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Abstract
Micro-meter range material removal is an indispensable requirement in today’s industrial scenario for precision components
manufacturing in the medical, optical, automobile, and aerospace industries. The dimensional accuracy and material removal
rate are highly correlated and important drilled micro-hole characteristics in the micro-electric discharge machining (μEDM)
process. In this investigation, predictive models based on bio-inspired intelligent hybrid machine learning algorithms are
proposed for machining micro-holes with accurate dimensions on Inconel 718 superalloy by μEDM process. The recast
layer thickness and radial overcut are considered as the produced hole dimensional quality features and the material removal
rate as the production rate indicator. The proposed predictive models are based on the integration of adaptive neuro-fuzzy
inference system (ANFIS) with genetic algorithm (ANFIS-GA) and particle swarm optimization algorithm (ANFIS-PSO).
Here, the precision of the ANFIS model was improved by optimizing its algorithmic parameters with the application of GA
and PSO individually. Experimentally measured machining response data was used for training, testing, and validation of the
models. The performance of the proposed predictive models was assessed based on the statistical parameters. The predicted
training and testing values for the responses with regression, ANN, ANFIS, ANFIS-GA, and ANFIS-PSO models were in
good agreement with their corresponding experimentally measured values. The estimated values of statistical parameters
representing the μEDM responses suggest that the ANFIS-PSO model predicts more accurately as compared with other
models. A comparative analysis of the predictability of the proposed models with respect to the experimental results is also
presented for confirming the reliability of the ANFIS-PSO model for accurate perdition of the μEDM process.

Keywords μ-EDM · Recast layer thickness · Radial overcut · Material removal rate · ANN · ANFIS · ANFIS-GA ·
ANFIS-PSO

1 Introduction

Machining of micron-size holes in difficult-to-cut materials
remains a complex task though the present manufacturing
industries are equipped with advanced machining and tool-
ing technologies due to the material’s mechanical properties
and size of the hole. Inconel 718 (Ni718) superalloy is an
important material being used today for manufacturing a
wide range of aero-engine, rocket, gas turbine, and subma-
rine components that are functioning between450 and700 °C
temperatures [1]. Superior thermal and corrosion resistance
and high yield and ultimate strength, high hot hardness with
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Ni718 alloy are attractive properties for a widespread appli-
cations in the electronics, chemical, andmarine industries [2,
3]. However, the properties such as poor thermal conductivity
and work hardening tendency of Ni718 alloy made it clas-
sify as the difficult-to-machine material [4] using traditional
machining practices. Since, there is no mechanical contact in
nontraditional machining approaches between theworkpiece
and tool, the chip formation in metal removal is independent
of the workpiece hardness [5]. Hence these approaches have
been proved as efficient for machine materials irrespective
of their hardness [6].

Electro-discharge machining (EDM) is a popularly com-
mercialized nontraditional machining process in manufac-
turing industries for machining precision components that
require a high degree of surface quality and dimensional
accuracy. Due to high tool wear and chatter, machining of
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micro-features on difficult-to-cut and heat resistance materi-
als such as Inconel alloys to achieve the required surface
quality and drill accuracy through conventional drilling
process become very difficult and involved with a huge
expenses [7]. Micro-EDM (μEDM) as a version of the
EDM process has been identified as an appropriate non-
conventional machining process for machining micron-size
holes on Ni718 alloy within the limits of the desired toler-
ance [8]. Also,μEDM allows to generate micro-textures and
devices for a wide range of industrial, aeronautical, electron-
ics and the biomedical applications. In the μ-EDM process,
due to the generation of high-intensity heat by the rapid recur-
ring electric sparks [9], a small portion of the material in the
form of debris is removed from theworkpiece bymelting and
evaporation. The debris formed by melting are flushed from
the workpiece electrode interface by the continuous supply
of dielectric fluid. Despite of several advantages with the
μEDM process, radial overcut, tool wear rate, and material
removal rate are pointed out as its limitations. Hence, several
research investigations have been reported on the fundamen-
tal understanding of various process characteristics for better
control of its performance towards the machining efficiency
improvement. Type, size and shape of the electrode, electrode
feed rate, polarity, current density, gapvoltage, pulse-on time,
pulse-off time, duty cycle, type of dielectric and its pressure
are some of the frequently considered process control vari-
ables ofμEDM.While thematerial removal rate (MRR), tool
wear rate (TWR), surface roughness, diameter radial devia-
tion, hole taper angle, recast layer, and radial overcut are the
μEDM performance indicating characteristics. Higher feed
rates increase the MRR as it accelerates the sparking rate at
the workpiece-tool gap, but it also increases the formation of
the recast layer on the machined surface which reduces the
surface quality [10].MRR is increased by increasing the peak
current as it increases the material melting rate by increasing
the discharge energy. Increasing the peak current simultane-
ously increases the TWR [11] which is an adversely effect
the machine hole dimensional accuracy. The use of negative
polarity increases the density of electrons reaching the work-
piece which simultaneously improve the MRR and reduce
the TWR compared to positive polarity [12, 13]. De-ionized
water gives betterMRR and TWR than kerosene as dielectric
[14]. The larger electrode diameter increases the TWR due to
the continuously changing discharge conditions and higher
discharge frequency [15].

The occurrence of secondary discharge at the electrode-
drilled home gap due to the movement of debris generate
progressively tapered hole [16]. Lim et al. [17] investigated
the influence of voltage, gap control algorithm, and capaci-
tance and resistance values in μEDM on TWR, MRR, and
the stability of the machining. Ay et al. [18] noted better
micro hole quality at low pulse duration and low discharge
current. The tool orbital actuation reduces the tool wear and

improves the machined surface quality by accelerating the
electrode flushing [19]. Natarajan et al. [20] observed bet-
ter micro hole topographical conditions at lower values of
pulse-on time and discharge current. A better surface finish
in μEDM can be obtained by sacrificing the MRR while the
acceleration of MRR results in higher surface roughness and
TWR.Therefore,Muhammad et al. [12] proposed an ideal set
of process parameters to deliver better μEDM performance
for machining WC–Co. Rao et al. [21] derived an optimal
processing conditions for μEDM Ni718 alloy based on the
experimental observations pertaining to theMRR, TWR, and
recast layer by the conduction of design of experimentation
and gray relational analysis integrated Taguchi’s statistical
approach.

Likewise, several authors have performed experimental
studies to understand the significance of many adjustable
process parameters of μEDM on its response characteris-
tics. However, the knowledge of these investigations may not
be enough to evaluate the μEDM process performance for
real-time machining on the shop floor. In general, the selec-
tion of μEDM process parameters is done by using either
the data manual provided by the machine tool manufacturer
and/or the machine tool operators’ experience. But such cri-
teria neither guarantee the desired drilled hole dimensional
characteristics nor the surface quality due to the presence
of highly conflicted process responses. Hence, the choice of
a suitable set of machining conditions meeting the desired
quality characteristics become a complicated task. Such cir-
cumstances made selection of optimal μEDM processing
conditions quite essential through a reliable approach to
enhance the machining performance. But considering the
confliction amongμEDMprocess responses for a large num-
ber of process control parameters, optimization of any one
response alone cannot represent the complete performance
of the process in real practice. Dealing with such conflicted
responses required a method of simultaneous optimization
of multiple responses. Hence, statistical and intelligent mod-
eling and optimization of the process responses gained more
attention for simultaneous optimization of multiple con-
flicted responses to enhance themachining process efficiency
[5].

Deepak et al. [10] considered the process parameters:
voltage, electrode rotation speed, and feed rate of μEDM
to optimize its responses such as MRR, overcut (OC), and
taper angle using the genetic algorithm proposed sum of
weighted objectives technique for machining Ni718 alloy.
Somashekhar et al. [22] shown artificial neural network
(ANN)model as effective forMRRprediction inμEDMwith
the develop a parametric regression model. Anthony et al.
[23] employed theANNmodel to obtain optimal tool profiles
instantaneously and their results showed considerably very
little deviation from the experimentally measured results.
The prediction accuracies of ANN and adaptive neuro-fuzzy
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interference system (ANFIS)models forμEDMprocess per-
formance characteristics were compared by Suganthi et al.
[24] and noted superior predictabilitywith theANFISmodel.
Recently, by Ashish et al. [25] implemented response surface
methodology (RSM) to predict the significance of various
EDMprocess parameters onMRR,SR, andTWRandANFIS
to derive the optimal processing conditions for machining
Inconel alloy. The results of their validation experiments are
observed with a good agreement with the predicted results.
Pathak et al. [26] presented the studies on the circularity
and surface roughness against various control parameters of
powder-EDM process for machining Inconel 718 alloy and
determined their optimal values by implementing fuzzy logic
and ANFIS models. They reported better prediction with
ANFIS model compared with the fuzzy model. Singh et al.
[27] integrated gray relational analysis (GRA) with ANFIS
method to derive the optimal EDM conditions for machin-
ingWC alloy. In gas-assistedμEDMofD3 die-steel, Nishant
et al. [28] employed an integrated neuro-fuzzymodel andGA
optimization approach to predict and analyze the responses
such as MRR and surface roughness. GA has been used to
improve the model architecture of the ANFIS as well as to
determine the optimal set of machining conditions. Com-
pared with the results of ANN and ANFIS models, ANFIS
integrated GA has shown better performance for the pre-
diction of the machining conditions. To adopt the dynamic
realistic non-linear relationships among the response, and
to treat all the responses based on their degree of signifi-
cance among them in statistical analysis, Ishwar et al. [29]
used principal component analysis (PCA) to normalize the
response data of MRR, TWR, and OC of μEDM process
performed on a silver plate and the normalized data was fed
as input to ANFIS model for process optimization. Lingx-
uan et al. [30] integrated multi-objective GAwith supporting
vector machine (SVM) prediction model for prediction and
optimization of TWR andmachining time inμEDMprocess.
Assarzadeh et al. [31] employed ANN model for prediction
and augmented Lagrange multiplier algorithm for optimiza-
tion of μEDM conditions.

Owing to the above-conferred investigations on the imple-
mentation of various predictive modeling and parametric
optimization approaches for improvement of the μEDM
process, it has been noted that, a handful number of investi-
gations have been usedANNmodeling technique. This is due
to the reason that, ANN is a flexible process modeling tool
inspired by the biological nervous system [32] having the
capability of mapping a nonlinear mathematical relationship
between several process input variables and a response [31].
However, the application of the ANN modeling technique
is limited by the problem of overfitting the response values
because it follows the “black-box models” trained by sam-
pling data of input variables and output response rather than

the machining process mechanism. Moreover, a large num-
ber of data samples should be provided train the network
as a well-trained ANN model. Determination of a reliable
network architecture is also a complex task and is depend-
ing on experiences. Therefore, Saffaran et al. [33] optimized
the network architecture with the help of the PSO (parti-
cle swarm optimization) algorithm, and the performance of
the determined architecture was verified by SA (simulated
annealing) algorithm. Recently, the ANFIS modeling tech-
nique has been proved as one of the potential predictive
modeling techniques for complex nonlinear machining pro-
cesses. ANFIS evolved with the integration of two popular
soft-computing techniques of ANN and fuzzy logic. ANN in
ANFIS has the capability of self-understanding the relation
between the input and response data while fuzzy logic holds
the capability of dealing with imprecision and uncertainty
present with the data using if–then fuzzy rules [34].

Based on the available literature, efficient approaches are
vital for exact prediction of the precise machining processes
tominimize themodel’s uncertainty. The stat-of-affairs result
in the hybridization of the suggested predictive models in the
literature for the development of efficient predictive models
for the μEDM process is motive of this investigation. Never-
theless, being implementedμEDM formanufacturing awide
range of components in many fields, the literature review
shows that no research work is published on the comparative
analysis of the reliability of ANN, ANFIS, ANFIS-GA, and
ANFIS-PSO algorithms for prediction of μEDM responses.

2 Research significance and novelty

Since, micro-meter range material removal is an indis-
pensable requirement in today’s industrial scenario for
manufacturing precision components for medical, optical,
automobile, and aerospace industries. A high degree of
dimensional accuracy and surface quality of the machined
micro-holes are the desired functional performance charac-
teristics, and thematerial removal rate reflects the production
rate of the components in μEDM process. However, the
dimensional accuracy and material removal rate are highly
correlated and important drilled micro-hole characteristics
in processing micro-features by μEDM process. While pro-
ducing quality micro-features byμEDM is involved with the
control of a large number of process parameters. Conduction
of the trail machining experiments for identification of set
optimal machining conditions is relatively time-consuming
and costly. Therefore, efficient predictive and optimiza-
tion approaches are vital for a more precise prediction of
the machining conditions to enhance the machining effi-
ciency. Owing to the proposed predictive and optimization
approaches in the literature aiming with various machining
process, the selection of a reliable approach is still ambiguous
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Fig. 1 ANFIS architecture based
on Sugeno fuzzy model
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as every approach may not efficiently predict every machin-
ing process. Recently, the application of machining learning
algorithms has been popularly used for prediction of vari-
ous machining process. However, the prediction efficiency
of a machine learning algorithm in turn need an appropri-
ate selection of the algorithm-centric control variable. While
still there are no stipulated guidelines or constructive for-
mulations to determine the necessary number of MFs in the
literature. Hence this investigation presented the evaluation
of a reliable machine learning algorithms and allied intelli-
gent hybrid approaches for μEDM performance prediction
and experimentally proved for their shop-floor implemen-
tation. Also, the results of this investigation explained and
compared the precision ofANFIS-PSO,ANFIS-GA,ANFIS,
ANN, and regression models for predicting the μEDM per-
formance characteristics. This kind of investigation has been
not reported yet in the literature in application to the μEDM
process performance evaluation in terms of the chosenmicro-
hole characteristics such as recast layer thickness, diametral
deviation, and MRR.

3 Model development

3.1 Adaptive network-based fuzzy inference system
(ANFIS)

A Neuro-fuzzy system (NFS) was proposed by Jang in
1983 based on the integration of ANN and Fuzzy-rule based
interface system [34, 35]. This interface system allows the
flexible estimation with the capability of exploring inter-
pretable Takagi–Sugeno type fuzzy If–then rules. ANFIS

correlates the output and input data by using an integrated
learning approach for obtaining the optimal spreading of dif-
ferent membership functions (MF’s). The rationalization of
MF’s in ANFIS is done in two ways such as back and hybrid
propagation. ANFIS architecture is designed with 5 layers
integration and each layer is defined by a node function as
shown in Fig. 1: “input fuzzification as layer 1”, “fuzzy set
database creation as layer 2”, “fuzzy rule base structure as
layer 3”, “decision-making as layer 4”, and “output defuzzi-
fication as Layer 5” [36, 37].

The five layers of the ANFIS model are described as:
Layer 1 The set of input values is converted into a set of

if–then fuzzy rules by the selection of appropriate MFs for
each input set. For instance, the general bell-shaped mem-
bership function (gbellmf’s) of the adaptive node is defined
as:

Membership function of the first parameter:

µAi (I1) � 1

1 +

[(
I1−ci
ai

)2] × bi

(1)

Membership function of the second parameter:

µBi (I2) � 1

1 +

[(
I2−ci
ai

)2] × bi

(2)

Membership function of the third parameter:

µCi (I3) � 1

1 +

[(
I3−ci
ai

)2] × bi

(3)
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Membership function of the fourth parameter:

µDi (I4) � 1

1 +

[(
I4−ci
ai

)2] × bi

(4)

Here, µAi , µBi , µCi and µDi are the MFs of the input vari-
ables I1, I2, I3 and I4 respectively. The parameter sets ai , bi ,
and ci , for which the fuzzy membership values vary between
0 and 1. The membership functions change according to the
varying values of the parameters and are not constant. The
parameters in this layer are called “principle parameters”.

Layer 2 The output signal in this layer is calculated by the
multiplication of the input signal with the fuzzy operator as:

(5)

wi � µAi (I1) × µBi (I2) × µCi (I3) × µDi (I4) ; i

� 1, 2, 3, 4, . . .

Here, wi signifies the “strength” of the fuzzy rule setup. The
nodes in this layer are termed “rule nodes” and are fixed.

Layer 3 In this layer, the normalized node strength for
every neuron is calculated as:

Ni � wi∑
i wi

; i � 1, 2, 3, 4, . . . . (6)

Layer 4 Here the fuzzy quantity is de-fuzzified. Every
node is an adaptive node holding a node function. The com-
bined membership functions and fuzzy rules are represented
as:

(7)

Ni × Fi � Ni · (pi · (I1) + qi · (I2) + ri · (I3) + si · (I4) ; i
� 1, 2, 3, . . .

where, pi , qi , ri and si are the parameter set at each node,
Ni is the normalized node strength and Fi is the fuzzy rule.

Layer 5 This layer gives the overall output of the system
by summation of all incoming signals as:

Overall output �
∑
i

Ni × Fi �
∑

i Ni × Fi∑
i Ni

(8)

3.2 Integrated ANFIS (ANFIS-GA&ANFIS-PSO)model

The ANFIS modelling variables are generally adjusted by
steep descend error or least square error methods. How-
ever, these two optimization approaches cannot result in
the global optimal solution and hence the solution may be
trapped in local optima. Also, the algorithmic parameters of
ANFIS such as the number of neurons, hidden layers, ini-
tial weights, membership functions, etc. are derived by the
trial–error approach. To conquer with such limitations, the
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Fig. 2 The scheme of ANFIS-GA hybrid algorithm

researchers proposed an integrated approach of ANFIS-GA
to enhance the predictability of the ANFIS model to find the
global optimal value. In the ANFIS-GA approach, the impor-
tant parameters such as population size, Maximum number
of generations, mutation percentage, crossover percentage,
selection, mutation rate, number of fuzzy rules, type and
number of membership functions are algorithmic parameter
inputs of simulation to estimate the optimal fitness func-
tion. While as per the discussions reported in the literature,
the most significant ANFIS-PSO algorithmic parameters are
the maximum number of iterations, the maximum number
of particles, initial inertia weight, inertia weight damping
ratio, personal learning coefficient, global learning coeffi-
cient, number of fuzzy rules. The main intention of GA and
PSO algorithms integration with ANFIS is to adjust such
ANNand fuzzy algorithmic parameters tominimize the spec-
ified objective function. ANFIS integrated GA approach has
beenpopularly used for solving a variety of engineering prob-
lems [38–40].

Similarly, the PSO integrated ANFIS model has been
also implemented to solve many manufacturing problems in
recent investigations [37, 41]. The flowchart of ANFIS-GA
integrated algorithm and ANFIS-PSO integrated algorithm
are respectively presented in Figs. 2 and 3.
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4 Experimental details andmeasurement
ofμ-EDM responses

The micro-through holes by μEDM process for the present
investigation have been processed on a 3mm thick aerospace
Ni718 superalloy plate by using a 3 axis CNC EDMmachine
(model: ZNC S430, Acro Machinery & Electric Co., Ltd,
Taiwan). The commercially available cylindrical copper elec-
trode of 800 μm diameter was used as the tool electrode.
TOTAL EDM3 oil was used as the dielectric fluid and
supplied to the machining zone continuously at a flushing
pressure of 0.4 kg/cm2 to wash away the formed debris

Fig. 4 The chemical composition of as-received Ni718 alloy workpiece
determined by EDS analysis

molten at the workpiece-tool gap. The details of the exper-
imental parameters and other machining conditions which
are used to perform μEDM holes are given in Table 1.
While the chemical composition of the as received work-
piece determined by EDS analysis is presented in Fig. 4.
The experimental design consists of a total of 36 experi-
mental runs based on the Taguchi’s orthogonal mixed-level
design and 3 repetitive and unnecessary tests were not con-
sidered for the experimentation [5]. The machine-dependent
permissible ranges of μEDM input parameters such as
Pulse on time, Current, Voltage and Duty cycle were deter-
mined by conducting the pilot experimental runs prior to the
conduction of actual machining experiments. Each exper-
iment in the design matrix was conducted for a depth
of 3 mm.

Production rate, surface quality, and dimensional accuracy
are the most important μEDM process performance evalua-
tion parameters concernedwith the quality cut. Therefore, the

Table 1 Details of the
experimental parameters S. No Variable factors Units Notation Level 1 Level 2 Level 3

1 Pulse on time μs x1 60 80 100

2 Current Amp x2 3 6 9

3 Voltage V x3 50 60 70

4 Duty cycle % x4 70 80 90

Dielectric used: EDM commercial grade oil

Dielectric flushing: Side flushing with pressure

Workpiece material: Inconel 718 alloy

Electrode material: Electrolytic pure copper

Electrode polarity: Possitive

Workpiece polarity: Negative
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(a) (b)

Fig. 5 Measurement of μEDMed a hole diameter and b recast layer thickness

machining experiments in this study are conducted to mea-
sure the material removal rate (MRR), recast layer thickness
(RLT), and radial overcut (ROC) asμEDMprocess responses
to evaluate them and predict the process performance. MRR
represents the production rate of μEDMed components. The
formation of the recast layer on the machined surface alters
the metallurgical properties and hardness of surface and sub-
surface regions which predominantly influence the corrosion
and fatigue characteristics of the machined part. Therefore,
the RLT represents the quality of μEDMed hole surface
integrity. While the ROC represents the dimensional accu-
racy of the machined hole. MRR (in mg/min) was estimated
as the difference in weight of the workpiece before and
after making drill per machining time. A high-precision dig-
ital weighing machine was used for accurately measuring
the weights of the workpiece samples before and after the
conduction of machining experiment. The recast layer in
the radial direction and machined micro-hole diameter was
measured on scanning electron micrographs using an image
analyzer software. A total of six readings were taken on
each machined hole to estimate recast layer thickness and
machined hole diameter individually and their average was
considered as the final response values respectively. ROC
was estimated as the difference between the initial diameter
of the tool electrode and the diameter of the machined hole
measured. The readings of RLT andROC are taken on the top
surface of the machined micro-hole. In Fig. 5, the measure-
ment of RLT and ROC onmachinedmicro-hole SEM images
is shown. The measured experiment results are reported in
Table 2.

5 Results and discussion

Initially, the adequacy of the experimentally measured
μEDM process response values was evaluated by ANOVA.
Table 3 present the ANOVA of the process responses. The

p-value less than 0.05 in Table 3 estimated using ANOVA
represent that the postulated models and selected variables
are significant to predict the process responses statistically
at a confidence level of 95% [42]. Accordingly, based on
the results presented in Table 3, all the response models
postulated for this investigation are statistically significant.
The multiple regression coefficient values (R2 values) in
Table 3 for the responses MRR, RLT, and ROC are 0.9898,
0.9992, and 0.9947 respectively. These values indicate that
the respective model of MRR, RLT, and ROC can esti-
mate their corresponding measured response with 98.98%,
99.92%, and 99.47% accuracy.

5.1 Prediction ofμEDM responses by ANN

ANN procedure map the process response between the input
process control variables to solve complex problems [43].
The ANN consists of interconnected constituent neural com-
ponents that are capable learn, discrete, and prepare the data
for prediction [44]. The ANN architecture was constructed
with input, hidden, and output layers. The neural components
in ANN architecture can mimic a human in learning from the
provided social event data for prediction. The application
of ANN in the recent past investigation has been consid-
ered very significant for modeling and prediction of several
machining process quality characteristics. In consideration
of its computational capabilities, in this investigation, ANN
has been used for modeling and prediction of μEDM perfor-
mance characteristics. The number of neurons in the input
layer represents the chosen process control variables and the
output layer neurons are the μEDM responses. While the
number of hidden layers and the number of neurons in each
hidden layer must be derived through trial and error. To con-
struct a perfect ANN architecture for the present problem,
MATLAB programming was used. The input layer consists
of the chosen four μEDM variables linked to the concealed
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Table 2 Experimental design and
measured response values Exp.

No
Pulse-on
time (μs)

Current
(Amp)

Voltage
(V)

Duty
cycle
(%)

MRR
(mg/min)

RLT
(μm)

ROC
(μm)

1 60 3 50 70 0.354 48.673 962

2 80 6 60 80 0.525 41.905 965

3 100 9 70 90 0.942 55.311 1025

4 80 9 50 70 0.556 64.475 859

5 100 3 60 80 0.542 43.965 954

6 60 6 70 90 0.541 38.213 990

7 100 6 50 70 0.529 60.828 1000

8 60 9 60 80 0.646 48.708 935

9 80 3 70 90 0.425 35.117 867

10 100 3 50 80 0.479 46.864 987

11 60 6 60 90 0.496 43.637 1005

12 80 9 70 70 0.817 55.433 999

13 100 6 50 80 0.521 50.917 984

14 60 9 60 90 0.728 52.506 1003

15 80 3 70 70 0.432 42.538 949

16 60 9 50 80 0.488 51.366 877

17 80 3 60 90 0.454 41.661 931

18 100 6 70 70 0.676 52.545 1025

19 80 9 50 80 0.559 53.87 884

20 100 3 60 90 0.565 48.151 938

21 60 6 70 70 0.458 46.023 987

22 80 3 50 90 0.383 44.532 982

23 100 6 60 70 0.652 58.023 1018

24 60 9 70 80 0.743 43.378 980

25 80 6 50 90 0.452 48.742 999

26 100 9 60 70 0.884 66.58 986

27 60 3 70 80 0.365 30.171 890

28 100 9 50 90 0.823 63.808 970

29 60 3 60 70 0.437 46.029 955

30 80 6 70 80 0.556 36.454 965

31 60 6 50 90 0.355 46.388 1015

32 80 9 60 70 0.746 60.790 935

33 100 3 70 80 0.486 38.393 909

neuron layer, and the output layers of μEDM responses con-
sidered in this work are connected to the shrouded layer.
From several trials execution of the program, the determined
ANN architecture model for the responses is shown in Fig. 6.

Each hidden layer in the developed model comprises 19
neurons, four input, and one output neuron. Levenberg–Mar-
quardt feed-forward with back-propagation learning (FFBP)
architecture was used for the training of the ANN sys-
tem for fast and intensive learning [44, 45] and to predict
the response values. The estimated value of mean square
relative error (MSRE) between the experimental data and
the estimated output response values is the performance

measure of the constructed FFBP network. MSRE is the
average square between the network output values and
experimental targeted values. The zero value of MSRE rep-
resents the zero error between the targeted values and the
predicted values and therefore, a lower value of MSRE is
preferred. The MSRE between the experimental and ANN
predicted response values corresponding to MRR, RLT, and
ROC are 0.0077, 0.0211, and 0.0012 respectively. On the
other hand, the regression value (R-value) is another mea-
sure of network efficiency. R values estimate the correlation
between the targeted (experimentally measured) values and
predicted output values by the network. An R-value of 1
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Table 3 Significance of μEDMcontrol variables and fit statistics of
response models

μEDM control variables p-value

MRR RLT ROC

Model < 0.0001 < 0.0001 < 0.0001

x1 < 0.0001 < 0.0001 < 0.0001

x2 < 0.0001 < 0.0001 < 0.0001

x3 < 0.0001 < 0.0001 < 0.0001

x4 0.0079 < 0.0001 < 0.0001

x1x2 0.0086 0.0757 0.0304

x1x3 0.0242 0.1287 0.0039

x1x4 0.4047 0.0012 < 0.0001

x2x3 < 0.0001 0.7082 < 0.0001

x2 x4 0.0066 0.9017 < 0.0001

x3 x4 0.2978 0.2364 < 0.0001

x12 0.0155 < 0.0001 < 0.0001

x22 < 0.0001 < 0.0001 < 0.0001

x32 < 0.0001 < 0.0001 0.0022

x42 0.0099 < 0.0001 < 0.0001

Fit Statistics

R2 0.9898 0.9992 0.9947

Adj-R2 0.9819 0.9987 0.9906

Pred-R2 0.9230 0.9969 0.9793

represents accurate predictability of the response values
by developed network, whereas, the random relationship
between the predictive model and targeted values for R value
is zero. The simulated correlation coefficients (R values)
for this investigation corresponding to the chosen μEDM
responses: MRR, RLT, and ROC are 0.9914, 0.9105 and
0.9481 respectively as shown in Fig. 7.

The regression coefficient (R2) values estimated for the
chosenμEDM responses: MRR, RLT, and ROC are closer to
1 is the indication for that the constructed network mapped
the chosen μEDM inputs to its outputs closely and can be
used for prediction precisely. Accordingly, the prediction
capability of the constructed FFBP network can be evalu-
ated and determined its scope applicability for a machining
process prediction [46]. In ANN predictability for the exper-
imental data collected in this investigation is presented in

Fig. 8a–c by correlating the experimentally measured data
with the ANN predicted data. The figure shows that the pre-
dicted response values are in close correlation with their
measured values.

5.2 Prediction ofμEDM responses by ANFIS

The ANFIS model is integration of ANN learning and fuzzy
if–then rule-based decision-making rationale. It develops the
mapping relationships among the process response and input
data to generate the finest distribution for membership func-
tions. In this section, prognostication ofMRR,RLT, andROC
as μEDM output responses by ANFIS is aimed under its
operating conditions such as pulse-on time, current, gap volt-
age, and duty cycle. There are two significant stages in the
implementation of the ANFIS model, the creation of pattern
vectors is the initial one, while the generation of mapping
relationship between the target vectors and their correspond-
ing input condition vectors is the other one. According to
the measured experimental data listed in Table 2 for this
investigation, out of 33 experimental runs, 24 were randomly
selected for training the network, and the rest 9 were selected
for testing. In developing the ANFIS model, the input vari-
ables of the model such as type and number of MFs and
the number of network iterations are essential parameters.
However, for a nonlinear process modeling, the appropriate
section of these essential parameters is considerably a chal-
lenging characteristic. There are no stipulated guidelines or
constructive formulations to determine the necessary num-
ber of MFs in the literature [47]. Therefore, the number of
MFs and their type are determined through the trial-and-error
method. Figure 9 shows the derived MFs of the input vari-
ables based on trail-error method. The training parameters
used for the formulation of the ANFIS predictive model are
given in Table 4. Generally, the predictive accuracy of the
ANFIS model is evaluated using the root-mean-square error
(RMSE). Figure 10a–c shows a good correlation between
the developed ANFIS model predicted values based on the
selected model training parameters for its formulation and
the experimentallymeasured values forMRR,RLT, andROC
respectively. The results reveal that a goodpredictivemodel is
constructed based on the employment of appropriate learning
and decision-making rationale with the minimum test error
to predict the μEDM parameters.

Fig. 6 The determined ANN
structure 4-19-1 for μEDM
performance characteristics
modelling and analysis
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Fig. 7 Linear regression analysis between the experimental values and predicted values by FFBP-ANN for training, validation, testing and overall
a of MRR, b of RLT and (b) of ROC

5.3 Prediction ofμEDM responses by ANFIS trained
by GA and ANFIS trained by PSO

Rather than selecting the ANFIS model input parameters
randomly, it is proposed their optimal conditions derivation

by the integration of evolutionary based optimization algo-
rithms such as GA and PSO towards the prediction accuracy
improvement of the ANFIS model. As evolutionary opti-
mization approaches with their random search, GA and PSO
are integrated with ANFIS as the most viable approaches
[47]. However, here the appropriate selection of GA and
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Fig. 8 Comparison of experimental and ANN-predicted data for a) MRR, b) RLT and c) ROC

(a) (b)

(c) (d)

Fig. 9 The MFs for a pulse-on time, b current, c gap voltage, and d duty cycle for ANFIS predictive model

Table 4 Training parameters ANFIS predictive models

Parameter Description/value

Number of nodes 237

Number of linear parameters 115

Total number of parameters 299

Number of training data pairs 24

Number of testing data pairs 9

Number of fuzzy rules 23

Membership function gaussmf

Optimisation Method Hybrid (Least square &
backpropagation)

Error Tolerance 0.0

Output MF Linear

Number of model training iterations 2000

Computation time < 1 min

PSO algorithm-centric parameters intern is another signif-
icant task an efficient hybrid ANFIS model development.

The scheme of the ANFIS-GA hybrid algorithm is shown
in Fig. 2. Table 5 lists the GA algorithm control parameters
used for the simulation of theANFIS-GA algorithm. The val-
ues of GA parameters for this investigation are derived based
on the several pilot simulations trials and the identified values
are the most appropriate for the present problem. Accord-
ing to the available experimentally measured data listed in
Table 2 for this investigation, out of 33 experimental data, 24
were randomly selected for the training of the ANFIS-GA
algorithm, and the rest 9 was selected for testing. To estab-
lish the ANFIS-GA predictive model, code was generated in
MATLAB software. The Gaussian MFs are used for the sim-
ulation of the ANFIS-GA algorithm as suggested by many
authors. Additionally, in the development of ANFIS-PSO,
the number of particles, weight damping inertia ratio, initial
inertia weight, the number of iterations, social and cognitive
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Fig. 10 Comparison of experimental and ANFIS-predicted data for a MRR, b RLT and c ROC

Table 5 GA and PSO algorithm
control parameters used for
simulation of ANFIS-GA
algorithm

GA control parameters for ANFIS-GA algorithm PSO control parameters for ANFIS-PSO
algorithm

Parameter Description/Value Parameter Description/Value

Population size 35 Max. number of iterations 35

Max. number of
generations

2000 Max. number of particles 2000

Mutation percentage 0.8 Initial inertia weight 0.5

Crossover percentage 0.6 Inertia weight damping
ratio

0.9

Selection pressure 8 Personal Learning
Coefficient

1

Mutation rate 0.1 Global Learning
Coefficient

2

Number of fuzzy rules 19 Number of fuzzy rules 19

Computation time ~ 45 min Computation time ~ 45 min

acceleration are the important parameters of PSO to opti-
mize [41]. To establish the ANFIS-PSO predictive model,
code was generated in MATLAB software.

The Gaussian-shaped MFs are considered for this work.
According to the available experimentally measured data
listed in Table 2 for this investigation, out of 33 experi-
mental data, 24 were randomly selected for the training of
the ANFIS-PSO algorithm, and the rest 9 was selected for
testing. Table 5 lists the PSO algorithm control parameters
used for the simulation of the ANFIS-PSO algorithm. The
PSO parameter values were identified as the most appropri-
ate for the present problem andwere derived based on several
pilot simulation runs and the identified ideal values for PSO
parameters such as the number of particles, weight damping
inertia ratio, initial inertia weight, the number of iterations,
social and cognitive acceleration respectively are 35, 2000,
1, 2, 0.5, and 0.99. The MFs structure corresponding to the
ANFIS-GA and ANFIS-PSO are presented in Figs. 11 and
12, respectively. Figure 13a–c and Fig. 14a–c present the

correlation of the hybrid ANFIS models such as ANFIS-
GA and ANFIS-PSO predicted data with the experimentally
measured data of μEDM responses respectively. A closer
correlation between the predicted values and their corre-
sponding experimental values can be observed from these
figures.

5.4 Predictability comparison between ANN, ANFIS,
ANFIS-GA, and ANFIS-PSO forμEDM responses

Figure 15a, b is the histograms that show the errors distributed
in the training and testing data of predicted and experimental
values forMRR predictive models of ANN, ANFIS, ANFIS-
GA, and ANFIS-PSO. Similarly, Fig. 16a, b and 17a, b are
the histograms that show the errors distributed in the training
and testing data of predicted and experimental values for RLT
and ROC predictive models of ANN, ANFIS, ANFIS-GA,
and ANFIS-PSO respectively. The error distribution in these
histograms holds the normal distribution.
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(a) (b)

(c) (d)

Fig. 11 The MFs for a pulse-on time, b current, c gap voltage, and d duty cycle for ANFIS-GA model

(a) (b)

(c) (d)

Fig. 12 The MFs for a pulse-on time, b current, c gap voltage, and d duty cycle for ANFIS-PSO model

Fig. 13 Comparison of experimental and ANFIS-GA predicted data for a MRR, b RLT and c ROC
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Fig. 14 Comparison of experimental and ANFIS-PSO predicted data for a MRR, b RLT and c ROC

Fig. 15 Histogram of errors for the selectivity of MRR prediction by ANN, ANFIS, ANFIS-GA, and ANFIS-PSO models: a training data set and
b testing data set

Fig. 16 Histogram of errors for the selectivity of RLT prediction by ANN, ANFIS, ANFIS-GA, and ANFIS-PSO models: a training data set and
b testing data set
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Fig. 17 Histogram of errors for the selectivity of ROC prediction by ANN, ANFIS, ANFIS-GA, and ANFIS-PSO models: a training data set and
b testing data set

The performance of neural network model formulation is
generally assessed based on the statistical parameters such as
the mean squared relative error (MSRE), root-mean-square
error (RMSE), average absolute relative deviation (AARD),
and determination coefficient (R2) evaluated between exper-
imentallymeasured and the predictivemodel output data [28,
40]. Computation of these statistical parameters is as follows:

MSRE � 1

N

∑
N

(
X pred − Xexp

Xexp

)2

(9)

RSME �
√

1

N

∑
N

(
Xexp − X pred

)2 (10)

% AARD � 100

N

∑
N

(
X pred − Xexp

Xexp

)
(11)

R2 � 1 −
∑N

i�1

[
X pred − Xexp

]
∑N

i�1

[
X pred − Xm

] , Xm �
∑N

i�1

[
X pred

]
N

(12)

where, Xpred is the predictive model output value, Xexp is the
targeted experimentally measured value, and N is the total
number of experimental runs.

The values of MSRE, RMSE and AARD are closer to 0
for the accurate predictive model, whereas the value of R2

is closer to 1. The calculated values of statistical parameters
representing the predictability accuracy of the predictive net-
work models proposed in this work for the prediction of the
chosen μEDM responses are listed in Table 6. The values
of statistical parameters in Table 6 show that the predicted
values by using ANFIS-PSO model are closely correlated to
the experimentally measured values of the μEDM responses
compared with the predicted values by using ANFIS-GA,

ANFIS, regression, and ANNmodels. Accordingly, ANFIS-
PSO model is recommended as the more suitable algorithm
for the prediction of μEDM responses compared with the
other models considered in this investigation.

The scatter plots between the data predicted through the
developed predictive models and the experimentally mea-
sureddata are shown inFig. 18a–c for detailedunderstanding.
The scattered data show a reasonable correlation between the
predicted data through all predictive models and experimen-
tal data. Considering the three responses, the data scatter
of ANFIS-PSO predictive model with experimental data is
very less and closer to the line compared to the rest of the
predictive models for the training as-well-as testing stage.
This explains the precision of the ANFIS-PSO model as
superior in comparison with ANFIS-GA, ANFIS, ANN, and
regression models for predicting the μEDM performance
characteristics.

6 Conclusions

The research work presented the use of a novel hybrid intel-
ligent predictive modeling approach that uses bio-inspired
algorithms such as an improved ANFIS with the integration
ofGA and PSO to predictMRR,RLT, andROC in theμEDM
process. The developed predictive models were assessed sta-
tistically to understand their accurate predictability.

The derived conclusions through this investigation are:

1. ANOVA on the experimentally measured date presents
the chosen μEDM process control variables are signifi-
cant for their responses.
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Table 6 Performances comparison between the developed predictive models

Response Model Analysis Regression ANN ANFIS ANFIS-GA ANFIS-PSO

Training Testing Training Testing Training Testing Training Testing

MRR MSRE 0.0009 0.0024 0.0001 0.0019 0.0009 0.0015 0.0053 0.0124 0.0004

RMSE 0.0155 0.0265 0.0749 0.0257 0.0130 0.0237 0.0490 0.0574 0.0132

%AARD 0.3860 1.4050 8.0335 0.5934 0.9916 0.6327 3.0336 3.8163 0.2050

R2 0.9881 0.9653 0.8815 0.9706 0.9962 0.9716 0.9543 0.8626 0.9972

RLT MSRE 0.0000 0.0019 0.0721 0.0022 0.0055 0.0010 0.0002 0.0001 0.0001

RMSE 0.2626 2.2977 9.0770 2.1455 3.6942 1.5719 0.5205 0.2734 0.4532

%AARD 0.0152 0.4740 4.0512 0.9440 0.2662 0.5103 0.3024 0.1251 0.3359

R2 0.9985 0.9128 0.5035 0.9135 0.9196 0.9530 0.9983 0.9986 0.9988

ROC MSRE 0.0000 0.0001 0.0002 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001

RMSE 3.2549 10.8264 11.7047 19.9833 1.2910 2.3004 2.1858 1.4434 2.8480

%AARD 0.0681 7.2181 8.8339 1.8629 0.4183 0.6769 3.2557 0.0649 1.7261

R2 0.9956 0.9551 0.9241 0.8606 0.9989 0.9978 0.9950 0.9991 0.9990

Fig. 18 Comparison of predicted selectivity data against experimental selectivity data for a MRR, b RLT, and c ROC

2. The postulated regression models for MRR, RLT, and
ROC can predict their measured value with an accuracy
of up to 98.98%, 99.92%, and 99.47% respectively.

3. The predicted training and testing values for the
responses with ANN, ANFIS, ANFIS-GA, and ANFIS-
PSO were reasonably in good agreement with their
corresponding experimentally measured values.

4. Comparison plots of predicted data with ANN, ANFIS,
ANFIS-GA, and ANFIS-PSO and experimental values
for all the responses are shown with a good correlation.

5. The histograms show the normal distribution of the errors
in training and testing data of predicted data with ANN,
ANFIS, ANFIS-GA, and ANFIS-PSO and experimental
values for all the responses.

6. The estimated MSRE, RMSE, %AARD, and R2 values
of ANFIS-PSOwere found to be superior compared with
regression, ANFIS-GA, ANFIS, and ANN models.

7. The scatter plots between the data predicted through
the developed predictive models and the experimentally

measured data also explain the precision of the ANFIS-
PSO model as superior in comparison with regression,
ANFIS-GA, ANFIS, and ANNmodels for predicting the
μEDM performance characteristics.

8. The computation time noted for the simulation of ANN
and ANFISmodels was too much lower (less than 1 min)
while ANFIS-GA and ANFIS-PSO models were about
45 min.
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