perma-
nently recorded and when a new transaction is performed 
it gets added to the block similar to adding a new page to 
a ledger. In simple terms, the technology can be defined 
as a chain that contains data blocks in the chronological 
sequence that are permanently stored in encrypted form as a 
distributed ledger that is tamper-proof or fake proof. As all 
businesses rely on data and information flow across various 
stakeholders it is critical to ensure that the flow is accurate 
and faster, and Blockchain is the ideal technology that can 
deliver information from a permanent ledger only to the 
approved members. Originally created as a hack-proof sys-
tem for banking and financial institutions, the Blockchain 
technology with its decentralized, distributed, and immu-
table features is proclaimed to be a game-changer for all the 
sectors that require secure data sharing within and outside 
their organizations [5].

The combination of new-generation information tech-
nologies such as Internet of Things, cloud computing, and 
Bigdata along with Blockchain technology has the poten-
tial to transform the way data is currently handled in almost 
all the industrial sectors. As the current IoT architecture is 
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5.7  Cognitive computing

Cognitive computing refers to the set of technology plat-
forms that uses computerized models to mimic human 
thought processes to solve complex problems [185]. 
Although some scholars classify cognitive computing as 
a subset of artificial intelligence, basically they are two 
entirely different disciplines but with overlapping method-
ologies. While the focus of artificial intelligence is to reflect 
reality and produce accurate results based on a set of theo-
ries and algorithms, cognitive computing is built on par-
ticipation from two distinct interdisciplinary fields such as 
computing (artificial intelligence, machine learning, pattern 
recognition, data mining) and cognitive science (visual rec-
ognition, language processing, psychological, philosophy, 
and anthropology) to augment human thinking and reason-
ing abilities similar to the human brain [186].

Machine vision, machine learning, deep learning, and 
robotics are some technologies that are a critical part of AI 
that supports learning from the vast set of data, reasoning to 
make sense of the data, and self-correction to take decisions. 
With repeated learning, an AI system is capable of surpass-
ing humans in terms of accuracy and finding new ways to 
solve a problem. However, the focus of cognitive computing 

response. The difference between edge, fog, and cloud com-
puting is shown in Fig. 14.

Although cloud computing is considered a critical infra-
structure to support IoT applications, it is prone to latency-
related issues in applications that involve high volume and 
high velocity of data. Hence, the downside of cloud com-
puting can be solved by edge or fog computing architec-
tures that provide the service near the IoT device instead of 
centralized cloud infrastructure which is important in criti-
cal applications such as real-time manufacturing, autono-
mous vehicles, cognitive assistance, and healthcare [183]. 
In general, cloud computing is high latency, high power 
consuming infrastructure with high processing capabilities, 
whereas edge and fog computing are low latency, low power 
consuming infrastructure with low to moderate processing 
capabilities [184]. Despite their advantages, scalability, ser-
vice availability, mobility support, energy management, and 
security are a few challenges that must be addressed for a 
successful implementation of edge or fog computing infra-
structure for IoT applications.

Fig. 13  Data processing in Edge computing
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day by 2025 which is equivalent to the volume of data that 
requires approximately 213 million DVDs every day [190]. 
With the number of connected devices increasing every day, 
analyzing the data (Big data) generated would be a daunt-
ing task for the industries which can be intercepted using 
cognitive computing to convert the raw data into meaning-
ful information and invaluable knowledge [191]. The real 
potential of cognitive computing can be obtained by com-
bining it with big data analytics and unique human elements 
such as ethics, common sense, and self-directed goals. The 
major difference between cognitive computing and ML tech-
niques in terms of data processing is that the former works 
on vectors having objective data while the latter learns by 
performing different mathematical calculations on the data. 
Hence, the unstructured data (the data that are derived from 
texts, pictures, videos, etc.) must be converted to a quantita-
tive value which is derived as vectors to integrate cognitive 

is to replicate human reasoning using technologies such as 
data mining, image recognition, and language processing to 
solve problems and optimize human processes. Hence, the 
goal of cognitive computing is not to replace humans but to 
supplement humans in making a decision by processing a 
large volume of data [187]. In fact, a system with cognitive 
computing capabilities can interact with humans, interpret 
contextual language, analyze the data based on experience 
and make assumptions based on the interaction [188].

A smart IoT-enabled physical system that has cognitive 
computing capabilities embedded in it can assist humans 
by providing critical suggestions and help in making deci-
sions by analyzing the collected data. Such a system that 
combines IoT with cognitive computing results in Cognitive 
Things [189]. According to an article in the World Economic 
Forum, it has been estimated that around 463 exabytes (1 
exabyte = 1×106 terabyte) of data would be created every 

Fig. 14  Edge, fog, and cloud computing
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able to use higher frequencies when compared to 5G, it can 
provide higher capacity and lower latency. However, as the 
expected commercial launch of 6G technology is almost a 
decade away it is premature to predict the enabling tech-
nologies over which it would be built. But the envisioned 
key performance indicators are, very high data rates of up 
to 1Tbps, improved spectral efficiency and coverage, wide 
bandwidths of up to 100  GHz, improved energy saving, 
ultra-low latency, and exceptionally high reliability. A brief 
comparison of the key performance indicators (KPI) of 5G 
and 6G technologies as reported by Rajatheva et al. [200] 
and Strinati et al. [201] is shown in Table 5.

The usage of 6G and beyond is expected to deliver the 
required latency, provide an excellent service quality, net-
work infrastructure for connected devices, and support 
integrated artificial intelligence capabilities [202]. AI-based 
autonomous supply chain, e-health, collaborative robots, 
massive twinning (digital twins created from humans, 
physical objects, processes, and large infrastructures), tele-
presence using holographic techniques are some of the use 
cases of 6G technologies predicted by Ericsson [203]. In 
addition, with the expected increase in the number of con-
nected devices and the enormous amount of data collected 
to support Industry 5.0 applications, energy management is 
another critical environmental aspect that needs to be con-
sidered and 6G and beyond is expected to provide a highly 
optimized energy consumption strategy.

5.9  Augmented reality (AR), mixed reality (MR), and 
holography

Augmented reality (AR) is a technology used to superimpose 
digital information into real-world applications to provide a 
composite view to the users. It is an interactive 3D environ-
ment that combines real and virtual world together [204]. In 
virtual reality (VR) a head-mounted display unit is used to 
disconnect users from the real world and to give them the 
experience of a computer-generated virtual world, whereas 
AR keeps the real-world details. Although augmented real-
ity is one of the technologies that is often discussed along 
with the digital technologies of the latest industrial revolu-
tion, its history can be traced back to the 1960s [205, 206]. 
Mixed reality as the name implies is a mixture of real and 
virtual worlds where the users can also interact and manip-
ulate the virtual environment with support from high-end 
sensing and imaging technologies. Holography is another 
visualization tool that is also called 3-dimensional pho-
tography. The technique records the feature of a 3D object 
using lasers which are digitally reconstructed to reproduce 
the original objects accurately [207].

These technologies are built around advancements in 
the auxiliary technologies such as digital cameras, optical 

computing and ML. To gain the real benefits from cognitive 
computing, the system must be taught using numerous such 
vectors which it can interpret and learn the underlying pat-
terns from the data [188].

IBM Watson is one of the most popular cognitive com-
puting-based systems that is revolutionizing the healthcare 
sector by helping doctors to make superior decisions [192]. 
Besides, the image recognition algorithm can identify faults 
and provide solutions just by reading photographs of the 
machine, thus providing cognitive maintenance. The speech 
recognition can be used by the machine operator to control 
the machine which otherwise requires specialized program-
ming skills. The system can recognize texts and pictures, 
hear speeches, and interpret the questions to provide solu-
tions. In-process visual inspection, adaptive robotic main-
tenance, predictive maintenance, improve operational 
efficiency, and develop personalized products and services 
are a few other applications of a cognitive system in manu-
facturing industries [193]. Although cognitive computing is 
still in its nascent stage of development there are numer-
ous studies that highlight the benefits of the technology in 
analytics-oriented industries such as banking finance [194], 
education [195], health care [196], marketing [197], behav-
ioral analysis [198], and customer support [199].

5.8  6G and beyond

To fulfill the requirements of a fully connected digital 
world, innovations in digital and computing technologies 
alone are insufficient, but a substantial advancement in com-
munication technologies is also critical. However, with the 
next gen 5G technologies just around the corners, the tele-
com giants have already kickstarted their research activities 
towards the next technological breakthrough that is required 
to achieve the 6G goals which are expected for a commer-
cial launch by 2030. 6G and beyond can help address the 
wireless connectivity requirements of the rapidly growing 
intelligent devices and services. As a 6G network will be 

Table 5  KPIs of 5G and 6G technologies
S# KPI 5G 6G
1 Peak data rate (Gb/s) 20 10,000
2 Experienced data rate (Gb/s) 0.1 1
3 Peak spectral efficiency (b/s/Hz) 30 60
4 Experienced spectral efficiency (b/s/Hz) 0.3 3
5 Maximum channel bandwidth (GHz) 1 100
6 Area traffic capacity (Mbps/m2) 10 1000
7 Connection density (devices/km2) 106 107

8 Latency (ms) 1 0.1
9 Reliability (packet error rate) 10− 5 10− 9

10 Mobility (km/h) 500 1000
11 Energy efficiency (Tb/J) Not specified 1
12 Delay jitter (ms) Not specified 10− 3
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and industrial units to focus on protecting the environment 
and society as well. Hence, sustainability can be categorized 
as economic sustainability, social sustainability, and envi-
ronmental sustainability which are collectively referred to 
as the three pillars of sustainability. However, in addition to 
the three pillars, few authors have added additional pillars 
such as institutional, cultural, and technical [217]. In fact, 
the United Nations’ blueprint to achieve a better and more 
sustainable future which is called the “2030 Agenda” or 
“Agenda 2030” has listed 17 interlinked objectives as future 
Sustainable Development Goals.

Although the various Industry 4.0 technologies have 
assisted industries in achieving economic sustainability by 
reducing and eliminating product waste, improving product 
quality and process performance, streamlining the manufac-
turing processes to reduce power consumption, optimizing 
process time, reducing the number of manufacturing steps, 
inventory management, and improving the useful life of 
machinery, it has failed in checking the waste generated in 
the form of data. Processing such a huge volume of data 
requires enormous computing power, energy, and time to 
analyze and make a meaningful decision that affects envi-
ronmental sustainability. Environmental sustainability 
refers to the reduction of waste generated in manufactur-
ing, reduction in resources utilized, promotion of a circu-
lar economy, reduction in energy consumption, and using 
renewable energy sources [218]. This is in line with the 
report by the World Economic Forum, which details that 
about 75% of IoT projects are small and medium-sized, and 
they focus only on profitable applications such as energy 
efficiency, productivity, competitiveness, and cost reduc-
tion, but sustainability was mostly neglected [219]. The 
technologies can also cause social disruption by replacing 
low and medium-skilled human labor on the shop floor 
with automation and industrial robots which affects social 
sustainability.

“Sustainability trilemma” refers to the current challenges 
that industries face in achieving all the three sustainability 
pillars such as economic, social, and environmental sustain-
ability simultaneously. For instance, businesses focusing 
to achieve higher profits (economic sustainability) through 
excessive automation can result in job losses which disrupt 
social sustainability. Of the three sustainability pillars, the 
environmental pillar is the largest and the most critical to 
focus on as it encompasses both the social and economic 
systems inside it. In addition, according to a 2022 report 
by World Health Organization, 99% of the global popula-
tion breathes air that is beyond the recommended air-quality 
limits [220]. Under such circumstances, enforcing stringent 
pollution control norms and instantly moving away from 
fossil fuels to achieve environmental sustainability can take 
a huge toll on economic sustainability. Similar would be the 

sensors, display, accelerometers, GPS, gyroscopes, solid 
state compasses, motion tracking, radio-frequency iden-
tification, wireless network, and battery. Hence, although 
AR, MR, and Holography (which can be collectively called 
“Extended reality technologies”) [208] are not considered 
the technology enablers of Industry 4.0 or Industry 5.0, it 
is one of the technologies that is expected to benefit from 
the digital adoption and play a key role in the future smart 
factories. For instance, Metaverse, one of the buzzwords of 
the ongoing decade is a fully immersive, interactive envi-
ronment that takes elements of VR, AR, and MR to cre-
ate a virtual world. The technologies together would play 
a critical role in reducing the overall lead time in product 
design, prototyping, and process development. It also has 
the potential to conduct conferences, product launches, live 
events, and webinars virtually on a real stage without the 
physical participation of the presenters which can be a cost 
effective and eco-friendly alternative to business meetings 
and in-person collaborations. Interactive manuals and cata-
logs [209], remote expert guidance [210], quality assurance 
[211], assembly and maintenance instructions [212], prod-
uct demonstrations [213], collaborative engineering [214], 
error diagnosis [215], and employee training [216] are few 
other applications of the extended reality technologies.

6  Sustainability dimension of industry 5.0

From the various sections of this article, it can be inferred 
that the entire concept of Industry 4.0 and Industry 5.0 tech-
nologies revolves around collecting, processing, monitor-
ing, storing, and analyzing data from numerous connected 
sources to improve the process efficiency, make decisions, 
and learn on the go. The computing, information, and digital 
technologies come together to achieve this common goal. 
Apart from manufacturing industries, these technologies are 
used independently or along with other supporting technol-
ogies in banking, financial, biomedical, health care, social 
media, automotive, aerospace, autonomous vehicles, and 
numerous other sectors.

The world leaders and industrial behemoths have agreed 
that data is the new gold. If Industry 3.0 is about generating 
data, then Industry 4.0 is about processing and analyzing it, 
while industry 5.0 must be all about intelligently using it 
with a focus on sustainability. However, sustainability is not 
merely about reducing wastes that go into the manufactur-
ing of products, but it’s also about achieving sustainability 
throughout the product life cycle (from procuring raw mate-
rial till the product reaches the customer and later bringing 
it back for recycling) and identifying ways to achieve it with 
a minimal amount of data and in less time. In addition, the 
impact of these technologies must go beyond production 
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virtual and flexible learning modules) must be considered 
by the industries before embracing these new technologies. 
Correspondingly, industries trying to achieve environmen-
tal sustainability goals through renewable energy sources 
might take a blow on economic targets as the current cost 
of green energy is much higher than the energy from non-
renewable resources. Hence the industries need to incorpo-
rate a sustainability awareness culture that focuses on all 
three sustainability elements and future research must be in 
the direction to achieve it. In short, to maintain sustainable 
practices and a circular economy, the focus of the businesses 
must be on “how the business is made” rather than on “how 
much is made” [5].

7  Key takeaways and future directions

Based on the detailed literature review it can be implied 
that Industry 4.0 and 5.0 technologies can be categorized 
into three: core technologies, supporting technologies, and 
beneficial technologies. The technologies such as IoT, IoE, 
AIoT, AI, cognitive computing, automation, and robotics 
can be classified as the core technologies or the foundation 
technologies around which the next industrial revolution 
was built. The technologies such as cloud computing, edge 
computing, big data, blockchain, 6G, and cyber security 
can be classified as the supporting technologies which pro-
vide critical infrastructure for the functioning of core tech-
nologies. Cyber-physical systems, additive manufacturing, 
cobots, digital twins, smart sensors, and extended reality are 
a few of the beneficial technologies that rely on the core 
and supporting technologies for their functionality and gain 
benefits from them.

The technologies discussed under Industry 5.0 enablers 
may look like a minor improvement or an upgraded version 
of Industry 4.0 technologies. Although it is partially true, a 
closer look at each of the technologies would reveal their 
strong focus on the inclusion of humans, environmental, 
and social conscientiousness. ESG (Environmental, Social, 
and Governance) and Sustainability are the two other 
buzzwords of the decade that industries are trying to adapt 
[223]. Going by the dictionary definition although they are 
different, ESG is an evolution of sustainability. In simple 
terms both can be together called “doing good to the envi-
ronment and society”, and in terms of doing good to the 
society, it doesn’t get bigger than the inclusion of humans. 
From a survey conducted at various manufacturing indus-
tries, Brozzi et al. [224] have concluded that the focus of 
industries is more on economic sustainability while social 
and environmental sustainability are often ignored which 
reemphasizes the need to adopt Industry 5.0 technologies. 
Literature also shows that there are no studies that have 

case if the usage of plastics is banned altogether. Any such 
drastic efforts can increase inflation, create inequality, and 
trigger disruptions in society. Social sustainability is another 
important but often ignored factor. Studies have also shown 
that the work environment has a significant impact on the 
personal welfare of the workers which in turn has an influ-
ence on social wellness. Focusing on the human aspects such 
as ensuring the well-being of workers, work-life balance, 
healthy workplace, and providing suitable employee assis-
tance can boost productivity, product quality, and efficiency 
[221]. Hence, a balance between economic growth, environ-
mental degradation, and social wellbeing is required.

However, this problem can be addressed to some extent 
by using next-gen Industry 5.0 technologies such as AIoT, 
edge computing, and smart sensors which can filter the 
unwanted data at the machine level itself and send only the 
minimum required data to the subsequent stage for process-
ing and making decisions which can provide significant 
benefits in terms of processing power and energy require-
ments. For instance, while the aim of automation and indus-
trial robots is to eliminate humans from the shop floor, the 
intention of cobots is to work in collaboration with humans. 
In addition to their agility and adaptability to the changing 
shop floor requirements, the processing power and energy 
required to operate them are comparatively minimal due to 
their size which makes them environment friendly. Simi-
larly, while digital sensors are capable of only collecting the 
process data from machines, the smart sensors can indepen-
dently perform data collection, data conversion, data pro-
cessing, and establish communication to an external system 
such as a cloud server which can save an enormous amount 
of processing time, money, and energy consumption which 
supports environmental sustainability. AI and its associ-
ated technologies can help develop alternative eco-friendly 
materials to plastics. Nevertheless, once these technologies 
evolve and mature over the years, achieving all the three 
key sustainability pillars simultaneously is possible in the 
future. Few authors also argue that following lean manu-
facturing practices such as Just-in-Time (JIT), Total Quality 
Management (TQM), Total Preventive Maintenance (TPM), 
and Human Resource Management (HRM) can help indus-
tries to address a wide range of sustainability issues [222].

Although some of these next-gen technologies are 
already used by a few industries, the real benefits can be 
obtained only when all the technologies are used together. 
For instance, big data without AI or ML is just a digital 
waste. Hence, the businesses that want to improve economic 
sustainability must have a strategy to address the job loss 
to low- and medium-skilled labor. Employee training such 
as reskilling and upskilling programs, university collabora-
tions to facilitate new learning, development of interdis-
ciplinary competencies, and novel training strategies (like 
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The industrial revolutions are all about making prod-
ucts in a better way to meet consumer demand. However, 
some scholars have combined all the latest advancements 
in other fields such as bionics, synthetic biotechnology, 
genetic engineering, quantum computing, nanotechnology, 
smart self-healing materials, and Brain-computer interfaces 
as a few technology enablers of industry 5.0 [225–228]. 
Although these are some of the important technological 
innovations in their respective fields that use one or more 
digital technologies such as AI, their immediate application 
in an industrial environment is questionable. However, until 
a few decades ago even electronics and computers were 
considered naïve to production and manufacturing, but their 
union with machines has really kick-started the new indus-
trial revolutions. Nevertheless, the new-age Industry 5.0 
technologies can bring back the lost collaboration between 
humans, machines, and software systems and make the shop 
floor a sustainable place to work and the world a sustainable 
place to live. After all, we have only one place to live, and it 
means the world to us.

8  Conclusion

If the industry experts are to be believed the world is already 
in the midst of the fourth industrial revolution in which a 
myriad of disruptive digital technologies are married to 
various industrial machines and processes to collect data 
and establish a channel of communication between them 
to deliver products at a lower cost. The integration of the 
various intelligent machines and processes of an industrial 
unit with the help of new-age digital and computing tech-
nologies creates an eco-system that is connected, smart and 
agile. Besides, the entire supply chain is controlled, stream-
lined, and automated to collect, monitor, and optimize real-
time data to enable high efficiency right from procuring raw 
materials till the product is delivered to the customers.

If Industry 3.0 was predominantly driven by computer-
ization, then Industry 4.0 is driven by marrying digital tech-
nologies with physical systems that make them smarter and 
work independently without human intervention. However, 
from the discussion, it can also be implied that Industry 4.0 
has focused on improving profits by concentrating solely on 
product quality and process efficiency using different digital 
technologies. But it has widely ignored the need for human 
intelligence and failed to acknowledge the impact of digi-
tal technologies on the environment and society. Like the 
previous industrial revolutions, the technologies of Industry 
4.0 also have the destructive potential to promote automa-
tion and alienate humans from the factory shopfloor which 
could result in job loss and create inequality and imbalance 
in society. Hence the need to either give the technologies 

evaluated the impact of these technologies on social sus-
tainability which must be a focus for future investigations. 
Hence, replacing industrial robots with cobots and adopting 
technologies such as IoE, AIoT, edge and fog computing, 
smart sensors, digital twins, 6G and beyond, and extended 
reality which either support the inclusion of humans or are 
highly environment conscious must be considered. A recent 
study has reported that although blockchain technology has 
numerous benefits in the way how transactions are handled, 
extending the network across all the supply chain partners 
would be expensive, consume more energy, and require 
enormous networking and computational power. The study 
has also recommended that reducing the size of the block-
chain, block size optimization, and a lightweight blockchain 
to reduce transaction latency and computing power are the 
potential area for future research which can make the tech-
nology sustainable [5]. Hence, apart from performance 
aspects, optimizing and upgrading the existing technologies 
and inventing new technologies to consciously give impor-
tance to all the three sustainability pillars must be the future 
direction of scholars.

With more than two-thirds of the manufacturing indus-
tries yet to embrace Industry 4.0 and the onset of the COVID 
19 pandemic further delaying it, there are possibilities that 
industries can directly leap into Industry 5.0 technologies. 
In addition, return on investment, security, privacy, scalabil-
ity, regulatory compliances, and non-availability of skilled 
workers are a few other challenges to the implementation 
and adaptation of the technologies. So, industries could 
slowly start embracing one or the other key technologies 
that are critical to improving their process and may skip the 
others. The comparison of the evolution of Industry 4.0 into 
Industry 5.0 technologies is shown in Table 6.

Table 6  A brief comparison of Industry 4.0 and Industry 5.0 technolo-
gies
S# Industry 4.0 technologies Industry 5.0 technologies
1 Mass customization Mass personalization
2 Highly automated autono-

mous systems
Individualized human-machine 
interactions

3 Automation and Industrial 
robots

Intelligent automation, Collab-
orative robots

4 Artificial intelligence, 
Machine learning

Cognitive computing

5 Internet of Things (IoT), 
Industrial Internet of 
Things (IIoT)

Internet of Everything (IoE), 
Artificial Intelligence of Things 
(AIoT)

6 Cloud computing Edge computing, Fog computing
7 Simulations Digital twins
8 Centralized traditional 

databases
Decentralized blockchain

9 LAN, Internet Ultra-low latency high speed 
internet

10 Virtual reality Extended reality (AR, MR, 
Holography) and Metaverse
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