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Abstract
In the present article, an exact solution has been given to investigate the influence of porosity inclusion, boundary conditions,
and volume fraction index on the vibration response of functionally graded material (FGM) plates using the dynamic stiffness
method (DSM). Thematerial properties of FGMare continuously changing along the thickness direction of plates according to
the power lawwith even porosity inclusion. Classical plate theory (CPT) along with the concept of a physical neutral surface is
employed to develop the governing differential equation of motion by using Hamilton’s principle. The levy type (closed form)
solution is used to develop the dynamic stiffness matrix. The Wittrick-Williams algorithm has been employed to compute the
exact natural frequency of the FGM plates with porosity inclusion. The efficacy and authenticity of the present formulation
have been ascertained by comparing the present results with those of the literature. A comprehensive parametric study has
been performed to compute the influence of various geometric and boundary configurations on the vibration response of the
FGM plates.

Keywords Classical plate theory · Dynamic stiffness method · Functionally graded material plates · Porosity inclusion ·
Vibration response

1 Introduction

High-performance, microscopically inhomogeneous func-
tionally graded materials (FGMs) have tailored composition
and structural gradientswith specified attributes in the chosen
orientation. The FGM is created by progressively changing
the composition of two materials, such as metal-ceramic. In
contrast to traditional composite materials, the continuous
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and smooth fluctuation of the volume fractions of the two or
more constituent materials in FGM eliminates the debonding
between the interfaces under high loading situations.Because
of these potential benefits, FGM is used for various applica-
tions such as aerospace, nuclear, civil, automotive, medical
and construction [1–3]

Many researchers have studied the influence of var-
ious geometric parameters and boundary conditions on
FGM plates for flexural and vibration responses[4, 5]. In
this context, Gupta and Talha [6] examined the vibration
and bending response of functionally graded plates using
non-polynomial-based higher-order shear and normal defor-
mation theory. Singh and Gupta [7] reported the influence
of various cutouts and geometrical imperfections using sine
and global type imperfection on the vibration response for
the FGM sandwich plate using the finite element method
(FEM)appoach.The authors explained the trendof frequency
parameters for various parameters such as geometric imper-
fection, boundary condition, andvolume fraction index. Zhao
et al. [8] performed a study based on FEM on the porous
rectangular plate using improved Fourier series using first
order shear deformation theory (FSDT) for a different poros-
ity model. According to a thorough study of the literature,
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a significant amount of research on strcutural response of
FGM strucutres have been carried out based on approximate
and closed-form solution. Most of the work reported in the
literature comprises the perfect plates (without porosity and
voids). However, porosities or micro voids are inevitable in
FGM which comes within the structures during the manu-
facturing process [9, 10]. The strength of the FGM plates
is reduced due to porosity and voids [11].Therefore, it is
required to include porosity inclusion effect while analyz-
ing the vibration characteristics of FGM plates. Thus, in the
present work, dynamic stiffness method (DSM) is imple-
mented to characterize the exact frequency response of
porous FGM plates based on CPT in conjunction with phys-
ical neutral surface (PNS).

The dynamic stiffness method (DSM) [12] provides the
exact, effective and reliable solutions to the different struc-
tural analysis. The DSM is the semi analytical method and
this method has some resemblances with the finite element
method (FEM) in certain aspect. The assembly procedure
is the same for DSM and FEM. However, the fundamen-
tal distinction between them is the discretization approach.
Different stiffness and mass matrices are created by dis-
cretizing a structural element based on its assumed shape
functions in the case of FEM. In DSM, a single-element
matrix comprising both stiffness and mass properties is
generated by employing proper frequency-dependent form
functions derived from the governing differential equation
of the structural element undergoing free vibration. DSM
solutions are exact since they are based on the analytical
formulation of the governing differential equations. Some
important literature related to DSM for plate vibration anal-
ysis is discussed in the next paragraph.

In the early 1970s, Wittrick and Williams [13] published
the first study on the implementation of DSM to investi-
gate the vibration and buckling of isotropic and anisotropic
plates. Then after, many authors establishes the dynamic
stiffness matrices and providing their view to researchers
interested in structural analysis, But no one have discussed
the general systematic approach. Thus, in the year of 1997,
Boscolo and Banerjee [14] proposed a generic approach to
create dynamic stiffness matrices for structural components.
The authors also demonstrated that processing time might be
saved using DSM analytical expressions instead of numeri-
cal approaches. Banerjee and co-authors [15–17] extensively
employed the dynamic stiffness formulation in the vibration
analysis of isotropic, orthotropic, or laminated plates using
various plate theories and for varied set of boundary condi-
tions. The authors [18, 19] developed the dynamic stiffness
technique, which they applied to successfully forecast the
frequency response of composite plates and plate assemblies
based on several plate theories for a range of combinations of
edge circumstances, in a few research publications. Recently,
Kumar and Jana [20–22] applied the DSM technique for the

Table 1 Material properties of Al and ZrO2 [23]

Material Young’s
modulus (E)

Poisson Ratio
(v)

Density (ρ)

Metal (Al) 68.9 GPa 0.33 2700 kg/m3

Ceramic
(ZrO2)

211 GPa 0.33 4500 kg/m3

vibration analysis of uniform and stepped FGM plates based
on CPT theory with consideration of PNS.

The DSM is regarded as a reliable and efficient approach
that may be used instead of the more popular finite element
method (FEM). It is already demonstrated by various authors
that processing time might be saved using DSM analytical
expressions instead of numerical approaches. In their stud-
ies, many researchers have used DSM for free vibrations
for isotropic and composite plates under various bound-
ary conditions. The present work examines the influence
of porosity in functionally graded materials using the DSM
technique. The equilibrium equation is derived using Hamil-
ton’s principle, whereas the governing equation is developed
using CPT based displacement assumptions along with the
concept of physical neutral surface. The present methodol-
ogy has been validated with the literature for its accuracy.
The non-dimensional frequency parameter (NDFP) has been
examined for the even porosity, with different volume frac-
tion indexes and boundary conditions i.e., SSSS, SCSC, and
SSSC. The effect of the porosity on the higher mode is also
discussed.

2 Material andmethodology

2.1 Geometrical configuration

The side-to-side (a/b) and side-to-height (a/h) ratios of the
plate are assumed to be 1 and 0.001, respectively. The coor-
dinate system and plate represented in Fig. 2 are used for the
mathematical formulation.

2.2 Material properties

The Al-ZrO2 metal-ceramic FGM used in this work has the
parameters listed in Table 1. The variation in the material
properties of the plate, particularly density (ρ) and Young’s
modulus (E) is given as illustrated in Eq. 1. Figure 1 depicts
Young’s modulus and the (z/h) ratio for various volume frac-
tion index (k) and porosity volume fraction index (e).
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Fig. 1 Material properties variation with height for different k and e val-
ues

2.3 Effectivematerial property

The FGM is created by continually changing the constituents
of multiphase materials according to a specified gradation
law. The modified power law [24] has been employed in
the current work to evaluate the effective properties (p(z))
generally young modulus and density of the FGM plate as
shown in Eq. (1).

p(z) � (pc − pm)(z/h + 1/2)k + pm − (e/2)(pc + pm) (1)

where (pc) is the ceramic properties, (pm) is the metal prop-
erties, and (e) is the volume fraction. e signifies the amount
of porosity present in the material, generally, the value of e
lies between 0 to 0.4, 0 depicting no porosity or perfect plate
and 0.4 representing maximum porosity in the material.

2.4 Displacement field

The displacement field assumption based on classical plate
theory (CPT) of porous FGM plate is as follows [25].

u(x , y, z) � u0(x , y) − z
dw

dx

v(x , y, z) � v0(x , y) − z
dw

dy
(2)

w(x , y, z) � w0(x , y)

FGM plates are non-homogeneous, so their physical neu-
tral surface does not coincide with the geometrical neutral
surface [20]. The coordinate system with a physical neutral
surface (zns � z-z0) is introduced, where z0 is the distance
between natural and geometrical neutral surfaces, as shown
in Fig. 2. The reference plane is defined by (zns), which will

Fig. 2 FGM plate with the physical and geometric middle surface [20]

neglect the effect of the in-plane displacement components.
The modified equation of the CPT can be written as follows.

u(x , y, z) � zns
dw

dx
� −(z − z0)

dw

dx

v(x , y, z) � zns
dw

dy
� −(z − z0)

dw

dy
(3)

w(x , y, z) � w0(x , y)

The strain field can be calculated using the following equa-
tions.

εi i � −zns

(
d2w

dx2

)
, ε j j � −zns

(
d2w

dy2

)
, γi j � −2zns

(
d2w

dxdy

)
(4)

In the above equation the εi i ,ε j j Represent normal strain
in x and y directions and γxy Represent shear strain in the xy
plane. The stress–strain relation can be developed using the
generalized hooks law, as shown in Eq. 5.

⎡
⎢⎣ σi i

σ j j

τi j

⎤
⎥⎦ �

⎡
⎢⎣q11 q12 0
q21 q22 0
0 0 q16

⎤
⎥⎦

⎡
⎢⎣ εi i

ε j j

γi j

⎤
⎥⎦ (5)

where σi i and σ j j are the normal stress and τxy is shear stress
that is related to strain using constitutive law. The element
of the material constituents is evaluated using the following
equations.

(6)

q11 � q22 � E(zns)/(1 − μ2) , q12 � q21

� μE(zns)/(1 − μ2), q66 � μE(zns)/(1 + μ)

As illustrated in Eq. 13, the neutral surface (z0) is obtained
by equating the summation of forces at the cross section for
Fx or Fy to zero.

∑
Fx �

∫ h
2 −z0

−h
2 −z0

σxxd A � 0 (7)
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z0 �
∫ h

2

− h
2
E(z)zdz

∫ h
2

− h
2
E(z)dz

(8)

� hk(Ec − Em)

2(k + 2)
� hk(Erat − 1)

2(k + 2)(Erat + k)
(9)

The value of the non-dimensional (z0/h) depends on
both volume fraction (k) and young’s modulus ratio Erat �
Ec/Em .

u0 and v0 indicate the plane’s displacement, while w0

represents the plate’s displacement in the transverse direction
as shown inEq. 3. The plates’ governingEq. 10 are developed
using Hamilton’s principle, as stated in [26].

(10)

Deq

(
∂4w0

dx4
+ 2

∂4w0

dx2dy2
+

∂4w0

dx4

)

+ I0

(
∂2w0

dt2

)
− I2

(
∂4w0

dx2dt2
+

∂2w0

dy2dt2

)
� 0

The shear force and bending moment can be expressed in
the form of a differential equation with only one variable,
that is w0 as given below

Vx � −Deq

(
∂3w0

dx3
+ (2 − v)

(
∂3w0

dxdy2

)
+ I2

(
∂3w

dxdt2

))
δw

(11)

Mxx � −Deq

(
∂2w0

dx2
+ v

∂2w0

dy2

)
ϕy (12)

w0 is chosen in such away that it can satisfy the Levy-type
boundary condition [27]

w0(x , y, t) �
m�∞∑
m�1

wm(x)e
iωt sin(αm y) (13)

where ω is the angular frequency, wm maximum
amplitude,∝m � mπ/L and m � 1,2…………∞

The roots of the constructed differential Eq. 10 represent
the natural frequency. Depending on the value of ∝m . There
are two alternative solutions. [20]. The dynamic stiffness
(DS) matrix formulation for case 1 is illustrated below. For
case 2, the equation can be derived in the same way as it is
for case 1.

Case 1
(
αm − I2ω2

Deq

)
≥

√(
( I2ω2

Deq
)2 +

(
I0ω2

Deq

))

r1m � ±
√√√√(

αm − I2ω2

Deq

)
+

((
I2ω2

Deq

)2

+

(
I0ω2

Deq

))
,

r2m � ±
√√√√(

αm − I2ω2

Deq

)
−

((
I2ω2

Deq

)2

+

(
I0ω2

Deq

))

(14)

(15)

wm(x) � Am cosh(r1mx) + Bm sinh(r1mx)

+ Cm cosh(r2mx) + Dm sinh(r2mx)

The boundary condition for displacement and rotation is
imposed on the plates. [20]

x � 0, wm � wa , ϕym � ϕya ,

x � b, wm � wb, ϕym � ϕyb (16)

Similarly, force and moment at the boundaries of the plate
is

(17)

x � 0, Vxm � −va , Mxxm � −ma , x

� b, v xm � −vb , Mxxm � −mb

Appling boundary conditions for deflection and rotation
at a and b (where a and b are coordinates of the boundary
of the plate) are used to calculate the following matrices for
deflection and rotation. [20];

Fig. 3 Effect of side-to-height (a/h) and volume fraction on NDFP
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Fig. 4 NDFP vs. Frequency modes for SSSS boundary condition

⎡
⎢⎢⎢⎢⎣

wa

ϕyb

wb

ϕyb

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

1 0 1 0
0 −r1m 0 −r2m
ch1 Sh1 Ch2 Ch2

−r1mSh1 −r1mCh1 −r2mSh2 −r2mCh2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Am
Bm
Cm

Dm

⎤
⎥⎥⎥⎦ (18)

where Chi � cosh(ri b), Shi � sinh(ri b), Ci �
cos(rimb) and Si � sin(rimb) , i � 1, 2

The above matrix as shown in Eq. 18 can be represented
as

X � AC (19)

Similarly, Boscolo and Banerjee’s Eq. 20 depicts the shear
force and bendingmatrix, calculated using the boundary con-
ditions of the shear force and the bending moment in a and
b [15].

⎡
⎢⎢⎢⎢⎣

va

ma

vb

mb

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

1 0 1 0
L1 0 L1 0

−R1Sh1 −R1Ch1 −R2Ch2 −R2Ch2

−L1Ch1 −L1Sh1 −L2Ch2 −L2Sh2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Am

Bm

Cm

Dm

⎤
⎥⎥⎥⎦

(20)

where Ri � Dres(r3 − (2 − μ)α2rim) + rim I2ω2, Li �
Dres(r2 − μα2), i � 1, 2

The equation can be written as

F � SC (21)

DSM is calculated using the analogy of F �KX and com-
paring the equation from X � AC and F � SC. The DSM is
evaluated as shown in Eq. 22.

DSM � SA−1 (22)

Fig. 5 NDFP vs. Frequency modes for various boundary conditions
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Fig. 6 NDFP vs. Modes of vibration for various porosity and volume
fraction indexes for SSSS boundary condition

3 Result and discussion

3.1 Validation study

To verify the present formulation, a validation study has been
performed. The results obtained from the present methodol-
ogy have been compared with those of Uymaz and Aydogdu
[28]. The authors employed a 3D exact solution to determine
the natural frequency of the Al/ZrO2 (Aluminum-Zirconia)

FGM plate. The NDFP used is ((� )2 � (12(1−v2)ρmω2ab)
(π4Ech2)

)
reported in the graph. The comparative results have been

shown in Fig. 3 and are found to be in good agreement with
the literature.

3.2 Parametric study

The NDFP of functionally graded materials is investigated
using the dynamic stiffness technique. The influence of the
porosity volume fraction index, volume fraction, and bound-
ary condition on the vibration response has been investigated.
This work present the first three bending modes of vibration
and three boundary conditions: SSSS, SCSC, and SSSC.

Figure 4 depicts the effect of various volume fraction
indexes and porosity volume fractions on the higher modes
of vibration (NDFP) of FGM plates with SSSS boundary
condition. The analysis is performed on a square FGM plate
with a side-to-height (a/h) ratio of 0.001whereas thematerial
properties as given in Table 1. It is observed that the NDFP
increases with the porosity volume fraction increase for the
ceramic plate (k � 0). Also, the NDFP decreases with the
metallic content incrases in the FGM plates (k > 0). This is
expected because for ceramic, as porosity volume fraction
increases, the decreament in the stiffness of the plate is less
than the decreament in density. Consequently, the ratio of
stiffness to mass increases. Whereas for volume fraction (k
> 0) as porosity increase the stiffness decrease considerably
as compared to density hence the NDFP decreases. [29]

The variation of the the NDFP of FGM plate with the
SCSC boundary condition is shown in Fig. 5a. As the
clamped boundary conditions restrict rotational and displace-
ment degrees of freedom, the frequency value is greater than
theSSSSboundary conditions.The result of theSSSCbound-
ary condition is shown in Fig. 5b. It has a greater frequency

Fig. 7 NDFP vs. Modes of vibration for various porosity and volume fraction indexes for SCSC and SSSC boundary condition
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than the SSSS but a lower frequency than the SCSC. For
the SSSS boundary condition, Fig. 6 shows the plot between
NDPF and higher vibration modes. The impact of porosity
on lower vibration modes is small, but increases for higher
vibration modes. The effects of porosity on higher modes
of vibration under varied boundary conditions are shown in
Fig. 7a and b. Again, the results confirms that the influence
of porosity in more on the higher modes of vibration for both
the boundary conditions considered herewith.

4 Conclusion

The present study shows the effect of porosity on different
volume fractions and boundary conditions on the NDFP of
FGM plates. It has been found that the porosity in the FGM
material has a prominent effect on the natural frequency. The
key outcomes of the present research are stated below.

1. Effect of the porosity is proportional to the value of the
k.

2. NDFP increase for pure ceramics with the inclusion of
the porosity however the influence of porosity is opposite
for k ≥ 1.

3. NDPF have higher values for the SCSC and SSSC as
compared to SSSS due to more restrictions at the bound-
aries.
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