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Abstract
Dimensional accuracy of fabricated parts made through material extrusion process is an important parameter to decide the
part’s quality. Since a 3Dmodel part is produced in layered form, the deposited layers are subjected to heat for multiple times.
Also, deposited layers form bonds with adjacent layers and roads. It leads to shrinkage and distortion in fabricated parts.
Process variables are also significant parameters to decide the final part dimension. Accuracy of the parts can be improved if the
dimensions are predicted in an earlier stage. So, for the prediction of accurate result various mathematical models have been
formulated by the researchers. Use of soft computing techniques can be one method which may also be used for prediction.
Since the experiments are performed at various combination of process variables. RSM uses different mathematical models
for each set of experiment, but ANN can be use at same parameters. Thus, in this paper ANN model is compared with the
developed models of the selected existing literatures. Also, these models are used to find and compare the effect of process
variables on dimensional accuracy. The results show that ANN model predicts the results with very less error in comparison
of existing models.
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1 Introduction1

Nowadays, material extrusion additive manufacturing2

(MEAM) is one of the most used techniques utilized for pro-3

totyping, rapid tooling and inhouse fabrication. The MEAM4

process can be divided into three types: first is fused filament5

fabrication, second is screw based pellets extrusion (SBPE)6

and last is plunger-based extrusion process. In these types of7

MEAM process, FFF and SBPE are most commonly used8

techniques [1, 2]. Figure 1 (a and b) shows the schematic of9

FFFandSBPEmethods.MEAMtechniques are used to fabri-10

cate 3D parts by depositing materials layer-by-layer. Mostly,11

thermoplastic polymers are used as filaments and pellets to12

produce 3D parts [3].13

One of the important quality characteristics in the printed14

objects using FFF and SBPE is dimensional accuracy.15

Dimensional accuracy must be studied in FFF and SBPE16

processes to produce accurate individual parts’ dimensions.17
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Since a product consists of several parts which are assem- 18

bled in the last stage of product finishing. The assembly of 19

the parts needs accurate dimensions because if the fabricated 20

individual parts do not meet specifications, then the prob- 21

lems in assembly may arise. Volumetric or dimensional error 22

is a well-known error in produced parts using MEAMmeth- 23

ods. Surface roughness is also a major drawback of MEAM 24

methods. 25

Various researchers have worked on the improvement 26

of dimensional accuracy of parts fabricated using MEAM 27

processes by considering different process parameters and 28

optimizationmethods. Also, various authors have studied the 29

effects process variables on the dimensional accuracy of the 30

parts. Very few of them used soft computing techniques to 31

predict the results. Some related works are presented in the 32

next section. 33

Budzik et al. [5] discussed the strategies for quality 34

enhancement of additively manufactured parts using poly- 35

mer form materials. On the basis of the state of the process, 36

quality control process is categories in three levels namely 37

quality control during data generation, quality control dur- 38

ing manufacturing, quality control during post processing. In 39

this study visual prototype assessment technique was used in 40
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Fig. 1 Schematic of (a) fused
filament fabrication
(b) screw-based pellets extrusion
[4]

Fig. 2 Variation of stress concentration at different raster patterns

quality control and it was found that the MEM method was41

less accurate among other processes like FDM, polyjet, DLP,42

etc. methods. Chen et al. [6] proposed a low-cost approach to43

characterize the rheological properties in AM. In this study44

melt flow behavior of polymers and pressure drop in noz-45

zle was computed. Nieto et al. [7] presented a case study46

to develop a prototype of a large format pellet-based AM47

system to extrude the polymers for industrial use. The poly-48

mers PLA and ABS were selected to extrude and fabricate49

layered parts. Masood et al. [8] formulated a mathematical50

model that can be suitable to compute the volumetric error 51

for any build orientation. This model was applied to vari- 52

ous shapes (like cylinder, cube, pyramid, and sphere) and the 53

calculated error of these shapeswas comparedwith the exper- 54

imental results. The accuracy of the developed model was 55

significant, and the authors concluded that this mathematical 56

model can be further extended to calculate the volumetric 57

error of complex shapes. Garg et al. [9] analyzed the effect 58

of build orientation on the dimensional accuracy and surface 59

roughness of parts printed using FDM process. The printed 60
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Fig. 3 Practical use of AM in
medical and aerospace sectors
[14, 15]

Fig. 4 Test Specimens [17]

parts are also post processed by using cold vapor treatment to61

enhance the surface finish and dimensional accuracy. Thaisa62

et al. [10] presented a review study on the use of AM in dental63

implants. Custom implants like dental implants need micro-64

scopic resolution and sufficient bone height and thickness.65

So, in the individualized implants AM has significant poten-66

tial to replace older processes if the parts made using AM67

processes reach up to desired surface finish and dimensional68

accuracy. Perez et al. [11] studied the surface roughness and69

dimensional accuracy of FFF fabricated parts. It was found70

that at lower layer height good surface finish can be achieved71

but this increases fabrication time. Zhang and Chou [12]72

investigated the heat and mass transfer phenomena in the73

FDM process. Figure 2 shows that the effect of the various74

tool path on the stress concentration directions. In this study75

simulation was performed at various tool path strategies. It76

was found that principal stress generated due to heat accumu-77

lated at the location of starting point of deposition. At the 90°78

raster angle bead is deposited along the length. So, long rater 79

patter is obtained which generated the stress concentration at 80

the adjacent previous layer. Since the stress is concentrated 81

at a specific location this can generates the bending and dis- 82

tortion in the parts. 83

As the material extrusion AM processes are being rapidly 84

used for prototyping and producing medical models. In such 85

applications a very high order of dimensional accuracy is 86

being needed [13]. Figure 3 shows an example of the various 87

practical use where a very high accuracy of the parts is nec- 88

essary. The dimensional accuracy of the produced models 89

varies for different materials and processes, or technologies 90

used. The accuracy can be enhanced if it is estimated at the 91

earlier stage. 92

In this work, a unique method using an ANN modelling 93

is developed for the prediction of dimensional accuracy 94

of the parts printed using extrusion based additive man- 95

ufacturing process. The ANN methodology provides the 96

modelling of complex relationships, spatially non-linear acti- 97

vation functions that can be investigatedwithout complicated 98

expressions. Due to flexibility with the number of experi- 99

mental data, ANN makes it possible to use more familiar 100

experimental designs. Also, ANN models may have better 101

prediction power then regression models. So, the purpose of 102

this work is to predict the accuracy of printed parts by using 103

a soft computing technique (artificial neural network). Also, 104

the mathematical models used by the authors in their litera- 105

ture are compared with the ANN models for the prediction 106

of accuracy of printed parts. Thus, this research shows an 107

integrated approach for part design and manufacturing with 108

the involvement of ANN based computing technique for the 109

modelling and predictive analysis of dimensional accuracy 110

for additively manufactured discrete artefacts. 111

This paper is organized as follows: Sect. 2 introduces 112

some needful information part design and measurement of 113

dimensional accuracy. Section 3 represents the DoE based 114
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Table 1 Process variables and
their level used by various
authors

Literature Process Variables Levels

Mohamed et al. [16] Layer height 0.254; 0.178; 0.127

Orientation 30; 15;0

Raster angle 60; 30, 0

Raster width 0.5064; 0.4564; 0.4064

Air gap 0.008; 0.004; 0

Vyavahare et al. [17] Barrel temperature 100, 110, 120

Bed temperature 30, 40, 50

Build orientation 0, 45, 90

Raster angle 0, 45, 90

No. of Contours 1, 2, 3

Jung et al. [18] Outlet Size 50, 57.32, 75, 93.68, 100

Hopper angle 30, 37.32, 55, 72.68, 80

mathematical modelling. Section 4 proposes the ANN archi-115

tecture and modelling. Section 5 discusses the comparison116

of developed model with existing models, and conclusions117

are made in Sect. 6.118

2 Part design andmeasurement119

of dimensional accuracy120

In the literature, various techniques have been used by the121

researcher for the measurement of the dimensional accu-122

racy or percentage error in dimensions of FFF and SBME123

manufactured parts. Researchers have adopted the various124

test specimens as per their CAD modelling packages and at125

the basis of precision of the 3D printer. The CAD model126

and the fabricated parts are shown in the Fig. 4. Mohamed127

et al. [16] followed the Eq. 1, Vyavahare et al. [17] followed128

Eq. 2 to measure the percentage difference of fabricated129

test specimens. In the Eq. 1, �D is the percentage differ-130

ence in diameter, DEXP, and DCAD are the dimeter of parts131

fabricated and CAD model file. Jung et al. [18] measured132

the discharge time. To measure the dimension of the parts133

Mohamed et al. [16] used Mitutoyo Precision Micrometer134

(precision of 0.01mm), Vyavahare et al. [17] used the caliper135

(gauging range of 0 mm–150 mm and precision of 0.01 mm)136

and Jung et al. [18] used a high-speed camera with time137

stamping records to measure the discharge time.138

�D �
∣
∣
∣
∣
∣

DEXP − DCAD
DEXP+DCAD

2

∣
∣
∣
∣
∣
× 100 (1)139

�L(%)140

� Length of C AD model − Length of f abricated model

Length of C AD model
141

× 100 (2)142

3 DOE basedmathematical modelling 143

Mathematical modelling is the best tool to formulate the
relationship between process parameters and the output vari-
ables. The response surface methodology (RSM) is one of
such as tool that is useful to formulate an analytical model
for the targeted output variables. In this work dimensional
accuracy (percentage change in various dimensions) and dis-
charge time were selected as the output variables based on
the available literatures. Equation 3 shows a generalized full
quadratic response surface model used to obtain mathemati-
cal relation [16]–[18].

(3)

y � β0 +
∑k

i�1
βi Xi +

∑k

i�1
βi i Xi Xi

+
∑

i< j

∑

βi j Xi X j + ε

where y: output function; Xi, Xj: independent variables; β0: 144

regression constants for intercept; β i: regression constants 145

for linear term;β ii, andβ ij: regression constants for quadratic 146

term. 147

Researchers can select any of the DOE techniques as per 148

their need and suitability, out of various techniques available 149

in the literature. Box-Behnken, Taguchi orthogonal array, 150

central composite design etc. are the generally used DOE 151

methods. Mohamed et al. [16] used IV-optimal RSM design, 152

Vyavahare et al. [17] implemented the central composite 153

design (CCD) and Jung et al. [18] implemented central com- 154

posite rotatable design (CCRD) to perform the experiments. 155

Table 1 shows parameters level used by various authors for 156

evaluating the effects on dimensional accuracy of the fabri- 157

cated parts. 158

For the description of process parameters and dimen-
sional accuracy, a mathematical relationship between them
is required. By formulating an approximate expression, in
the fitness problem the response surface methodology has
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been used in place of controllable factors. Mohamed et al.
[16], Vyavahare et al. [17] and Jung et al. [18] applied the
least square method for generating the functional expres-
sion. The generated functional expressions are shown in
Eqs. (2–9). Many authors also evaluate the significance of
process parameters and formulated expressions, using the
analysis of variance. The ANOVA test is mostly performed
using the software such as MINITAB, STATISTICA and
Design Expert [16, 17]. The process parameters and expres-
sions are assumed to be significant if the low probability
(P-value) is lower than 0.05.

�D (%) � −9.52 − 28.18 × layer thickness − 0.735

× airgap − 0.003274 × raster angle

+ 0.00376 × orientation + 51.4

× raster width − 0.0511 × No. of contours

− 6.675 × layer thickness × air gap

+ 0.03629 × layer thickness

× orientation + 17.39 × layer thickness

× road width + 0.3804 × layer thickness

× no. of contours − 0.01486 × airgap

× raster angle − 0.01405 × airgap

× orintation − 3.4 × 10−5 × raster angle

× orientation + 58.04 × layer thickness2

+ 4.861 × airgap2 − 5.9 × 10−5

× orientation2 − 53.2 × no. of contours2

(4)

�Length � 115.77 − 58.1 × Layer thickness + 0.051

× Print speed + 0.029 × Build orientation

+ 23.2 × wall thickness − 1.029

× Extrusion temperature + 0.016

× Layer thickness × Print speed − 0.019

× Layer thickness × Build orientation

−1.99 × Layer thickness × wall thickness

+ 0.068 × Layer thickness

× Extrusion temperature + 0.00002

× Print speed × Build orientation

+ 0.013 × Print speed × wall thickness

− 0.0003 × Print speed

× Extrusion temperature − 0.011

× Build orientation × wall thickness

− 0.00004 × Build orientation

× Extrusion temperature − 0.005

× wall thickness × Extrusion temperature

+ 111.13× Layer thickness2

− 0.00002× Print speed2

− 0.00003× Build orientation2

− 9.54×wall thickness2

+ 0.0022× Extrusion temperature2

(5)

�width � 44.16 − 6.061 × Layerthickness + 0.021

× Printspeed + 0.004 × Buildorientation

+ 2.93 × wallthickness − 0.36

× Extrusiontemperature + 0.0019

× Layerthickness × Printspeed − 0.041

× Layerthickness × Buildorientation

− 0.46 × Layerthickness × wallthickness

+ 0.0013 × Layerthickness

× Extrusiontemperature + 1.85E − 06

× Printspeed × Buildorientation + 0.0012

× Printspeed × wallthickness − 0.00009

× Printspeed × Extrusiontemperature

− 0.001× Buildorientation × wallthickness

− 3.47E − 06 × Buildorientation

× Extrusiontemperature − 0.016

× wallthickness × Extrusiontemperature

− 8.2×Layerthickness2

− 0.00001×Printspeed2 − 4.7E

− 06×Buildorientation2

− 0.36×wallthickness2

+ 0.0007×Extrusiontemperature2

(6)

�Height � −141.06 −26.23 × Layer thickness + 0.12

× Print speed + 0.04 × Build orientation

− 31.27 × wall thickness + 1.3

× Extrusion temperature + 0.05

× Layer thickness × Print speed − 0.013

× Layer thickness × Build orientation

+ 0.26 × Layer thickness × wall thickness

+ 0.028 × Layer thickness

× Extrusion temperature + 0.00005

× Print speed × Build orientation

− 0.02 × Print speed × wall thickness

− 0.0003 × Print speed

× Extrusion temperature − 0.0075

× Build orientation × wall thickness

+ 0.00001 × Build orientation
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× Extrusion temperature

− 0.053 × wall thickness

× Extrusion temperature

+ 32.12× Layer thickness2

− 0.0004× Print speed2

− 0.0002× Build orientation2

+ 9.35×wall thickness2

− 0.0028× Extrusion temperature2

(7)

(�diameter )0.5 � −32.14 − 3.03 × Layer thickness

− 0.005 × Print speed + 0.012

× Build orientation + 1.9

× wall thickness + 0.27

× Extrusion temperature + 0.03

× Layer thickness × Print speed

− 0.007 × Layer thickness

× Build orientation − 0.89

× Layer thickness × wall thickness

+ 0.008 × Layer thickness

× Extrusion temperature

+ 0.00001 × Print speed

× Build orientation + 0.0009

× Print speed × wall thickness

+ 0.00009 × Print speed

× Extrusion temperature

+ 0.0007 × Build orientation

× wall thickness − 0.00004

× Build orientation

× Extrusion temperature

− 0.0334 × wall thickness

× Extrusion temperature

+ 4.41× Layer thickness2

− 0.0002× Print speed2

− 0.00002× Build orientation2

+ 2.8×wall thickness2

− 0.0005× Extrusion temperature2

(8)

(9)

ycase1 � 15.7781 − 0.2499 × outlet si ze − 0.0792

× hopper angle + 0.0008 × outlet si ze

× hopper angle + 0.0011× outlet si ze2

− 0.0001× hopper angle2

(10)

ycase2 � 20.1556 − 0.2499 × outlet si ze − 0.3163

× hopper angle − 0.1112 × outlet si ze

× hopper angle + 0.0013× outlet si ze2

− 0.0001× hopper angle2

(11)

ycase3 � 22.4699 − 0.3785 × outlet si ze − 0.1055

× hopper angle − 0.0013 × outlet si ze

× hopper angle + 0.0016× outlet si ze2

− 0.0002× hopper angle2

4 Artificial neural network (ANN) 159

Process time, surface integrity, strength, dimensional accu- 160

racy, etc. are the common responses in many of the manufac- 161

turing process. The controllable and uncontrollable process 162

parameters affect these responses [19]. Hence, to achieve 163

the desired response, the process parameters are required to 164

be required. To handle large amount of data generated from 165

process monitoring, failure mechanisms, and experimental 166

data necessitates the implementation of artificial intelligence 167

(AI). The Large data are better handled by ANN algorithms 168

[20][21]. 169

There are some basic terms in ANN, such as number of
layers, and various functions such as activation function and
loss function. A typical neural network contains mainly three
layers that are named as input layer, hidden layer, and out-
put layer. Out of these three layers, neurons from hidden can
only be altered. From the literature [23] it has been observed
that one hidden layer with 5–10 neurons shows a better per-
formance with lesser iteration time. The work of activation
function is to determine the transformation of weighted some
of inputs into an output through the nodes of the ANN net-
work. Binary step, linear, and non-linear are the main three
activation function. In these activation functions only, non-
linear functions can be used for backpropagation because the
derivative functions are related to the inputs. Further, non-
linear activation function can be classified into ten various
types. Most commonly used linear and non-linear activation
functions are tansig, logsig, and purelin. Tansig function is
also commonly known as hyperbolic tangent function. In tan-
sig function, the output is ‘Zero’ centered, hence it indicates
the output values to be highly negative, neutral, or highly
positive. Logsig (sigmoid) is also known as logistic activa-
tion function. Sigmoid function accepts any real number as
an input and output is in the range of 0 to 1. As the figure
shown in Table 2 corresponding to logsig, it can be observed
that this function returns one for larger number input and
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Table 2 Activation functions
used in ANN

Tansig Z(x) � 2
1+e−x − 1

Logsig Z(x) � 1
1+e−x

Purelin Z(x) � x

Fig. 5 Schematic of an ANN
architecture [22]

zero for smaller value inputs. It is mostly used for the mod-
els where probability prediction used as an output. Purelin
function is a type of linear activation function. A schematic
of the weighted sum in the neural network has been illus-
trated in Fig. 5. In the Eq. 10: ‘i’ is number of input (or
process variables), ‘j’ is no. of neurons in hidden layer, ‘k’ is
training cases, ‘g’ is the activation function, some frequently
used activation functions are given in Table 2, ‘w’ and ‘B’ is
weight assigned to each input neurons and bias respectively.

(12)Fjk � g
(∑

(w j i xik)+B j

)

In this study the optimumANNmodel has been generated170

by implementing a trial and error method for deciding the171

number of hidden layer neurons. Each ANN architecture is172

trained at least three times for to getminimumMSE andmax-173

imumRvalue. The developedmodel considered feed forward174

BPNN algorithm with the single hidden layer. As depicted 175

In the Fig. 6, a correlation has been formulated between the 176

experimental and predicted values has been developed for 177

three sets (i.e., training, validation, test). Figure 6 also shows 178

the overall performance of the optimal ANN structure. The 179

R value for response (i.e., percentage error in dimension) 180

for the literature Mohamed et al. [16] is 0.98072. The R 181

value for percentage error in length, width, diameter, and 182

height for the literature Vyavahare et al. [17] are 0.94918, 183

0.97395, 0.87413 and 0.90175 respectively. The R value for 184

response (i.e., discharge time for all cases) for the literature 185

are 0.99924, 0.99977 and 0.99758. 186
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Fig. 6 Linear regression analysis for experimental and estimation made using ANN for Mohamed et al. [16]

5 Accuracy prediction of existingmodels187

through ANN188

In general, several mathematical modelling techniques have189

been used for the material extrusion processes. Among these190

mathematical modelling RSM is commonly used for the191

prediction and to formulate an expression between process192

parameters and responses. The accuracy of the fitness model193

used by the authors is either not significant or prediction is194

not accurate. Nevertheless, new challenges have to be over-195

come when predicting the response at various combinations196

of process parameters. Thus, in this study, to find the con-197

sequence of the process variables on the response, first the198

developed model is used and later it is compared with the 199

ANN model. 200

In the paper (Mohamed et al. [16]), error percentage in 201

dimension was selected as a response by the authors. Higher 202

the error percentage in the dimension, higher will be error 203

in printed part with respect to 3D digital model. So, for get- 204

ting the accurate and less error in the part, response taken in 205

this paper should be minimum. The accuracy estimation for 206

the conducted experiments using ANN and RSM have been 207

illustrated in the Fig. 7. From the Fig. 7, it can be concluded 208

that the performance of both models is upright. 209

In this section, the effect of the process variables is 210

quantified based on the developed RSM and trained ANN 211
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Fig. 7 Comparison plot of RSM and ANN with experimental value

mathematical model. The effect of the considered process212

variables by the authors on the percentage difference in213

dimension are shown in Fig. 8 (a) to (f). It is observed from214

Fig. 8(a) and (f) that on increasing the layer thickness and215

no. of contours, as can be seen in RSM and ANN mod-216

els the increment in the error percentage also taking place.217

In the case of layer thickness, worst dimensional accuracy218

is obtained at higher layer thickness (i.e., at 0.3302 mm)219

because higher layer thickness develops voids and internal220

stress that leads to deformation, it can be observed from221

microscopic images (Fig. 9). As the air gap increases, there222

is a prominent increase in dimensional accuracy (Fig. 8e)223

because when the air gap is small, it restricts heat dissipation224

rate so that instability generates in the part and leads to per-225

manent deformation up to a certain level of air gap. At the226

smaller raster angles (upto 45°), a very little change in dimen-227

sional accuracy is obtained but further increase in the raster228

angle dimensional accuracy is enhanced because at larger229

raster angles shorter lengths of rasters and sharp corners will230

be deposited in internal part of the specimen. Increasing the231

angle of build direction, percentage error in dimension first232

decreases and then increases. At the 0° build orientation part233

is printed parallel to X-direction (i.e., along part’s length),234

thus long-long rasters are deposited which leads to deflection235

in the printed part, whereas in case of 90° build orientation,236

the shorter rasters are deposited which leads to non-uniform237

temperature distribution. On the basis of analysis of variation238

performed by the authors and Fig. 8 (a-f) it can be concluded239

that only layer thickness, raster angle air gap, and number of240

contours are significant factors while road width and build 241

orientation are insignificant factors. 242

For the validation of ANN model with the given model, 243

literature by Vyavahare et al. [17] is chosen. In the paper 244

Vyavahare et al. [17] dimensional accuracy of the outer 245

region (i.e., length, width, height, and thickness) as well as 246

inner region (i.e., diameter) of fabricated parts was investi- 247

gated. The CAD3Dmodel and the fabricated parts are shown 248

in Fig. 4. 249

The error in dimensions was calculated by using the Eq. 2. 250

Figure 10 shows the prediction plot for the percentage dimen- 251

sional error along length, diameter, width, and height. From 252

the Fig. 10 it can be extracted that the ANN model predicts 253

the response more accurately than the model used in the lit- 254

erature. The main effect plot for each response with respect 255

to considered process variables (layer height, printing speed, 256

roadwidth, build orientation, andprint temperature) is collec- 257

tively shown in the Fig. 11. To find the deviation in responses 258

at a single set of variables one experiment was repeated for 5 259

times. By repeating the experiments, there is 0.5%fluctuation 260

in the response is observed. So, if the process variable does 261

not change the responses more than the 0.5% then it is con- 262

sidered as a dead process variable. Figure 11 (a) to (d) show 263

the variation of the percentage error in length, width, diam- 264

eter, and height with process variables based on the existing 265

mathematicalmodelling equation and proposedANNmodel. 266

From the Fig. 11 (a-d) it can be observed that layer thickness 267

is a significant factor for all the responses. Print speed is 268

an insignificant factor for the percentage error along width, 269
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Fig. 8 Variation of percentage difference in dimension as per RSM and ANN model with respect to (a) Layer height, b road width, c raster angle,
d build orientation, e air gap and f no. of contours
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Fig. 9 Scanning electron microscopic images of various parts [16]

length, and diameter but it contributes significantly to dimen-270

sion alongheight.Orientation is not a significant factor for the271

dimension along length and width while it affects the dimen-272

sion along diameter and height. Wall thickness is the only273

parameter which has a significant effect on all the responses274

measured. Extrusion temperature is an insignificant factor275

for the percentage error along length, width but it can be276

considered as a significant factor for the percentage error277

along diameter and height. It is clear from the Fig. 11 that278

approximate estimation using RSM is quite same, but ANN279

prediction is much closer to experimental results.280

In the paper Jung et al. [18] discharge time is measured281

by varying the outlet size (i.e., nozzle diameter) and hopper282

angle. Three cases are considered for different pellet sizes. In283

the first case 100% pellets are of the size of 12 mm diameter,284

in the second of 50% pellets are of 12 mm in diameter and285

50% are 20 mm diameter and in the third case 100% pellets286

are of 20 mm diameters. Discharge time is an important fac-287

tor which affects dimensional accuracy. If discharge is lower288

or higher than the desired value, then the lack of flow or over-289

flow may occur which leads to instability in the dimensional290

accuracy. For the prediction of response (i.e., discharge time) 291

given mathematics is compared with the ANN. Figure 12 292

shows the prediction of the response for all three cases. From 293

the Fig. 12 it is clearly visible that ANN prediction is more 294

accurate than the RSM model prediction. The variation of 295

discharge time with respect to the size of outlet and hopper 296

angle, has been shown in Fig. 13. In each case as the values 297

of both process variables increases discharge time decreases 298

according to bothmodels. But the only difference in both pre- 299

diction models are the types of curves. In the case of RSM 300

prediction mostly responses vary linearly while in ANN pre- 301

diction responses vary in quadratic manner. The decrease 302

in the discharge time with the increase in hopper angle is 303

because pressure generation is lower at greater hopper angle. 304

Also, discharge time decreases with outlet size because as 305

the outlet size increases the area of the nozzle increases, so 306

that lesser velocity of flow (i.e., low flow rate) is obtained. 307
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Fig. 10 Comparison plot of RSM and ANN with experimental value

5.1 Root mean square error (RMSE)308

RMSE provides data on short-term efficiency, which is309

defined as the difference between actual and predicted val-310

ues. The lower the RMSE, the more precise the assessment.311

The RMSE value for the performed analysis is calculated312

using Eq. 13 [24].313

RMSE �
√
√
√
√

1

N

N
∑

i�1

((

Xactual
i − X predicted

i

)2
)

(13)314

The lesser average RMSE for the developed ANN indi-315

cates that it has better performance than the models available316

in the literature. As shown in Fig. 14, the implemented ANN317

network can predict a lower average error value of 0.49, under318

the conditions such as materials, machines and processing319

conditions. While the average error estimated by existing320

models is higher even in the literature. These models are321

only useful for a limited set of process parameters, materials,

and machines. Above discussion validate that the developed 322

ANN model can estimate accurate results under random sit- 323

uations, which also ensure the robustness of the developed 324

model. 325

6 Conclusion and future scope 326

Part dimensional accuracy in the extrusion-based AM pro- 327

cesses is the one of the major factors to decide part quality. 328

To enhance the dimensional accuracy of the components 329

fabricated by fused filament fabrication and screw-based 330

pellet extrusion processes, mathematical modelling of the 331

percentage difference on the dimension is applied. Previ- 332

ously available empiricalmodelling is not sufficient to predict 333

dimensional accuracy. Therefore, in this study the experi- 334

mental data has been extracted from the existing literature 335

and ANN techniques is implemented on it. Following out- 336

comes is obtained from the presented study. 337

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) 17:869–885 881

Fig. 11 Effect of process variables (a) on diemnsional percentage error in length (b) on dimensional error percentage in width (c) dimesnional error
percentage in diameter (d) on percentage difference in height
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Fig. 12 Comparison plot of RSM and ANN with experimental value
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Fig. 13 Effect of process variables on discharge time
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Fig. 14 Comparision plot of
RMSE for the RSM and ANN

• The ANN estimation accuracy is dependent on the ANN338

variables, therefore, to ensure better performance, the for-339

mulated model has been trained several times.340

• The precision in most of the experiments is about 0.5% of341

average value. Thus, only that parameter is needed to be342

studied which changes the dimension greater or lower than343

the value obtained at the previous level of that parameter.344

• The sum of RMSE for RSM and ANN model is 2.27345

and 1.54 respectively. So, the estimation of ANN is more346

acceptable than the existing used model.347

• Although ANN is time taking technique, hence it should348

be used for large data set and more accuracy. The pre-349

sented study states that RSM and ANN are suitable for350

optimization of MEAM process. It is also helpful to elim-351

inate complications and a large number of experimental352

trials.353

Despite improving the proposed model’s dimensional354

accuracy, future directions of this work could include inves-355

tigating the tensile behavior, compression behavior, buckling356

behavior, and failure mechanism of material extrusion addi-357

tive manufactured thermoplastic polymer parts using finite358

element analysis.359
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