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parts to obtain excellent product quality and enhanced pro-
ductivity while reducing power consumption.

Several comprehensive studies emphasizing the opti-
mization of the CNC milling process have been reported. 
Rajeswari and Amirthagadeswaran [3] analyzed the 
responses like tool wear, cutting force, surface roughness, 
and material removal rate using Response Surface Method 
(RSM) when machining aluminum metal matrix composite. 
The analysis revealed the weight% of SiC and spindle speed 
as significant factors influencing machinability. Conflict-
ing performance variables were then optimized using Grey 
Relational Analysis (GRA). The influence of tool overhang 
length and surface inclination angle on cutting forces and 
vibration while milling hardened steel was investigated by 
Wojciechowski et al. [4]. The process variables had a sig-
nificant impact on the forces and vibrations. Further, GRA 
was applied, and optimal process variables were established 
for minimizing the vibrations and cutting forces. Pa et al. [5] 
directed a study to ascertain the influential process parame-
ters affecting the surface quality while ball end milling 2.5D 
components. Surface quality was affected by the axial depth 
of cut magnitude. Taguchi-based optimization revealed that 

1  Introduction

Modern aviation manufacturers are incorporating thin mono-
lithic structures to improve aircraft’s durability and fuel effi-
ciency. Considering the massive removal of material that 
accounts for 90–95% of the initial volume, enhancement in 
the process productivity is vital [1]. However, increasing the 
process productivity by incorporating sub-optimal machin-
ing conditions can result in substandard surface quality and 
poor dimensional accuracy. Furthermore, energy efficiency 
has become a key phrase and an integral part of sustain-
able manufacturing [2]. Therefore, the optimized machining 
parameters must be at disposal while machining thin-wall 
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lower axial depth of cut, lower feed rate, higher spindle 
speed, and higher surface inclination angle were the best 
choice to obtain a superior surface finish. Ren et al. [6] made 
an attempt to determine the optimal end mill geometry for 
milling titanium alloy. The process variable considered was 
helix angle, radial rake angle, and primary radial relief angle, 
while the performance measures were surface roughness 
and residual stress. The experimental results showed radial 
rake angle as the critical factor affecting surface integrity. 
After the optimization, a significant improvement in surface 
integrity was reported. Tlhabadira et al. [7] evaluated the 
effect of feed, depth of cut, and cutting speed on the surface 
finish while milling AISI P20 steel. Additionally, the Tagu-
chi method was used to optimize surface roughness while 
milling AISI P20 steel. Lower cutting speeds helped in 
maintaining a good surface finish. Sarıkaya et al. [8] delib-
erated on the influence of process variables on cutting force, 
surface roughness, and vibration signals. Additionally, the 
optimum values of process variables were estimated using 
GRA. Feed rate was identified as the most critical param-
eter affecting the machining performance. Jomaa et al. [9] 
attempted to identify the optimal process parameters using 
GRA to improve the surface finish characteristics of the 
aluminum alloy during peripheral milling. The influence of 
feed per tooth, radial depth of cut, cutting speed, milling 
mode, and cutting tool geometry on the surface roughness 
was investigated. All the process variables significantly 
affected the quality of the milled surface. An attempt was 
made to determine the optimal process variables.

Karabulut et al. [10] deliberated on the selection of pro-
cess variables for better surface quality while milling alu-
minum metal matrix composite. Further, Artificial Neural 
Network (ANN) was adopted to develop the prediction 
models. The finish of the machined surface was affected 
by the built-up edge formation and interfacial bonding 
of reinforcement particles. Moreover, cutting speed and 
feed rate were established as essential parameters to con-
trol surface quality. Campatelli et al. [11] investigated the 
contribution of cutting speed, depth of cut, and feed rate 
on energy consumption during end milling and optimized 
the process considering the energy minimization criterion. 
The results were evaluated using Response Surface Method 
(RSM). The analysis demonstrated that increasing the mate-
rial removal rate (MRR) lowered the environmental foot-
print, and the same could be accomplished by optimizing 
the cutting speed and feed rate. Jang et al. [12], as a part 
of environmentally conscious manufacturing, analyzed and 
optimized the specific cutting energy during milling using 
Particle Swarm Optimization (PSO). The model was devel-
oped by considering flow rate, feed rate, depth of cut, and 
cutting speed as process variables. The model could accu-
rately predict the cutting energy with less than 1% error. 

Likewise, Zhang et al. [13] investigated the impact of pro-
cess parameters on carbon emissions and power consump-
tion while milling medium carbon steel. The empirical 
models were developed using Principal Component Analy-
sis (PCA), and optimized process parameters were ascer-
tained following a multi-objective optimization approach. 
The results showed that a larger feed rate and larger depth 
of cut improved the machining performance. Ahmed and 
Arora [14] investigated cutting velocity, cutting depth, and 
feed rate effects on energy consumption and surface rough-
ness when end-milling plain low-carbon steel. The impact 
of process variables was evaluated using the analysis of 
variance. Moreover, an ANN-based predictive model was 
utilized to assess energy consumption and surface rough-
ness. Further, GA was adopted to optimize the conflicting 
multi-objectives. Nguyen et al. [15] analyzed the influence 
of tool radius, feed, depth of cut, and cutting speed on prod-
uct quality and energy efficiency. All the process variables 
were found to influence the two performance measures. 
Further, an attempt was made to enhance energy efficiency 
and product quality while milling stainless sheet 304. Neu-
ral Network (NN) was adopted to correlate the input and 
output parameters, and the optimal process parameters were 
determined using Adaptive Simulated Annealing (ASA) 
algorithm. A considerable improvement in the milling 
responses was noted when the optimized process variables 
were employed. Kar et al. [16] made an attempt to study 
the influence of process variables on material removal rate, 
cutting force, and surface roughness. Desirability Function 
Analysis (DFA) was also utilized to optimize the process. 
Collected responses were converted to individual desir-
ability, and the fuzzy inference was utilized to change indi-
vidual desirability values to a multi-performance character 
index (MPCI). The optimal process variables were deter-
mined by maximizing the MPCI. Wang et al. [17] evaluated 
the energy consumption and productivity during milling 
by varying the process variables, including axial depth of 
cut, feed rate, spindle speed, and radial depth of cut. Fur-
ther, Artificial Bee Colony (ABC) intelligent algorithm was 
applied to optimize the multi-objective problem.

The researchers have made a few endeavors to optimize 
the thin-wall milling process. Ghoddosian et al. [18] ana-
lyzed the influence of cutting variables like the width of 
cut, feed rate, and spindle speed on the surface roughness 
of milled aluminum thin-wall. Additionally, the process was 
optimized using the Genetic Algorithm (GA) and Imperial-
ist Competitive (IC) algorithm. Songtao et al. [19] exam-
ined the cutting forces by varying the important process 
variables, including feed rate, cutting speed, radial and axial 
depth cut. Selected process variables influenced the cutting 
forces. It was reported that cutting forces causing the wall 
deformation were effectively controlled by selecting smaller 
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axial cuts and bigger radial cuts at high cutting speeds. Qu et 
al. [20] made an attempt to optimize the conflicting objec-
tives, including surface roughness, and material removal, 
using a multi-objective optimization strategy. The objective 
functions were determined using regression analysis, and 
optimal machining parameters to enhance the quality and 
productivity were determined using NSGA-II. Ringgaard et 
al. [21] made an attempt to optimize the thin-wall machin-
ing process by maximizing the material removal rate. The 
researchers considered chatter stability and forced vibration 
as constraints and used the penalty cost function approach 
to optimize the process. An investigation was conducted by 
Cheng et al. [22] to determine the effect of depth of cut, 
feed rate, and spindle speed on surface roughness during 
thin-wall machining. The outcome of the study showed that 
feed rate and spindle speed significantly impacted the sur-
face roughness, whereas the depth of cut influenced the wall 
deformation. Finally, the ABC algorithm was employed to 
determine the optimal process variables. The reviewed liter-
ature clarifies that optimization of the bulk milling process 
has always been a critical research area. Several attempts 
have been made to improve the various performance char-
acteristics during the bulk milling operation. The literature 
also reveals a few attempts to optimize the performance of 
the thin-wall machining process by considering product 
quality and productivity. However, the analysis and optimi-
zation of energy consumption for the thin-wall machining 
process remain unexplored. Moreover, very limited litera-
ture is available on the integrated optimization approach of 
thin-wall machining process considering the surface rough-
ness, wall deflection, material removal rate and cutting 
power.

Therefore, the present work investigates the influence 
of the process variables, namely tool diameter, axial depth, 
radial depth, and feed per tooth, on productivity (material 
removal rate), product quality (surface roughness and wall 
deflection), and energy efficiency (cutting power). The sig-
nificance of process parameters was assessed using Analysis 
of Variance (ANOVA). Mathematical models to relate the 
process variables and performance measures were devel-
oped using regression analysis. Additionally, multi-objec-
tive-based process optimization was performed in order to 
optimize the thin-wall machining process by maximizing 
productivity and product quality while minimizing the cut-
ting power. Considering the conflicting nature of the objec-
tives, NSGA-II was utilized to determine the optimal levels 
of process parameters. The optimal parameters ascertained 
from the optimization process were validated using experi-
ments. The outcomes of the present work provide a wide 
range of solutions for machinists and decision-makers who 
are involved in the machining and production of thin-wall 
structures. The central findings provide an effective solution 

for machining open straight and curved thin-wall parts, 
especially when high productivity, product quality, and 
energy efficiency are mandated.

2  Experimental methods

The machining experiments were performed by milling 
aluminum alloy 2024-T351 specimens (see Fig. 1(a)) on a 
CNC vertical machining center (PMK model: MC-3/400) 
using the set-up shown in Fig. 1(b). The wall thickness was 
reduced for the evaluation from 2.5 mm to 1.25 mm. Solid 

Fig. 1  (a) Thin-wall specimens, (b) Experimental set-up, (c) End mill-
ing tools
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maintaining the feed value below 0.06 mm/z. Regarding the 
axial and radial depth of cut, Sandvik-Coromant and Boe-
ing Research and Technology group reported that selecting 
proper machining strategies, viz., radial depth of cut and 
axial depth of cut, is a key to efficient thin-wall machin-
ing. Accordingly, from the initial experiments, it was noted 
that the axial and radial depth of cut significantly influenced 
the cutting forces, surface roughness, and wall deflection. 
Moreover, literature reports scant research on the influence 
of radial depth of cut on thin-wall deflection, milling force, 
and surface quality. Additionally, the productivity of the 
thin-wall machining process is a function of axial and radial 
depth of cut. Therefore, it was decided to study the influence 
of axial and radial depth of cut on the process performance, 
and the levels were set considering to maximize the pro-
cess productivity. In the present study, the radial depth of 
cut was varied considering the roughing and finish cutting 
conditions. Smaller width of cut was selected for finish cut, 
while a larger width of cut was utilized for roughing opera-
tion. The width of cut varied between 0.3125 and 1.25 mm.

A preliminary study was also performed to determine 
the impact of tool diameter on surface roughness and cut-
ting forces. Tools of different diameters (8 mm, 12 mm, and 
16  mm) were selected for the study. The results showed 
that the cutting forces and surface roughness increased 
drastically when an end mill 16 mm diameter was used to 
machine the thin-wall. Based on the outcome, 16 mm end 
mills were excluded from further studies. The preliminary 
study showed that 8  mm tools provided a significantly 
better result in terms of lower cutting forces and surface 
roughness. Because a smaller diameter tool provided bet-
ter results, it was decided that a smaller diameter tool be 
included in the present study. As a result, a 4 mm diameter 
end mill was considered for further evaluation. Additional 
details with regard to the selection of tool diameter can be 
obtained in [23]. The cutting speed in the presented study 
varied between 44 and 132 m/min. Accordingly, the final-
ized process variables and the levels are listed in Table 1.

carbide flat-bottom end mills were considered for machin-
ing experiments (Fig. 1(c)). In the present work, an envi-
ronment-friendly dry mode of cutting was chosen to carry 
out extensive investigations. The study aims to improve the 
thin-wall process productivity and simultaneously lower the 
power consumption, surface roughness, and in-process wall 
deflection. Usually, enhancement in productivity, i.e., an 
increase in material removal rate, is generally achieved by 
employing maximum possible levels of process parameters, 
viz., spindle speed, depth of cuts, and feed rate. However, 
machining at these high levels often produces dimension-
ally inaccurate thin-wall parts with poorer surface quality. 
Moreover, the low modulus of elasticity of the aluminum 
alloy can cause the thin-wall to deflect during the final 
stages of machining, leading to part deformation and vibra-
tion-induced chatter. Chatter can lead to a poor surface fin-
ish which again might lead to part rejection, thus lowering 
productivity and increasing the cost. Thus, selecting proper 
levels of milling parameters is crucial as they influence the 
dimensional accuracy, material removal rate, milling forces, 
and surface finish. Therefore, screening experiments were 
performed to decide on the levels of process variables. The 
process parameters for screening experiments were cut-
ting speed, feed per tooth, axial, and radial depth of cut. 
For the investigation, cutting speeds of 63  m/min, 88  m/
min and 113 m/min were chosen. During the investigation, 
chatter marks were formed at a cutting speed of 113 m/min 
(Fig. 2(a)). While the employment of a lower cutting speed 
of 63  m/min resulted in built-up-edges (BUEs) formation 
(see Fig. 2(b)). Moreover, the surface quality suffered due 
to the persistent BUE formation. Since the machining con-
dition (88 m/min) showed stable machining, it was decided 
to include the cutting speed for further analysis. During 
the experimentation, the feed per tooth was varied from 
0.06  mm/z to 0.1  mm/z. It was noted that employment 
of higher values (0.08  mm/z and above) showed signs of 
BUE formation and surface deterioration. Therefore, it was 
thought worth conducting further investigations to study 
the influence of feed on the response parameters while 

Fig. 2  (a) Chatter marks in the 
finished workpiece (BUE), (b) 
Built-up-edge formation
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the dynamometer-specified reference system. The cutting 
force measurement system is shown in Fig. 3(c). The MRR 
was computed by calculating the machining time and actual 
volume of material removed.

Experiments were performed following a full factorial 
design (34 experiments). The experimental results and the 
significance of thin-wall milling variables on product qual-
ity, productivity, and cutting power were analyzed using 
ANOVA. The contribution of the process variables to the 
performance measures was evaluated by carrying out P 
and F values tests at a 95% confidence level. A P-value 
smaller than 0.05 indicates that the process variable is sig-
nificant [24]. The process variables were correlated with the 
responses using second-order regression equations. A gen-
eralized second-order polynomial model is given as:

	
y = δ0 +

k∑

i=1

δixi +
∑

i<j

∑
δijxixj +

k∑

i=1

δiix
2
i + ε � (1)

where y is the predicted response, ε is the random deviation, 
δ0 a constant, δi, δii and δij are the first and second-degree 
input parameters and parameter interactions, respectively 
[25].

While solving multi-objective optimization problems, it 
is impossible to consider a single solution as the best result. 
Optimized levels of process variables determined for one 
performance measure need not be suitable for achieving the 
targeted performance for another output. Hence, it becomes 
essential to decide on a wide range of solutions from which 

A non-contact profilometer (Taylor Hobson Talysurf CCI 
Lite) measured the surface roughness (Ra). The profilom-
eter has an objective lens of 20× magnification and a focal 
distance of 4.7  mm. The collected profile was analyzed 
using TalyMap. The measurement was carried along the 
tool feed direction. The measurement was taken at seven 
locations, and the average was considered in the study. The 
measuring system and a sample 3-D profile are shown in 
Fig. 3(a). The in-process wall deflection (Df) was measured 
in-process using Linear Variable Differential Transformer 
(LVDT) (Solartron AX/5/S). The LVDT was mounted on a 
holder which moved with the machine spindle. The reading 
was obtained using a digital display (Solartron C55). The 
deflection measurement procedure is shown in Fig.  3(b). 
Cutting force components were measured using a piezoelec-
tric dynamometer (Kistler 9272B). The dynamometer has a 
measurement range of − 5 to + 5 kN. The measured data was 
conditioned using a charge amplifier (Kistler make, Model: 
5070 A). The signal was further analyzed using data analysis 
software (DynoWare: 2825 A). During the measurement, the 
sampling rate was set at 2000 Hz/Channel, and the measure-
ment was made for a duration of 15  s. The three cutting 
force components, Fx, Fy, and Fz were measured based on 

Table 1  Process parameters and their levels
Process parameters Level 1 Level 2 Level 3
Tool diameter, di(mm) 4 8 12
Feed per tooth, fz(mm/z) 0.02 0.04 0.06
Axial cut depth, ad(mm) 8 12 24
Radial cut depth, rd(mm) 0.3125 0.625 1.25

Fig. 3  Measurement of (a) Surface roughness, (b) In-process deflection, (c) Cutting forces
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model terms. A high coefficient of determination (R2) value 
of 93.67% implied that the model was significant. Further, 
adjusted-R2 of 92.94% and predicted-R2of 91.89% were 
in reasonable agreement, indicating the model’s adequacy. 
An adequate precision ratio of 45.33 showed an adequate 
S/N ratio (S/N > 4 is desirable). The normal probability plot, 
as seen in Fig. 4(a), verifies the normality test. Moreover, 
the distribution of the actual and predicted values along a 
straight-line signalled model satisfaction (see Fig. 4(b)).

The quadratic model of the response equation after elimi-
nating the non-significant terms is given by,

	
Qi = 0.7733 + 0.1491 · di − 7.0811 · fz − 0.0391 · ad − 0.0912 · rd

+ 0.2612 · di · fz − 0.0154 · ad · rd − 0.0087 · di · di + 0.0013 · ad · ad
� (3)

The main effect plots shown in Fig.  5 help visualize the 
influence of the process variables on Qi. The plot which 
has the highest slope has the most significant impact on Qi. 
Accordingly, di and rd strongly influence Qi, followed by fz 
and ad. Further observation revealed that Qi increased as the 
di increased from 4 to 8 mm, but a drop was noted when a 
tool with larger di (16 mm) was used. Smaller diameter tools 
of 4 mm underwent deformation resulting in tool deflection 
and inferior surface finish due to chatter. However, with an 
8 mm diameter tool, the machining process stabilized due to 
the higher rigidity of the tool. As a result, the Qi improved, 
indicating a reduction in surface roughness and deflection. 
Further increase in the tool size to 12 mm, lowered the Qi 
due to the intermittent nature of cutting forces. Higher inter-
mittent cutting forces resulted in large in-process deflection 
and lowered the surface finish. The Qi decreased linearly 
as fz, ad, and rd decreased. Lower chip load at lower fz 
condition (0.02  mm/z) generated lower cutting forces. As 
a result, in-process deflection and surface roughness was 
maintained at a minimum. However, as the fz increased to 
0.04–0.06  mm/z, the chip load increased, thus increasing 
the magnitude of the cutting force. Additionally, the adher-
ence of chip material to the tool at higher fz resulted in inter-
rupted cutting, thereby increasing the surface roughness and 
wall deflection. The quality index Qi also reduced at higher 
ad, and rd. The length and width of the work tool contact 
increased when the machining was carried out, maintain-
ing ad at 24 mm and rd at 1.25 mm. This increased the cut-
ting load and promoted uneven material removal and wall 
deflection. However, lower axial depth of cut (8 mm) and 
width of cut (0.3125  mm) results in stable cutting. As a 
result, a high surface finish with better dimensional accu-
racy was obtained. Additionally, the 3D response surfaces 
corresponding to ANOVA analysis were constructed as seen 
in Fig. 6. Qi increased with the increase in di. But the further 
increase in di lowered the quality. Also, higher quality thin-
wall can be produced by employing smaller fz values. On 

the end user can select the suitable levels of process vari-
ables that help meet the desired target. Accordingly, it 
has been shown that NSGA-II can generate a wide range 
of Pareto-optimal solutions based on the chosen process 
variables [26, 27]. Therefore, the present study employed 
NSGA-II to determine the combination of process variables 
for optimum performance. The NSGA-II toolbox developed 
by Sastry [28], was run using MATLAB 11.0. It typically 
took about 5 min on an Intel i7 machine with 8 GB RAM. 
Additional details regarding the NSGA-II procedure can be 
found in [29].

3  Results and discussion

In the presented study, eighty-one experiments were con-
ducted. The measured performance parameters are listed in 
Table 2.

3.1  Product quality analysis

The surface roughness dictates the wear resistance and 
fatigue strength of the machined component, whereas the 
in-process wall deflection can produce dimensionally inac-
curate parts.

In thin-wall machining, both performance measures are 
considered important quality measures, especially when the 
finishing operation is concerned. Therefore, a product qual-
ity parameter Qi was defined by using the weighted function 
of surface roughness and wall deflection. The product qual-
ity parameter Q1 is given by:

	
Qi =

(
Dfmax − Df

Dfmax − Dfmin
w1

)
+

(
Ramax − Ra

Ramax − Ramin
w2

)
� (2)

where Qi is the quality index (0 ≤ Qi ≤ 1). A higher Qi value 
indicates superior surface finish and dimensional accu-
racy. For rough cuts, the index values are lower. The vari-
ables Dfmin, Dfmax,Ramin, and Ramax symbolize the minimum 
and maximum magnitude of wall deflection and surface 
roughness, respectively. The terms w1 and w2 represent the 
weights assigned to the two quality parameters. In thin-wall 
machining operation, both the surface roughness and wall 
deflection have been considered equally important; there-
fore, an equal weightage was provided by choosing a value 
of 0.5. The Qi also indicates the readiness of the selected 
process parameters for the finish machining of thin-wall 
parts when surface finish and dimensional accuracy are of 
utmost importance.

Table 3 lists the ANOVA for Qi. Accordingly, it can be 
observed that the main effect factors di, fz, ad, rd, the interac-
tion of di with ad, di with fz, and ad with rd wit are significant 
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Sl. No. di fz ad rd Py PC Qi
(mm) (mm/z) (mm) (mm) (mm3/min) (W)

1 12 0.06 8 0.3125 1119.4 139.48 0.779
2 12 0.02 8 0.3125 426.231 112.28 0.929
3 12 0.04 12 0.625 2063.11 235.51 0.717
4 12 0.02 12 0.625 1093.8 204.48 0.801
5 8 0.06 24 0.3125 3692.09 195.56 0.789
6 8 0.06 8 1.25 4854.06 217.67 0.595
7 8 0.02 8 1.25 1855.67 114.25 0.799
8 4 0.06 8 0.3125 1340.69 117.31 0.636
9 4 0.02 8 1.25 2057.01 81.11 0.634
10 8 0.02 12 1.25 2785.87 163.54 0.708
11 12 0.04 8 0.3125 795.88 122.46 0.815
12 12 0.06 24 0.3125 3396.98 504.59 0.669
13 12 0.02 8 1.25 1693.04 220.40 0.659
14 12 0.04 12 1.25 4753.03 377.12 0.527
15 12 0.04 24 0.625 4148.59 329.30 0.690
16 8 0.02 24 1.25 5585.98 235.21 0.624
17 4 0.04 24 1.25 * * *
18 12 0.02 24 1.25 5101.7 614.99 0.476
19 12 0.02 12 0.3125 640.06 136.28 0.868
20 8 0.04 24 0.625 4690.37 208.79 0.745
21 4 0.06 8 0.625 2528.09 135.48 0.534
22 4 0.02 24 1.25 6181.82 170.95 0.338
23 8 0.04 24 0.3125 2623.46 148.39 0.847
24 4 0.06 24 0.3125 4039.07 123.74 0.532
25 4 0.06 12 0.3125 2013.16 122.40 0.527
26 4 0.02 8 0.625 964.691 88.02 0.760
27 4 0.02 12 1.25 3086.54 107.96 0.503
28 12 0.06 8 1.25 4447.67 299.32 0.608
29 4 0.04 8 0.3125 957.447 104.90 0.698
30 8 0.04 12 0.3125 1305.91 86.63 0.849
31 4 0.02 8 0.3125 515.429 70.30 0.834
32 8 0.02 24 0.625 2492.67 129.72 0.869
33 12 0.04 12 0.3125 1196.06 183.34 0.731
34 4 0.04 8 0.625 1799.15 125.63 0.621
35 8 0.06 8 0.625 2194.49 99.47 0.713
36 12 0.06 8 0.625 1946.57 176.32 0.733
37 12 0.06 24 0.625 5902.78 593.80 0.635
38 12 0.02 24 0.3125 1284.42 244.71 0.842
39 4 0.02 12 0.3125 773.509 80.045 0.752
40 4 0.06 12 0.625 3796.53 145.94 0.341
41 4 0.02 24 0.625 2898.83 102.47 0.553
42 4 0.04 12 0.625 2701.27 133.51 0.418
43 4 0.04 24 0.3125 2882.44 119.18 0.632
44 12 0.06 24 1.25 13515.9 1049.16 0.238
45 12 0.02 8 0.625 728.571 138.97 0.859
46 8 0.02 12 0.3125 700.678 65.49 0.933
47 8 0.06 24 1.25 14683.3 505.15 0.265
48 8 0.02 8 0.625 828.281 59.69 0.934
49 12 0.04 8 1.25 3161.81 267.37 0.615
50 4 0.04 8 1.25 3821.18 109.93 0.558
51 8 0.02 24 0.3125 1404.7 99.71 0.954
52 8 0.06 12 0.3125 1834.53 117.71 0.783
53 12 0.04 24 0.3125 2407.17 408.18 0.730

Table 2  Measured experimental results
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was analyzed. The productivity of the process (Py) was esti-
mated by considering the machining time tm (s) and the vol-
ume of material removed Vm (mm3).

	
Py =

Vm

tm
� (4)

the other hand, a combination of lower ad and rd produced 
better quality parts.

3.2  Process productivity analysis

The accomplishment of high productivity and superior prod-
uct quality is of importance during thin-wall machining. 
Therefore, the influence of process variables on productivity 

Table 3  ANOVA for Qi
Source Sum of Squares DOF Mean Square F-value P-value % Contribution
Model 2.25 8 0.2816 127.63 < 0.0001
di 0.3096 1 0.3096 140.30 < 0.0001 10.65
fz 0.5129 1 µ129 232.41 < 0.0001 17.64
ad 0.3474 1 0.3474 157.44 < 0.0001 11.95
rd 1.20 1 1.20 541.62 < 0.0001 41.27
di *fz 0.0146 1 0.0146 6.63 0.0122 0.50
ad *rd 0.1204 1 0.1204 54.56 < 0.0001 4.14
di

2 0.3430 1 0.3430 155.44 < 0.0001 11.80
ad

2 0.0599 1 0.0599 27.15 < 0.0001 2.06
Residual 0.1523 69 0.0022
Cor. Total 2.41 77

Sl. No. di fz ad rd Py PC Qi
(mm) (mm/z) (mm) (mm) (mm3/min) (W)

54 4 0.02 12 0.625 1447.77 90.72 0.539
55 8 0.04 24 1.25 10436.6 391.94 0.396
56 4 0.02 24 0.3125 1549.21 82.01 0.768
57 8 0.04 12 0.625 2334.45 122.92 0.760
58 4 0.06 24 0.625 7619.52 153.99 0.350
59 8 0.02 8 0.3125 466.691 38.59 0.988
60 4 0.04 24 0.625 5414.01 151.42 0.437
61 4 0.06 8 1.25 5351.52 125.44 0.379
62 8 0.06 24 0.625 6640.63 275.76 0.679
63 12 0.06 12 1.25 6692.91 444.32 0.489
64 8 0.06 8 0.3125 1220.1 71.19 0.824
65 12 0.02 12 1.25 2542.37 305.00 0.585
66 4 0.06 12 1.25 * * *
67 12 0.06 12 0.625 2927.67 277.44 0.661
68 4 0.04 12 0.3125 1437.43 110.99 0.602
69 12 0.04 8 0.625 1372.69 166.39 0.757
70 12 0.04 24 1.25 9568.48 985.51 0.289
71 8 0.04 8 0.3125 869.516 60.07 0.898
72 8 0.04 8 0.625 1553.93 93.03 0.786
73 4 0.04 12 1.25 5736.78 143.52 0.461
74 12 0.02 24 0.625 2193.86 308.06 0.793
75 8 0.02 12 0.625 1243.5 92.90 0.872
76 8 0.06 12 0.625 3298.84 152.88 0.628
77 8 0.06 12 1.25 7299.62 310.31 0.383
78 4 0.06 24 1.25 * * *
79 8 0.04 12 1.25 5193.48 227.31 0.552
80 8 0.04 8 1.25 3456.85 165.43 0.665
81 12 0.06 12 0.3125 1683.54 185.53 0.692
*Unable to acquire data due to tool failure

Table 2  (continued) 
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The results of ANOVA for Py are provided in Table  4. 
All four main factors and some of the interaction effects 
were found to be significant. Moreover, the R2 of 98.23%, 
Predicted-R2 of 97.45%, and adjusted-R2 values of 98.05% 
indicated the significance of the model. Additionally, an 
adequate precision ratio of 102.25 suggests good response 
prediction accuracy. A normally distributed residuals (see 
Fig. 7(a)) also indicate the satisfactory performance of the 
developed model. Also, a strong correlation between the 
predicted and actual results suggests the accuracy of the 

Fig. 5  Main effect plots for Qi

 

Fig. 4  (a) Normal probability plot of studentized residuals, (b) Plot of 
actual vs. predicted Qi
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Figure 8 illustrates the main effect plot for Py. Py increased 
linearly with the increase in fz, ad, and rd. However, an 
increase in di decreased the Py marginally. Further, rd and ad 
had a more significant effect on Py followed by fz. At a lower 

developed model (see Fig.  7(b)). The response equation 
considering significant factors is given as:

	
Py = 3340.84 − 71.54 · di − 72366.74 · fz − 196.27 · ad − 3873.53 · rd

+ 5019.94 · fz · ad + 1.0336e+5 · fz · rd + 316.36 · ad · rd
� (5)

Table 4  ANOVA for Py
Source Sum of Squares DOF Mean Square F-value P-value % Contribution
Model 5.830E + 08 7 8.329E + 07 553.66 < 0.0001
di 4.096E + 06 1 4.096E + 06 27.23 < 0.0001 0.54
fz 1.492E + 08 1 1.492E + 08 991.81 < 0.0001 19.30
ad 2.140E + 08 1 2.140E + 08 1422.45 < 0.0001 27.70
rd 2.983E + 08 1 2.983E + 08 1982.74 < 0.0001 38.60
fz*ad 2.405E + 07 1 2.405E + 07 159.89 < 0.0001 3.11
fz*rd 3.221E + 07 1 3.221E + 07 214.13 < 0.0001 4.15
ad*rd 5.099E + 07 1 5.099E + 07 338.98 < 0.0001 6.60
Residual 1.053E + 07 70 1.504E + 05
Cor. Total 5.935E + 08 77

Fig. 7  (a) Normal probability plot of studentized residuals; (b) Plot of 
actual vs. predicted Py

 

Fig. 6  3D contour plots of Qi showing the interaction between (a) di 
and fz, (b) di and ad, (c) di and rd, (d) fz and ad, (e) fz and rd, (f) ad and rd
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fz (0.02 mm/z), the traverse speed of the tool will be slower. 
As a result, productivity suffers. However, as fz increased 
to 0.06 mm/z, the tool traverse time reduced, which aided 
in improving the material removal rate and thus the Py. The 
increase in Py, with rd and ad can be linked to the cutter 
immersion and contact length. When ad and rd were main-
tained at 8  mm and 0.3125  mm, respectively, the contact 
length and cutter immersion remained smaller. This resulted 
in a lower material removal rate. However, with the increase 
in rd and ad to 1.25 and 24 mm, the cutter immersion and 
contact length increased, thus enhancing Py. The effect of 
di on Py showed an opposite trend compared to other pro-
cess variables. Py reduced as di increased. The increase in 
the ramp-on and ramp-off distances increased with di. As a 
result, the tool travel time increased, thereby decreasing Py. 
Moreover, di was noted to have the most negligible influ-
ence on Py. Figure  9(a) presents the effect of interaction 
between fz and ad on Py, while Fig. 9(b) displays the interac-
tion between fz and rd and its influence on Py. Additionally, 
Fig. 9(c) illustrates the effect of interaction between ad and 
rd on Py. The interaction plots show that higher Py can be 
obtained by combining higher fz and ad, higher fz, and rd, or 
the combination of higher ad, and rd.

3.3  Cutting power analysis

Power consumption is an indispensable part of the machin-
ing process, directly influencing the production cost and 
environmental pollution [17]. In the metal cutting process, 
the generated machining forces can estimate the cutting 
power (Pc). In the end milling operation, Pc is resolved into 
two components: the machining power of the spindle Pm 
power of feed motion Pf. Therefore, Pc is given by:

	 Pc = Pm + Pf � (6)

where Pm is determined using,

	
Pm =

Fx π ns di

60, 000
� (7)

and Pf is calculated by,

	
Pf =

Fy ns fz

60, 000
� (8)

Here Fx and Fy represent the cutting force and feed force 
components.

Table  5 depicts the ANOVA results for Pc. As noted, 
all four main factors and some of the interaction effects 
were found to be significant. Moreover, the R2 of 93.17%, 
Predicted-R2 of 89.42%, and adjusted-R2 values of 92.03% 

Fig. 8  Main effect plots for Py
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indicated the significance of the model. An adequate pre-
cision ratio of 45.51 suggests good response prediction 
accuracy. A normally distributed residuals (see Fig. 10(a)) 
also indicate the satisfactory performance of the developed 
model. Also, a strong correlation between the predicted and 
actual results suggests the accuracy of the developed model 
(see Fig. 10(b)). The regression model for Pc after eliminat-
ing the non-significant terms is given by:

	

Pc = 743.96 − 113.21 · di − 4766.09 · fz − 28.16 · ad − 374.14 · rd

+ 269.47 · di · fz + 2.49 · di · ad + 29.48 · di · rd + 234.44 · fz · ad

+ 2597.69 · fz · rd + 15.09 · ad · rd + 4.34 · di · di

� (9)

Figure 11 illustrates the main effect plot for Pc. Pc increased 
as di, fz, ad, and rd increased. In a machining operation, Pc is 
a function of cutting force. Any increase in the magnitude of 
cutting force increases power consumption. When a lower 
fz of 0.02 mm/z was considered, a smaller magnitude cut-
ting force was generated due to smaller cutter contact with 
the work material. However, the cutter tool contact length 
increased with the increase in fz to 0.06 mm/z. The resulting 
increase in the cutting force increased Pc. On similar lines, 
the Pc increased with the size of the tool used. The selec-
tion of ad, and rd also influenced the Pc. As the axial depth 
of cut increased from 8 to 24 mm, the engagement length 
between the cutting edge and the workpiece increased. This 
increased the magnitude of cutting force and thus the Pc. 
Similarly, as rd increased from 0.3125 to 1.25 mm, the cut-
ter immersion and hence the width of the cut increased. 
The resulting increase in the cutting forces increased Pc. 
Figure  12(a-f) depict the response surface plotted for Pc. 
From Fig.  12(a), Pc increased with the increase in di and 
fz. Figure  12(b) shows that Pc increased with the rise in 
di and ad. Similarly, Pc increased with di and rd as seen in 
Fig. 12(c). The response plot shown in Fig. 12(d) indicated 
that Pc increased linearly with fz and ad. Also, as noted from 
Fig. 12(e, f), Pc increased with the combination of higher fz 
and rd, or higher ad, and rd.

3.4  Multi‑objective optimization

Utilization of optimized process parameters can help in 
enhancing the thin-wall machining performance. Supe-
rior performance can be achieved by maximizing Qi, Py, 
and minimizing Pc. However, the defined objectives were 
contradictory and depended extensively on the machining 
requirement, i.e., roughing or finishing. Therefore, multi-
objective optimization is essential to analyze the conflicting 
performance variables. Figure  13 summarizes the frame-
work for optimizing the thin-wall machining operation.

According, the objective function was formulated as:

Fig. 9  3D contour plots of Py showing the interaction between (a) fz 
and ad, (b) fz and rd, (c) ad and rd
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maxf (X) = max

(
Qi, Py,

1
Pc

)T

� (10)

Subjected to operation constraints,

	

dimin � di � dimax
fzmin � fz � fzmax
admin � ad � admax
rdmin � rd � rdmax





� (11)

Here, dimin, dimax, fzmin, fzmax, admax and admin are the minimum 
and maximum values of tool diameter, feed per tooth, maxi-
mum axial depth of cut, and radial depth of cut, respectively. 
In the present study, optimization objectives were required 
to satisfy the following criteria:

	

Py > 13, 000 m3/
min(Roughning operation)

Pc < 650 W (Roughning operation)
Qi < 00.8 (Finishing operation)

Ra < 0.6 µm (Finishing operation)
Df < 0.075 mm (Finishing operation)






� (12)

Table 6 lists the NSGA-II algorithm parameter settings used 
in the present study. Figure 14 illustrates the developed 3-D 
Pareto front, which can investigate the trade-offs between 
different objective functions. The figure shows two regions, 
‘A’ and ‘B’, appropriate to satisfy the two machining condi-
tions viz. roughing operation and finishing operation. Here 
the solutions described in region ‘A’ can help boost pro-
ductivity but at the expense of product quality and power 
consumption. On the contrary, machining with the solutions 
enclosed in region ‘B’ can produce dimensionally accurate 
thin-walls with a high-quality surface finish.

Table 5  ANOVA for Pc
Source Sum of Squares DOF Mean Square F-value P-value % Contribution
Model 2.329E + 06 11 2.117E + 05 81.84 < 0.0001
di 6.141E + 05 1 6.141E + 05 237.39 < 0.0001 25.77
fz 1.863E + 05 1 1.863E + 05 72.03 < 0.0001 7.82
ad 5.521E + 05 1 5.521E + 05 213.44 < 0.0001 23.17
rd 4.320E + 05 1 4.320E + 05 167.02 < 0.0001 18.13
di *fz 15255.61 1 15255.61 5.90 0.0179 0.64
di *ad 2.201E + 05 1 2.201E + 05 85.10 < 0.0001 9.23
di *rd 95232.04 1 95232.04 36.82 < 0.0001 4.00
fz *ad 52062.48 1 52062.48 20.13 < 0.0001 2.18
fz *rd 19856.21 1 19856.21 7.68 0.0073 0.83
ad *rd 1.126E + 05 1 1.126E + 05 43.53 < 0.0001 4.72
di

2 83726.99 1 83726.99 32.37 < 0.0001 3.51
Residual 9.472E + 06 69 1.373E + 05
Cor. Total 5.935E + 08 77

Fig. 10  (a) Normal probability plot of studentized residuals; (b) Plot of 
actual vs. predicted Pc
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3.4.1  Optimum parameters for roughing operation

Considering the requirement of large material removal vol-
ume, maximizing Py during the initial stages of machining 
is essential. Table 7 lists some of the optimal Pareto solu-
tions for maximizing Py. However, a few optimal process 
combinations (Sol. No. 1, 3, 9) were found unsuitable for 
maximizing Py. Thin-wall machining using a 4  mm end 
mill was reported to be undesirable due to the severe chatter 
resulting from the employment of higher depth of cut condi-
tions [25]. Therefore, after a careful review, a few Pareto 
solutions proposed in Table 7 (Sl. No. 2 and 5) were selected 
for validation. Table 8 lists the predicted and measured MRR 
values for the optimal process conditions. A comparison of 
the same revealed that the absolute average deviation in pro-
ductivity is no more than 9%, thus verifying the accuracy 
of the predictive model. Moreover, a maximum material 
removal of 1215 mm3/min was reported by Qu et al. [20]. It 
has to be noted that there is a significant improvement in the 
magnitude of the material removal rate (14,683 mm3/min) 
as compared to the previous study.

3.4.2  Optimum parameters for finishing operation

The Pareto solutions that provide high Qi were considered 
optimal solutions for the finish machining of thin-wall parts. 
Table 9 lists some of the optimal process parameter combi-
nations for maximizing the Qi. Table 10 exhibits a compari-
son between the predicted and measured responses based 
on the Pareto solutions. The measured responses closely 
match with the solutions predicted by the developed model. 
The selected process parameter combinations can reduce 
the surface roughness and the magnitude of wall deflection. 
Figure  15 exhibits the 3-D topographies of the machined 
surface obtained before and after optimization. It is noticed 
the surface finish improved significantly with the use of 
optimal process parameters. The selected optimum process 
parameter combinations present a roughness of 0.331 and 
0.494 μm. The measured surface roughness is significantly 
better than the roughness observed by other researchers. In 
the case of Vukman et al. [30], the lowest surface rough-
ness observed was around 0.5 μm while milling aluminum 
alloy. Similarly, upon optimization, surface roughness vary-
ing between 1.03 and 1.17 μm was measured by Qu et al. 
[20] while machining hardened die steel. Therefore, it can 
be concluded that the optimized process variables from the 
present study can produce a comparatively better surface 
finish.

Furthermore, the application of optimal process param-
eters helped considerably reduce the milling power (Pc). 
Additionally, the quality of the thin-wall considering 
the form error was also analyzed. As noted in Table  10, Fig. 11  Main effect plots for Pc
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Fig. 12  3D contour plots of Pc showing the interaction between (a) di and fz, (b) di and ad, (c) di and rd, (d) fz and ad, (e) fz and rd, (f) ad and rd
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1.283 and 1.298 mm from 1.991 mm. A few studies have 
measured the in-process wall deflection. According to work 
carried out by Izamshah et al. [31], the maximum recorded 
wall deflection was 0.12 mm. However, in the present study, 
the magnitude of wall deflection after optimization is noted 
to be 0.033 and 0.048 mm, respectively. The measured in-
process deflection is significantly lowered than the value 
reported by other literature, thus affirming the capability of 
optimized process variables. The cutting power (Pc) needed 
to finish machine the thin-wall machining was analyzed. 
Machining thin-wall parts with the optimal process param-
eter combination lowered the Pc, as reported in Table 10. 
Further, a maximum deviation of 6% between the predicted 
and measured cutting power certified the predictive model’s 
accuracy. Based on the investigation, the optimal combina-
tion denoted by the Pareto front can be recommended for 
energy-conscious machining of quality thin-wall parts.

3.4.3  Machining ultra-thin-walls using optimum 
parameters

The validity of the Pareto optimal solutions was evaluated 
further by carrying out the experiments on ultra-thin walls 
of 0.7 mm thickness. Figure 17 displays the 3-D topogra-
phies of the ultra-thin-wall surfaces machined using opti-
mal conditions listed in Table 10. The thin-walls machined 
using the predicted optimal process parameter combination 
show an excellent surface finish, with the average surface 
roughness varying between 0.5 and 0.65  μm. Moreover, 
on inspection, the thickness of the wall at the free end was 
found to vary between 0.765 and 0.782 mm. These results 
further fortify the fact that the predicted optimal process 
parameters can be utilized to machine ultra-thin-wall parts 
using commercial low-medium duty CNC-VMC in real-life 
shop-floor conditions.

incorporating optimal process parameters lowered the 
average in-process wall deflection. Figure 16 presents the 
comparison between the deflection-induced form error. The 
incorporation of optimal process conditions significantly 
improves the dimensional accuracy of the thin-wall parts. 
The thickness of the wall at the free end was reduced to 

Table 6  NSGA-II parameters
Attribute Value/condition
Population size 100
Tournament Binary Tournament selection
Reproduction 0.8
Mutation Constraint dependent
Crossover Intermediate
Number of iterations 200
Mutation Fraction 0.2

Interval 20

Fig. 14  3D plot of the Pareto-optimal solutions for Qi, Py and Pc

 

Fig. 13  Multi-objective optimiza-
tion framework
 

1 3

160



International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) 17:145–166

machining) and concave mode (anticlastic machining). 
Figure 18 exhibits the machined ultra-thin-walls along with 
the surface topographies of the machined surfaces. The pre-
dicted process parameters were able to machine curvilinear 

The predicted optimal process parameters were also used 
to machine curvilinear ultra-thin-walls of 0.7 mm thickness. 
The final reduction in thickness was obtained by machin-
ing the curvilinear thin-walls in convex mode (synclastic 

Table 7  Suggested combinations of optimum parameters for maximizing Py
Sol. No. Milling parameters Response parameters

di
(mm)

fz
(mm/z)

ad
(mm)

rd
(mm)

Qi Pc
(W)

Py(mm3/min)

1 4 0.0594 23.99 1.2442 0.093 372.96 13919.17
2 7 0.0594 23.94 1.2381 0.263 507.61 13409.05
3 4.9 0.0587 23.97 1.238 0.163 399.65 13588.75
4 5.4 0.0598 23.99 1.2389 0.187 427.9 13736.23
5 8.6 0.0589 23.86 1.2361 0.303 606.91 13036.97
6 5.5 0.0597 23.95 1.2384 0.194 430.96 13678.43
7 8.9 0.06 23.85 1.2379 0.301 636.87 13205.99
8 8.6 0.0581 23.81 1.2267 0.313 595.88 12767.72
9 4 0.06 24 1.2500 0.087 378.41 14098.5
10 8.2 0.0595 23.95 1.2447 0.289 588.8 13339.6

Table 8  Verification of the optimum conditions for roughing operation
Sl. No Milling parameters Py

(mm3/min)di(mm) fz(mm/z) ad(mm) rd(mm)
1 9 0.06 24 1.25 Predicted 13402.59

8 0.06 24 1.25 Measured 14683.30
Deviation (%) 8.72

2 7 0.06 24 1.25 Predicted 13680.95
8 0.06 24 1.25 Measured 14683.30

Deviation (%) 6.28

Table 9  Suggested combinations of optimum parameters for maximizing Qi and minimizing Py
Sl. No. Milling parameters Response parameters

di
(mm)

fz
(mm/z)

ad
(mm)

rd
(mm)

Qi Pc
(W)

Pr(mm3/min)

1 8.9 0.02 8.22 0.3158 0.965 51.95 878.2777
2 8.9 0.0314 8.24 0.4887 0.889 56.42 1034.027
3 8.9 0.0202 8.25 0.4887 0.941 47.29 820.2631
4 7.3 0.0269 23.28 0.3757 0.852 89.01 1831.928
5 5.8 0.0234 23.18 0.4445 0.789 56.34 2006.509
6 6 0.0211 23.14 0.3887 0.834 44.71 1511.242
7 8.4 0.0265 9.07 0.4243 0.905 55.62 985.3546
8 4.8 0.0201 23.43 0.3181 0.803 24.98 1208.125
9 7.6 0.0267 23.02 0.3766 0.859 96.03 1779.879
10 8.9 0.0201 8.22 0.3158 0.965 51.98 878.3563

Table 10  Verification of the recommended optimum conditions for finishing operation
Sl. No Milling parameters Performance measures

di(mm) fz(mm/z) ad(mm) rd(mm) Ra
(µm)

Df
(mm)

Qi Pc
(W)

1 8.9 0.02 8.22 0.316 Predicted 0.298 0.048 0.965 51.94
8 0.02 8 0.3125 Measured 0.331 0.027 0.983 50.12

Deviation (%) 9.85 43 1.18 3.5
2 8.9 0.031 8.24 0.489 Predicted 0.456 0.047 0.891 56.09

8 0.03 8 0.5 Measured 0.484 0.034 0.89 59.47
Deviation (%) 5.83 27.6 0.11 5.83
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in the process productivity was obtained at higher di, fz, 
ad, and rd values.

	● The correlation of Pc, Py, and Qi was established to 
explore the influence of di, fz, ad, and rd. Based on the 
higher values of evaluating coefficients, the developed 
statistical models are recommended for predicting the 
response outputs.

	● NSGA-II based optimization model was successful in 
generating optimal Pareto solutions for roughing and 
finishing operations. The optimized process parameters 
for roughing operation helped in maximizing the pro-
cess productivity. At the same time, the Pareto solutions 
for finishing operation effectively improved energy effi-
ciency and produced quality thin-wall parts. Improved 
surface finish with minimal deflection was obtained by 
milling with cutters of diameter 8 ~ 9 mm and maintain-
ing the feed, axial, and radial depth at 0.02 mm/z, 8 mm, 
and 0.3125 mm, respectively.

	● The results can be employed for milling Aluminum 
alloy thin-wall parts. The study provides a wide range 
of solutions for machinists and decision-makers who are 
involved in the production of thin-wall structures. The 
central findings provide effective solution for end mill-
ing open straight and curved thin-wall parts, especially 
when high productivity, product quality, and energy effi-
ciency are mandated.

thin-walls with uniform thickness and excellent surface 
finish. On closer inspection, the curvilinear wall showed 
a better surface finish than open straight walls. The higher 
rigidity of the curvilinear walls helped reduce the in-situ 
wall deflection and improved the surface finish. Moreover, 
anticlastic machining resulted in more significant form 
errors than synclastic machining, as seen in Fig.  18. The 
occurrence is attributed to the larger magnitude of the mill-
ing force, as depicted in Table 11. However, the predicted 
optimal milling parameters were able to machine straight 
and curvilinear ultra-thin-walls with excellent surface finish 
and dimensional accuracy.

4  Conclusion

The influence of thin-wall milling parameters viz. tool diam-
eter, feed per tooth, axial and radial depth of cut on produc-
tivity, and product quality and cutting power was analyzed. 
The statistical significance of the process variables on the 
three performance measures was assessed using ANOVA. 
The NSGA-II was employed to determine the optimal pro-
cess parameters to enhance productivity and product quality 
while minimizing the cutting power. Based on the outcomes, 
the following conclusions have been formulated.

	● The ANOVA results indicated that the selected input 
parameters significantly contributed to the thin-wall 
machining process. The quality and productivity were 
enhanced by milling with a smaller diameter tool and 
employing lower values of fz, ad, and rd. An increment 

Fig. 15  Machined surface and 3-D surface topography for (a) Non-optimized process parameters; (b) Optimal condition-1 listed in Table 10; (c) 
Optimal condition-2 listed in Table 10
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Fig. 16  Form error for (a) Non-optimized process parameters; (b) 
Optimal condition-1 listed in Table 10; (c) Optimal condition-2 listed 
in Table 10
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Table 11  Comparison of response parameters for curvilinear thin-
walls
Geometry Milling force

Fr (N)
Surface roughness
Ra (µm)

Wall deflection
Df (mm)

Concave 65.40 0.32 0.041
Convex 47.51 0.25 0.032

Fig. 18  Surface finish and form 
error while machining curvilin-
ear thin-wall part (a) Concave 
surface, (b) Convex surface

 

Fig. 17  Surface finish and form error 
for (a) Optimal condition-1 listed in 
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