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Abstract
In a rapidly changing manufacturing environment, accurate and efficient models are necessary to predict cutting force and
feature quality in the mechanical micro-drilling process. Micro-drilling is challenging due to high spindle speeds and size
effects and, therefore, cannot be considered a scaled-down version of macro-drilling. In this study, micro-holes of Ø 0.4 mm
are machined using Ti–Al–N coated carbide micro-drill on Titanium alloy (Cp-Ti grade 2) under dry conditions. The process
parameters like cutting speed, feed, and pecking depth are varied in three levels based on the full-factorial design with
thrust force, burr height, and radial overcut as responses. Predictive models are developed for responses using two intelligent
modelling techniques: generalised regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS).
The experimental data is used to trainmodels, and additional experiments are performed to generate testing and validation data.
Later multiple regression analysis (MRA) models are also developed for responses. The results indicated that the predicted
responses from GRNN, ANFIS, and MRA errors are within ± 5%, ± 5.5%, and ± 12%, respectively, suggesting that the
GRNN and ANFIS models are more reliable than the MRA model. In this research, the GRNN models outperformed the
ANFISmodels. In continuation of the study, optimal process parameters are ascertained tominimize responses simultaneously.
At optimal parameter settings, the performance of uncoated and Ti–Al–N coated carbide micro-drills is also evaluated by
experiments. Ti–Al–N coated micro-drill reduces the considered responses with lesser tool wear and a favourable chip
formation compared to the uncoated micro-drill.
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1 Introduction

Titanium alloy (Cp-Ti grade 2) is used extensively in the
biomedical industry for fabricating medical implants, filters,
and micro-catheters due to bio-compatibility [1]. In these
applications, machining of micro-holes of desired quality is
essential [2, 3].

Micro-holes are machined using both conventional and
non-conventional micromachining processes. The non-
conventional processes include electro-dischargemachining,
electrochemical machining, abrasive jet machining, laser
beam machining, and electron beam machining. Among
conventional micro-machining processes, micro-holes are
machined using a rotating micro-drill on a stationary
workpiece by direct contact in Mechanical Micro Drilling
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(MMD) process. MMD process is preferred over other non-
conventional processes because the better quality holes can
be machined in less time [4].

Dry micro-drilling is gaining much importance in many
biomedical applications, as there is a requirement for cleaner
production [5], and cutting fluids can cause contamination.
The biomedical implants make direct contact with the human
tissues during their usage [6], and contamination has to be
minimized to avoid infections [7].

However executing MMD under dry conditions on Tita-
nium alloy (Cp-Ti grade 2) poses significant challenges as
it is a difficult to machine material because of low thermal
conductivity, affinity with cutting tools, and strain hardening
behaviour. Due to low thermal conductivity high temper-
atures are generated at chip-tool interface resulting in an
accelerated tool wear [8]. Moreover micro-drills used in
MMD are slender with a higher flute length to diameter ratio
and susceptible to breakages [9]. Therefore, selecting a suit-
able drilling strategy, process parameters, and tools becomes
vital.

Continuous and peck drilling strategies are mainly used
for machining in MMD. The temperature at the chip-tool
interface decreases with the peck drilling strategy as holes
are machined with intermittent feed-in steps [10]. In MMD,
peck drilling is observed better than continuous drilling in
improving hole dimensional accuracy and roundness due to
better chip clearance [11]. Peckdrilling is also found effective
in improving tool lifewhenmachiningmicro-holes of smaller
aspect ratios [12, 13]. Even though the machining time is
higher in peck drilling than continuous drilling; it improves
tool life by avoiding frequent drill breakages and minimizes
tooling costs.

For increasing tool life, selection of pecking depth is crit-
ical. In literature, 10% of the drill diameter is suggested for
MMD of stainless steel [14], whereas in another study on
nickel-based super alloy was varied from 0.05 to 0.5 mm
with Ø 0.5 mm drill [15]. Therefore pecking depth selection
mainly depends on the combination of tool, work-piece, and
machining condition.

The coated micro-drills are used effectively in the dry
machining of various engineering materials. The effect of
chromium-based multi-layered coatings on tungsten carbide
micro-drills was investigated in MMD of Printed Circuit
Board (PCB), Cr-Si -Al-N coating with 8.7% silicon con-
tent effectively reduced tool wear and improved hole quality
[16]. Similarly, another study on MMD of PCB investigated
the effect of nitrogen percentages in Zirconium chromium
nitride-based coatings on tungsten carbidemicro drills. Coat-
ing with 17% nitrogen effectively improved tool life and hole
quality [17]. Among the various coated tools, the Ti–Al–N
coated micro-drills are used successfully in MMD of hard-
to-cut materials. Imran et al. [18] investigated the tool wear

mechanism inMMDof Inconel 718. They optimized the cut-
ting conditions for increasing tool life using Ti–Al–N coated
micro-drills under wet conditions. The tool wear mecha-
nism was analysed, and significant causes were identified
as abrasion, microchipping, and adhesion. In another study,
Ti–Al–N coated micro-drills were also found effective in
the reduction of entry burr height in MMD of Nickel-based
super-alloy Nimonic 80A [19].

Many studies in the past were carried out on MMD of
titanium alloys on the tool, process parameter selection and
optimization of responses. Giorleo et al. [20] evaluated the
performance of Al2O3 coated HSS micro-drill of Ø 0.5 mm
in MMD of Titanium grade 2 material using direct drilling
strategy under dry conditions with tool life and hole round-
ness as measured responses. The Al2O3 coating effectively
enhanced the tool life, whereas it had a negligible effect on
hole roundness error.

Guu et al. [21] studied effect of process parameters spindle
speed (5000, 12,000, 20,000) rpm, feed (1, 2, 3)mm/min, and
tool holder length (10, 15, 20) on responses stress concentra-
tion and hole quality in MMD of Ti–6Al–4 V. Experiments
were conducted under wet conditions with three different
coolants with an uncoated Tungsten carbide micro-drill of
Ø 0.2 mm using a direct drilling strategy. A finite element
analysis model was developed to determine stress concentra-
tion. An increase in stress concentration influenced the hole
quality adversely.

Prasanna et al. [22] optimized process parameters such as
spindle speed (2000, 3500, 5000) rpm, feed rate (5, 10, 15)
mm/min, under air blow condition by varying air pressure
(2, 4, 6) bars for output responses like thrust force, radial
overcut, circularity, and taper angle in MMD of Ti–6Al–4 V.
Air blow condition was selected for experimentation using Ø
0.4 mm uncoated carbide micro-drill adopting direct drilling
strategy. Thrust forcewas influencedmainly by spindle speed
and feed,whereas spindle speed and air pressure significantly
impacted hole quality.

The effect of different cooling conditions like dry, wet,
MinimumQuantity Lubrication (MQL), and cryogenic cool-
ing on responses like thrust force, torque, exit burr height,
tool wear, and surface roughness in MMD of Ti–6Al–4 V
with tungsten carbide micro-drill of Ø 0.7 mm [23]. Experi-
mentswere performed by direct drilling strategywith varying
process parameters spindle speed: (1000, 25,000, 5000, and
7500) rpm and feed rates (5, 10, 15, 30, 50) mm/min.
Among various cooling conditions, cryogenic was influen-
tial in reducing both tool wear and exit burr height. Similarly,
the effect of nano-diamond particle-based Minimum Quan-
tity Lubrication (MQL) on responses thrust force, torque,
tool wear, and circularity in MMD of Ti–6Al–4 V were
investigated [24]. The experiments were carried out using
uncoated tungsten carbidemicro-drills of Ø 0.3mmby direct
drilling strategy. Nano-particle size and concentration were
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optimized for responses, and a significant reduction in all the
responses was observed with particle size of 35nano-meters,
0.4% weight concentration and feed rate of 10 mm/min.
Mechanistic models for responses like exit burr height and
thrust force were developed in MMD of Ti–6Al–4 V [25].
The experiments were carried out by direct drilling in wet
conditions using an uncoated tungsten carbide micro-drill of
Ø 0.3mm.Experimental results were in good agreementwith
the results predicted by the model.

Even though much information is available on the MMD
of titanium alloys, whenever there is a change in tool type,
workpiece material, drilling strategy, and machining condi-
tions, the process parameters must be selected optimally to
enhance hole quality and minimize thrust forces. In regular
practice, the operator has to perform numerous experiments
to identify the optimal parameters. This trial and error
approach extends the time needed for preparation before pro-
cessing and results in resource wastages. Therefore to avoid
the drawbacks of the trial and error approach, it becomes nec-
essary to develop appropriate models for predicting output
responses quickly and accurately when there is a change in
process parameters [26].

Regression analysis is a statistical modelling technique
that establishes the relationship between input variables and
output responses. It is ideally suited to developmodels to pre-
dict output responses when many independent variables are
present. However, the major disadvantage of adopting sta-
tistical modelling techniques is their greater dependence on
model-structural assumptions, whether linear or nonlinear,
which results in uncertainty in the model’s prediction per-
formance [27]. Therefore Artificial Intelligence (AI) based
techniques likeAdaptiveNeural Networks (ANN) and Fuzzy
Logic (FL) are adopted for developing predictive models to
overcome these disadvantages.

ANN are mathematical simulations of the biological ner-
vous system that mimic its behaviour. They have distributed,
simultaneous, and adaptive computing that can map compli-
cated, nonlinear systems, which are difficult to map using
regression methods [28]. An ANN is a potent mathemati-
cal tool that has demonstrated its effectiveness in various
domains [29]. The sample size has a significant impact on
the traditional ANN. Usually, a large number of samples
are needed to ensure the accuracy of the prediction. Many
variants of ANN like GRNN and ANFIS are developed to
overcome these limitations.

GRNN is a probabilistic neural network developed by
Specht in 1991, mainly applied for regression and function
approximation. GRNN is advantageous compared to tradi-
tional ANN as only a smaller proportion of the training data
is necessary. Because a probabilistic neural network can con-
nect to the underlying function of the data even when using
a limited number of training samples [27]. GRNN is based
on a one-pass training algorithm; therefore, it speeds up the

training process and trains the network more quickly. Unlike
traditional feed-forward networks, GRNN estimation can
always converge to a global solution [30]. The GRNN is also
found very effective in modelling many non-conventional
machining process [27, 31].

ANFIS is a hybrid technique that combines the fuzzy
behaviour of a fuzzy inference systemwith the high-learning
capabilities of an ANN developed by Jang [32]. The ANN
can self-understand the data patterns, and fuzzy logic applies
if–then rules tomanage existing uncertainty and imprecision.
Since it combines both neural networks and fuzzy logic prin-
ciples, it can capture both benefits in a single frame. In the
ANFIS technique, a fuzzy model is developed initially based
on rules extracted from the system’s input and output data.
TheANN is later utilized to fine-tune the fuzzy rules to obtain
the ANFIS model. ANFIS models are also used successfully
in other fields of mechanical engineering due to its advan-
tages [32–34]

In past studies on MMD, statistical and Artificial Intel-
ligence (AI) based methods are used to develop predictive
models for responses as presented in Table 1.

Past studies on predictive modelling in the MMD pro-
cess reveal that uncoated carbide micro-drill is used. Using
a Ti–Al–N coated carbide micro-drill in the MMD process,
researchers have not attempted to develop predictive mod-
els for thrust force and quality features like burr height and
radial overcut. Even though several AI models have been
tried in the MMD process, the GRNN modelling technique
has not been attempted in spite of its advantages. There
are very few research studies that compare the performance
of AI-based models and regression models in conventional
micro-machining processes.

Therefore, the current study aims to develop GRNN,
ANFIS, and MRA models for thrust force, burr height, and
radial overcut in MMD of Titanium alloy (Cp-Ti grade 2)
using Ti–Al–N coated carbide micro-drills under dry condi-
tions, with cutting speed, feed, and pecking depth as process
parameters.

The study has been extended to determine process param-
eter settings in order to simultaneously minimize responses
by multi-response optimization. The experiments are also
carried out using an uncoated carbide micro-drill at optimal
settings, and the results are compared with Ti-Al –N coated
carbide drill.

2 Materials andmethods

In the current study, Titanium alloy (CP-Ti grade 2) is
selected as workpiece material, its chemical composition is
tested using optical emission spectroscopy and presented in
Table 2.
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Table 2 Chemical composition of Titanium alloy—(Cp-Ti grade 2)

Sl No Element Composition (%)

1 Titanium 99.70

2 Carbon 0.031

3 Chromium 0.02

4 Nitrogen 0.02

5 Oxygen 0.010

6 Ferrous 0.13

Table 3 Tool specification

Sl No Parameter Specification

1 Total length 38.0 mm

2 Drill diameter Ø 0.4 mm

3 Flute length 6.0 mm

4 Shank diameter Ø 3.157 mm

5 Helix angle 30°

6 Point angle 130°

7 Drill material Tungsten carbide

8 Coating type Ti–Al–N

Workpieces of size 40 × 20 × 1 mm are prepared for
experimentation.

Commercially available Ti–Al–N coated carbide micro-
drills of Ø 0.4 mm are used for experiments, and the
specification is shown in Table 3. Figure 1a depicts the image
of themicro-drill used in the study. The coating onmicro-drill
is confirmed using Energy Dispersive Spectroscopy (EDS),
and results are depicted in Fig. 1b.

2.1 Experimental design and setup

A full factorial design presented in Table 4 by varying pro-
cess parameters like cutting speed, feed, and pecking depth
in three levels is adopted for experimentation. The levels of
process parameters are selected based on preliminary exper-
imentation and the literature survey.

Experiments are carried out on a 3-axis vertical machin-
ing centre (KMI118 of JYOTI make) and the specifica-
tion of machine is presented in Table 5. The work-pieces
are secured firmly on vice and mounted on a multi-
component dynamometer of Kistler make (9257B). Finally,
the dynamometer is connected to a charge amplifier type
5070 of Kistler make and data acquisition system compatible
with dynoware software. The schematic of the experimental
setup is presented in Fig. 2.

Fig. 1 Details of Ti–Al–N coated
micro-drill used for
experimentation
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Table 4 Experimental design
Sl No Parameter Symbol Levels

− 1 0 + 1

1 Cutting speed (m/min) V 8.8 13.8 18.8

2 Feed (μm/rev) F 4 8 12

3 Pecking depth (μm) P 25 50 75

Table 5 Specification of machine used for experimentation

Sl No Parameter Specification

1 Maximum spindle speed 15,000 rpm

2 Spindle power 15 kW

3 Spindle torque 110/84 Nm

4 Positioning accuracy 10 μm

5 Positioning repeatability 5 μm

6 Table length 800 mm

7 Table width 600 mm

2.2 Measurement procedure for responses

The thrust force, exit burr height, and radial overcut are the
three responses measured in this study, and the procedure for
measuring them is discussed in this section.

2.2.1 Thrust force

Thrust forces are relatively higher when machined with
micro-drills than the larger diameter drills due to longer

chisel edge length compared with its diameter [41]. More-
over, the micro-drills are slender with larger flute length to
diameter, and larger thrust forces can reduce tool life due to
breakages. Therefore it is necessary tominimize thrust forces
for increasing tool life.

The thrust force signals are captured at a 1500 Hz/s
sampling rate using a multi-component dynamometer. The
signals are further amplified using a charge amplifier and
transferred to a data acquisition system, and a low pass filter
is applied to eliminate noise.

The maximum value of thrust force is considered for each
hole [4]. A typical recorded thrust force signal is presented
in Fig. 3, and three distinct stages can be identified [42]. In
stage 1, a gradual increase in thrust force is observed as the
micro-drill contacts the work-piece during entry. As the drill
penetrates, thrust force becomes steady, as observed in stage
2. A decrease in thrust force can be observed in stage 3, as the
drill exits the work-piece material. Therefore the maximum
value is considered for each hole from the thrust force signal
for analysis.

Fig. 2 Experimental setup
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Fig. 3 Thrust force variation at
V � 18.8 m/min, F � 4 μm/rev
and P � 75 μm

Stage - 1 Stage - 2 Stage - 3

Fig. 4 3D profiler burr height
measurement

2.2.2 Burr height

Burrs are undesirable material projections generated on both
micro-drill entry and exit surfaces of work-piece. In the
drilling of titanium alloys, the exit burrs are larger and more
challenging to remove than entry burr. Therefore exit burr
formation is of significant interest in the current study, as
burr elimination or reduction minimizes manufacturing time
and costs.

The burr formation is mainly characterized by burr height
and burr thickness; among them, burr thickness remains sta-
ble and does not vary much with process parameters [43]
compared to burr height. Therefore burr height is character-
ized andmeasuredusing a non-contact 3Dprofiler ofVEECO

make. The hole is scanned, and maximum burr height is con-
sidered [44] as indicated on the digital scale for analysis,
Fig. 4 shows a typical burr height measurement.

2.2.3 Radial overcut

The machined holes are characterized for dimensional accu-
racy by measuring radial overcut. The diameter of machined
holes on the entry side is larger than the exit side due to wan-
dering motion [21, 24] and therefore considered for analysis.
The images of machined holes are captured using a stereomi-
croscope, and diameter is measured by selecting 8 points on
the hole periphery using image processing software Image–j
[45]. The radial overcut is determined using Eq. 1, based on
the measured hole diameter on entry side Dentry and the tool
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Fig. 5 Block diagram of GRNN architecture

Dtool [46]

Radial overcut(μm) �
(

Dentr y − Dtool

2

)
(1)

2.3 Generalised regression neural network (GRNN)

GRNNmodel mainly consists of four different layers such as
input layer, pattern layer, summation layer, and output layer.
The input layer feeds the input to the subsequent layer. The
pattern layer determines the Euclidean distance and activa-
tion function. The number of neurons in this layer will be
similar to the number of experiments used to train the net-
work. The summation layer is made up of two subparts (that
is the numerator and a denominator part of Eq. 2). The output
layer consists of a single neuron that calculates the output by
dividing the numerator and denominator parts of the summa-
tion layer. The typical structure of GRNN model developed
in the current study is shown in Fig. 5.

The GRNN model predicts based on the Eq. 2.

Ŷ (X) �

⎛
⎜⎜⎜⎜⎝

∑ n

i � 1
Yi exp

(
− D2

i
2σ 2

)

∑ n

i � 1
exp

(
− D2

i
2σ 2

)

⎞
⎟⎟⎟⎟⎠ (2)

where Ŷ (X)� output predicted, X � input, Y i� Output of the
input sample I, D i

2� Euclidean distance from the X and Xi,
n � number of experiments, σ � spread parameter

The GRNNmodel output is calculated using the weighted
average of the training dataset’s outputs. The weights
are computed based on the Euclidean distance calculated

between the training data and test data. The Euclidean dis-
tances are calculated from training sample Xi using Eq. 3.

D2
i � (X − Xi )

T (X − Xi ) (3)

2.4 Adaptive neuro fuzzy inference system (ANFIS)

The general structure of the ANFIS model with three inputs
(cutting speed, feed, and pecking depth) and single-output
(thrust force) is presented in Fig. 6.

The ANFIS model consists of five layers; the initial layer
is the fuzzification layer and consists of adaptable nodes. In
order to obtain fuzzy datasets from input values, the fuzzifi-
cation layer employs the Membership function (MF).

Many MF are available in ANFIS modelling, such as
Trapezoidal and triangle MF, which are linear MF. Simi-
larly, the Gaussian MF function processes non-linear input
data. The combinational MF that combines different MF’s
is also available. The type of MF affects the model predic-
tion accuracy [47] and therefore, a suitable selection must be
made.

Pi-membership function, abbreviatedasPi-MF, is selected
for model development in the current study. Pi-MF is spline-
based, pi-shaped, and combines an S-shaped and a Z-shaped
MF and is shown in Eq. 4.

μAi (x) � Pi M F(x; a, b, c, d) � 0, x ≤ a
2 (x−a)

(b−a2)
, a ≤ x ≤ a+b

2

1 − 2
(

a−b
b−a

)2
, a+b

2 ≤ x ≤ b

1, b ≤ x ≤ c

1 − 2
(

x−c
d−c

)2
, c ≤ x ≤ c+d

2

2
(

x−d
d−c

)2
, c+d

2 ≤ x ≤ d

0, x ≥ d

(4)

where a, b, c, d terms are called premise parameters, and the
learning algorithm minimizes the training error by optimiz-
ing these terms.

The second layer in the ANFIS structure is referred to
as the rule layer and it consists of a fixed number of nodes.
This layer ismainly responsible for generating firing strength
(Wi) for the rules using membership values computed in the
previous layer. The values Wi are determined by multiplying
the membership values as shown in the Eq. 5.

Wi � μAi (x).μAi (y).μAi (z)i � 1, 2, 3 . . . .27 (5)

where x, y, z are inputs μAi(x), μAi(y) and μAi(z) are mem-
bership functions and i is the number of rules generated (27
in the current study).
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Fig. 6 Block diagram of ANFIS
architecture
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The third layer is the normalization layer, which deter-
mines each rule’s normalized firing strengths. The normal-
ized value for the ith rule is calculated as shown in Eq. 6.

Wi � Wi∑
i Wi

i � 1, 2, 3 . . . .27 (6)

The activation function layer is the fourth layer and each
node of this layer determines the weighted values of rules by
multiplying with a first-order polynomial as shown in Eq. 7.

Wi . fi � Wi (pi x + qi y + ri z) (7)

where Wi is normalisation layer output and f iis activation
function.

The nodes in this layer are adaptive and where constants
in equation pi,qi and ri (called as consequence parameters)
have to be adjusted by the learning algorithm.

Finally, the fifth layer is referred to as the summation layer
or overall output layer, and the final output of ANFIS is deter-
mined by summing the individual outputs of each rule of
defuzzification layer as shown in Eq. 8.

27∑
i�1

Wi fi �
∑27

i�1 Wi ∗ fi∑27
i�1 Wi

(8)

2.5 Multiple regression analysis

The Multiple Regression Analysis (MRA) combines statis-
tical and mathematical techniques to analyse the effects of

many input process parameters on output responses. InMRA,
the quadratic models of second order are found effective in
modelling responses in MMD compared to bilinear models
[35]. The second order quadratic models are also effective in
predicting responses in others domains of mechanical engi-
neering [32]. Therefore quadraticmodels of second-order are
developed for the responses based on the Eq. 9 [48]

Y � β0 +
k∑

i�1

βi xi +
k∑

i�1

βi i x2i +
k∑

j>1

βi j xi x j (9)

where y � output response, k � number of input process
parameters, xi, xjinput or process parameters, β0is constant,
β i, β ii, β ij are coefficients of linear, square, and interaction
terms.

3 Results and discussion

The experiments are carried out in three trials. The average
value of measured responses is determined for each experi-
ment and presented in Table 6.

The stereo microscope images of machined holes on the
entry side of theworkpiece under different experimental con-
ditions are depicted in Fig. 7.

The data in Table 6 is used for training the GRNN and
ANFIS models. The additional 10 data sets are generated by
performing experiments at random points (not considered in
the initial experimental design) to test and validate models
and are presented in Table 7.
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Table 6 Experimental results –Training data

Exp.
No

Cutting speed
(m/min)

Feed
(μm/rev)

Pecking depth
(mm)

Experimental
combination

Thrust force
(N)

Burr height
(μm)

Radial overcut
(μm)

V F P

1 8.8 4 25 − 1 − 1 − 1 8.94 30.30 11.250

2 8.8 4 50 − 1 − 1 0 9.41 30.57 11.900

3 8.8 4 75 − 1 − 1 + 1 10.14 32.83 12.880

4 8.8 8 25 − 1 0 − 1 11.87 31.87 10.740

5 8.8 8 50 − 1 0 0 13.26 32.40 12.440

6 8.8 8 75 − 1 0 + 1 13.20 34.47 12.500

7 8.8 12 25 − 1 + 1 − 1 12.33 32.30 10.690

8 8.8 12 50 − 1 + 1 0 13.32 34.30 11.430

9 8.8 12 75 − 1 + 1 + 1 14.58 36.47 12.865

10 13.8 4 25 0 − 1 − 1 9.15 30.73 13.100

11 13.8 4 50 0 − 1 0 10.90 31.87 13.510

12 13.8 4 75 0 − 1 + 1 10.75 32.90 13.710

13 13.8 8 25 0 0 − 1 10.39 30.13 13.880

14 13.8 8 50 0 0 0 11.17 32.37 14.450

15 13.8 8 75 0 0 + 1 11.28 33.70 14.390

16 13.8 12 25 0 + 1 − 1 10.76 31.63 14.150

17 13.8 12 50 0 + 1 0 12.77 33.53 15.030

18 13.8 12 75 0 + 1 + 1 12.81 35.67 15.170

19 18.8 4 25 + 1 − 1 − 1 8.01 27.00 11.200

20 18.8 4 50 + 1 − 1 0 9.54 30.70 12.840

21 18.8 4 75 + 1 − 1 + 1 9.80 31.23 13.580

22 18.8 8 25 + 1 0 − 1 8.89 29.20 13.780

23 18.8 8 50 + 1 0 0 10.20 31.03 13.620

24 18.8 8 75 + 1 0 + 1 10.25 31.97 13.590

25 18.8 12 25 + 1 + 1 − 1 10.29 30.97 15.590

26 18.8 12 50 + 1 + 1 0 11.81 33.03 15.810

27 18.8 12 75 + 1 + 1 + 1 11.99 33.90 16.140

The prediction accuracy of the developed model is influ-
enced by the spread parameter (σ) value in the GRNNmodel
and the type of MF in the ANFIS model. Therefore to min-
imize prediction errors, the datasets from experiments 1–5
in Table 7 are utilized to determine the optimal value of
spread parameter in GRNN models and the best type of MF
in ANFIS models. The developed models are validated using
the datasets from experiments 6–10.

3.1 Predictive models

In the current study three modelling techniques are used
to establish relationship between process parameters and
responses. The performance of AI based GRNN, ANFIS
models are compared with regression models developed by
MRA.

3.1.1 GRNNmodelling

In the initial step, the spread parameter “σ” is selected, and
from Eq. 2 used for prediction in GRNN modelling, “σ” is
the only unknown parameter. The selection of “σ” influences
the prediction accuracy of GRNNmodels. The high value of
“σ” can result in under fitting, and the low-value results in
overfitting. Therefore an optimal value has to be selected for
the best performance of GRNN models.

No intuitive methods are available to choose the optimal
spread parameter, and a trial and method must be applied
[27, 30]. Since many computations are needed to calculate
one set of variables, a Matlab spread parameter selection
function is used for the implementation. The training data
set is used as input (experimental data in Table 6), and a trial
error method is applied to predict responses at different “σ”
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Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

Ø 417.49 μm Ø 422.75 μm Ø 425.23 μm Ø 425.72 μm Ø 426.33 μm Ø 427.35 μm 
Experiment 7 Experiment 8 Experiment 9 Experiment 10 Experiment 11 Experiment 12

100 μm 100 μm 100 μm

Ø 425.77 μm Ø 428.92 μm Ø 429.54 μm Ø 421.29 μm Ø 423.45 μm Ø 427.42 μm

Experiment 13 Experiment 14 Experiment 15 Experiment 16 Experiment 17 Experiment 18

Ø 426.15 μm Ø 427.25 μm Ø 428.86 μm Ø 428.30 μm Ø 429.32 μm Ø 430.61 μm 
Experiment 19 Experiment 20 Experiment 21 Experiment 22 Experiment 23 Experiment 24

Ø 422.91 μm Ø 425.57 μm Ø 427.63 μm Ø 426.32 μm Ø 429.45 μm Ø 431.32 μm 
Experiment 25 Experiment 26 Experiment 27

Ø 430.25 μm Ø 432.18 μm Ø 432.65 μm 

100 μm 100 μm

100 μm 100 μm 100 μm 100 μm 100 μm 100 μm

100 μm100 μm

Fig. 7 Stereo microscope images of machined holes on the entry side

Table 7 Experimental results additional –testing and validation data

Exp.
No

Cutting speed
(m/min)

Feed
(μm/rev)

Pecking
depth (mm)

Experimental combination Thrust force
(N)

Burr height
(μm)

Radial
overcut
(μm)V F P

1 9.42 5 30 − 0.88 − 0.75 − 0.80 9.10 29.70 11.04

2 10.68 6.5 55 − 0.63 − 0.38 + 0.20 12.26 30.95 12.22

3 11.30 9 65 − 0.50 + 0.25 + 0.60 12.90 35.75 14.03

4 12.56 9 70 − 0.25 + 0.25 + 0.80 11.92 33.15 14.21

5 17.58 10 45 + 0.76 − 0.63 + 0.40 9.43 31.20 15.02

6 16.96 5 35 + 0.63 − 0.75 − 0.60 8.63 29.25 11.75

7 18.21 10 45 + 0.88 + 0.50 − 0.20 10.51 33.17 15.30

8 11.30 6 37.5 − 0.50 − 0.50 − 0.50 10.40 30.33 12.94

9 10.05 7.5 40 − 0.75 − 0.13 − 0.40 12.51 33.60 12.90

10 16.33 10 62.5 + 0.50 + 0.50 + 0.50 12.11 33.70 14.31

and compared with the test data set (from experiments 1–5 in
Table 7) for calculating mean absolute errors. The variation
ofmean absolute error with spread parameter for thrust force,
burr height, and radial overcut models is depicted in Fig. 8.

The spread parameter value (σ) at which minimum mean
absolute error is observed represents the optimal value and
is selected for developing the GRNN model. Therefore σ �
1.5 is selected for developing the thrust force model, and

similarly, σ � 1.35 and σ � 0.15 are selected for developing
burr height, and radial overcut models.

GRNN models are developed for thrust force, burr height
and radial overcut using selected “σ” values. The correlation
between experimental values and their correspondingGRNN
model predicted values for training data are depicted inFig. 9.

From Fig. 9a, b, and c, it is observed that R2–values are
1 for thrust force, burr height, and radial overcut models.
Because the R2-value of data is equal to a perfect fit value, the
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Fig. 8 Mean absolute error
variation with spread parameter
for test data
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(b) Burr height model
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(c) Radial overcut model
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Fig. 9 Correlation between
experimental values and GRNN
model predicted values for
training data
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trained network model’s accuracy is high. Finally developed
GRNN models are validated using validation data set (from
experiments 6–10 in Table 7).

3.1.2 ANFIS modelling

ANFIS models are developed using Matlab 2021a based on
experimental data in Table 6. In the initial step, the input data
are normalized to get values ranging from 0 to 1 to compute
ANFIS models.

In the next step, the Fuzzy Inference System (FIS) is
selected, and in the ANFIS package, Sugeno and Mamdani
FIS are commonly used to develop models. In Sugeno-FIS,
the weighted average is used to de-fuzzify output, which
reduces processing time and also improves computational
accuracy [49]. Hence the Sugeno FIS is selected in the cur-
rent study, and later developedmodels are trainedby selecting
parameters and optimization method.

For every input, three membership functions are selected,
27 rules are generated, and 550 epochs are used to train
models [50]. Back-propagation and hybrid methods are cur-
rently available in the ANFIS package for training. The
back-propagation method uses a gradient descent algorithm,
which means that errors from each epoch are sent back to the
network; this serves as feedback in self-correcting and self-
learning [51]. Therefore, in current study back-propagation
method is adopted for training.

In the final step, ANFIS models are developed by select-
ing a suitableMembership Function (MF). The current study
evaluates different MF to select an MF that minimizes the
prediction errors. After preliminary screening, trapezoidal-
MF, Pi-MF, P-sigma-MF, and D-sigma-MF are considered
for evaluation among the various MF provided in the ANFIS
package. ANFIS models are developed for output responses
such as thrust force, burr height, and radial overcut by provid-
ing the model’s training data set as input (experimental data
in Table 6). The type of MF is selected by comparing model
predictions from various types of MFwith actual experiment
values in the test data set (from experiment 1–5 in Table 7).
The prediction error is calculated using Eq. 10.

Prediction error(%)

� Experimental value − predicted value

Experimental value
(10)

The calculated absolute prediction error for thrust force,
burr height and radial overcut models for different MF’s is
shown in Table 8. From Table 8, the minimum value of error
is observed with Pi-MF.

The Fig. 10a shows the training process and selected
parameters for thrust forcemodel. The rule viewer in Fig. 10b
depicts the prediction for experiment 1 in the test data setwith
the Pi-MF type in thrust force model.

The ANFISmodels developed for thrust force, burr height
and radial overcut by selecting PI- MF is considered for pre-
diction. The developed models are validated using validation
data set (from experiment 6–10 in Table 7).

3.1.3 Multiple regression analysis (MRA) modelling

The quadratic second-order regression models are developed
usingMinitab 17 statistical software. The actual values of the
process parameters cutting speed (V), feed (F), and pecking
depth (P) is transformed to coded units using Eqs. 11, 12 and
13.

X1 �
(

V − V0

�V

)
(11)

X2 �
(

F − F0

�F

)
(12)

X3 �
(

P − Po

�P

)
(13)

where X1, X2 and X3 are coded cutting speed V, feed F and
pecking depth P, V0, F0 and Po represent values of V, F
and P at zero levels. ΔV, ΔF and ΔP are the interval of
variation of V , F, and P respectively.The models developed
for thrust force, burr height, and radial overcut in coded units
is presented as Eqs. 14, 15, and 16.

T hrust f orce � 11.592 − 0.904X1 + 1.334X2

+ 0.787X3 − 0.118X1 ∗ X1

− 0.207X2 ∗ X2 − 0.518X3 ∗ X3

− 0.417X1 ∗ X2 + 0.006X1 ∗ X3

+ 0.118X2 ∗ X3 (14)

Burr height � 32.380 − 0.916X1 + 1.315X2

+ 1.612X3 − 0.584X1 ∗ X1

+ 0.314X2 ∗ X2 − 0.129X3 ∗ X3

− 0.033X1 ∗ X2 + 0.053X1 ∗ X3

+ 0.184X2 ∗ X3 (15)

Radial overcut � 14.184 + 1.081X1 + 0.717X2

+ 0.580X3 − 1.219X1 ∗ X1

+ 0.115X2 ∗ X2 − 0.159X3 ∗ X3

+ 0.914X1 ∗ X2 − 0.235X1 ∗ X3

− 0.073X2 ∗ X3 (16)
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Table 8 Prediction errors in
ANFIS models with different
membership functions

Sl No Model Membership function Absolute prediction error (%) Rank

1 Thrust force Trapezoidal 5.53 2

Pi 5.27 1

P-sigma 11.51 3

D-sigma 11.73 4

2 Burr height Trapezoidal 5.85 2

Pi 5.26 1

P-sigma 8.49 3

D-sigma 10.86 4

3 Radial overcut Trapezoidal 6.86 2

Pi 5.22 1

P-sigma 8.15 3

D-sigma 9.20 4

3.2 Comparison of developedmodels

The GRNN, ANFIS, and regression models developed for
output responses thrust force, burr height, and radial overcut
are used to predict at random points considered for valida-
tion (experiments 6–10 in Table 7). The prediction errors are
determined by comparing GRNN. ANFIS and MRA model
predicted values with actual experiment results using Eq. 10.
The predicted responses from developed thrust force, burr
height, and radial overcut models for testing and validation
data are presented in Tables 9, 10, and 11 respectively.

The calculated MAPE for the GRNN, ANFIS and MRA
models for testing and validation data is depicted in Fig. 11.

In thrust force model from Fig. 11a, the Maximum Abso-
lute Prediction Error (MAPE) of 4.92%, 5.26%, and 11.69%
with GRNN, ANFIS, and regression models respectively is
observed. Similarly in burr height model in Fig. 11b, MAPE
of 4.41%, 5.43%, and 9.27% are observed respectively with
GRNN,ANFIS, andMRAmodels. Figure 11cdepictsMAPE
in radial overcutmodel of 4.68%, 5.22%, and 11.71% respec-
tively with GRNN, ANFIS, and MRA models.

To the best of our knowledge, the literature is not available
on the simultaneous development of GRNN and ANFIS and
MRApredictionmodels to predict responses like thrust force,
burr height, and radial overcut in theMMDprocess. Very few
research works have been reported on applying AI tools like
ANN and ANFIS in the MMD process, and the prediction
results for responses of past studies are presented in Table
12.

In past studies on GRNN modelling in other machining
processes, a mean prediction errors of 2.479% and 1.75%
for kerf width and surface roughness in laser machining of
stainless steels [26]. The mean prediction errors of 1.34% is
observed for radial overcut in electro discharge machining of
AISI D2 tool steel [21].

In past studies on ANFIS modelling in other machining
processes, the mean prediction errors of 8.67% for mate-
rial removal rate, 3.20% for tool wear rate, and 13.44% for
diametric overcut in micro-electro discharge machining of
silver [51]. The mean absolute prediction errors for material
removal rate, surface roughness, and tool wear rate of 4.33%,
7.49%, and 6.37% in micro-electro discharge machining of
stainless steel [52].

In the current study, mean prediction errors of 3.40%
and 3.96% are observed in the prediction of thrust force in
GRNN and ANFIS models for testing and validation data,
respectively. Themean prediction errors of 2.67% and 3.19%
are observed in the prediction of burr height in GRNN and
ANFIS models for testing and validation data, respectively.
Similarly, mean prediction errors of 2.53% and 2.84% are
observed in the prediction of radial overcut in GRNN and
ANFIS models for testing and validation data, respectively.
The mean prediction errors observed in GRNN and ANFIS
are in similar ranges of less than 5%, as observed in the lit-
erature.

3.3 Influence of process parameters on responses

The ANOVA is performed at the desired confidence level of
95% to identify the significant process parameters and their
contribution towards responses. The results of ANOVA are
shown in Table 13.

The bar charts are constructed using the average values of
thrust force at each level of process parameters and depicted
in Fig. 12.

From Fig. 12a illustrates a change in cutting speed from
a lower to a higher level results in a decrease of 12.91%
in thrust force. Higher cutting speeds cause thermal soften-
ing of the work material, which requires less force for chip
removal, resulting in a lower thrust force. On the contrary,
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Fig. 10 ANFIS model of thrust
force

increasing the feed from a lower to a higher level resulted in a
27.72% increase in thrust force. This trend can be attributed
to increased chip load at the cutting edge due to increasing
feed. On the other hand, the thrust force increased by 15.63%
as the pecking depth increased from lower to higher levels.
Chip clogging increases as pecking depth increases, resulting
in more friction between drill flutes and hole wall, resulting
in higher thrust force.

The ANOVA results in Table 13a feed; cutting speed,
pecking depth, and the interaction term of cutting speed
and feed are significant towards thrust force with a P-value
of less than 0.05. Feed had a significant contribution of
46.52% towards thrust force followed by cutting speed, peck-
ing depth, and interaction of cutting speed-feed at 21.34%,
16.19%, and 3.02%.
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Table 9 Predicted thrust force in
testing and validation Exp Experimental combination Actual thrust force (N) Predicted thrust force

(N)

V F P GRNN ANFIS MRA

1 − 0.88 − 0.75 − 0.80 9.10 9.17 8.94 10.17

2 − 0.63 − 0.38 + 0.20 12.26 12.23 12.27 11.69

3 − 0.50 + 0.25 + 0.60 12.90 12.35 12.23 12.64

4 − 0.25 + 0.25 + 0.80 11.92 11.44 11.28 12.43

5 + 0.76 − 0.63 + 0.40 9.43 9.71 9.67 10.45

6 + 0.63 − 0.75 − 0.60 8.63 8.22 8.60 9.60

7 + 0.88 + 0.50 − 0.20 10.51 11.01 11.01 10.84

8 − 0.50 − 0.50 − 0.50 10.40 10.63 10.64 10.80

9 − 0.75 − 0.13 − 0.40 12.51 13.13 12.91 11.63

10 + 0.50 + 0.50 + 0.50 12.11 11.51 11.52 11.81

Table 10 Predicted burr height in
testing and validation Exp Experimental combination Actual burr height (μm) Predicted burr height

(μm)

V F P GRNN ANFIS MRA

1 − 0.88 − 0.75 − 0.80 29.70 30.37 30.70 30.68

2 − 0.63 − 0.38 + 0.20 30.95 32.09 32.20 32.56

3 − 0.50 + 0.25 + 0.60 35.75 34.17 33.70 33.48

4 − 0.25 + 0.25 + 0.80 33.15 33.80 33.90 34.15

5 + 0.76 − 0.63 + 0.40 31.20 30.77 31.50 31.86

6 + 0.63 − 0.75 − 0.60 29.25 28.94 30.50 31.96

7 + 0.88 + 0.50 − 0.20 33.17 32.03 31.90 31.48

8 − 0.50 − 0.50 − 0.50 30.33 31.28 31.40 31.33

9 − 0.75 − 0.13 − 0.40 33.60 32.38 31.80 31.14

10 + 0.50 + 0.50 + 0.50 33.70 33.11 33.10 31.44

Table 11 Predicted radial overcut
in testing and validation Exp Experimental combination Actual radial overcut (μm) Predicted radial overcut

(μm)

V F P GRNN ANFIS MRA

1 − 0.88 − 0.75 − 0.80 10.14 9.83 9.83 11.65

2 − 0.63 − 0.38 + 0.20 12.22 12.44 12.57 13.14

3 − 0.50 + 0.25 + 0.60 14.03 13.96 13.45 13.76

4 − 0.25 + 0.25 + 0.80 14.46 14.39 14.39 14.36

5 + 0.76 − 0.63 + 0.40 15.24 14.72 14.71 13.62

6 + 0.63 − 0.75 − 0.60 12.9 12.79 12.10 13.13

7 + 0.88 + 0.50 − 0.20 15.30 14.72 14.71 14.91

8 − 0.50 − 0.50 − 0.50 12.94 13.23 12.45 12.83

9 − 0.75 − 0.13 − 0.40 12.60 12.44 12.01 12.35

10 + 0.50 + 0.50 + 0.50 14.31 14.79 14.77 15.21
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Fig. 11 Comparison between
GRNN, ANFIS and MRA
predicted values for testing and
validation data
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(a) Thrust force model
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(c) Radial overcut model
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(b) Burr height model

Table 12 Prediction results of ANN and ANFIS models from past studies on MMD process

Sl
No

Author Workpiece material Modelling/prediction
tool

Process parameters Responses Mean prediction
error (%)

1 Patra et al. (2015)
[32]

Tool steel (AISI P20) ANN Cutting speed, feed
rate, spindle speed
and hole number

Chisel wear 3–6 (for different
conditions)

2 Ranjan et al. (2020)
[40]

Austenitic stainless
steel SS316

ANFIS Thrust force, torque
and vibration
signals

Roundness
error

7.03

3 Huang et al. (2020)
[39]

Aluminum 7075-T6
alloy

ANN Nano diamond
type, spindle
speed, feed rate,
distance of
nozzle, MQL
flow, air
compression,
pecking depth and
angle of nozzle

Thrust force
Torque

0.58
1.59

The bar chart in Fig. 13a indicates a 4.16%decrease in exit
burr height as cutting speed increases from lower to higher
levels. With higher cutting speeds, chip height decreases,
leading to a reduction in burr heights [23]. On the contrary,
an increase in burr height with a rise in feed and pecking
depth is observed in Fig. 13b and c. This increasing trend in
burr height can be attributed to the elevation of thrust forces
during tool exit at higher feed and pecking depth. An increase
in the feed from lower to higher levels results in an 8.51%

increase in exit burr height. Similarly, a rise in pecking depth
from lower to higher levels causes a 10.58% rise in exit burr
height.

From the ANOVA results in Table 13b, linear terms of
pecking depth, cutting speed, and square term of cutting
speed are significant towards exit burr height with P-value
less than 0.05. The pecking depth significantly contributed
with 45.12% towards exit burr height followed by feed, linear
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Table 13 ANOVA results
Source DF Adj SS Adj MS F-Value P-Value Contribution (%) Rank Remarks

(a) Thrust force

V 1 14.706 14.706 36.820 < 0.001 21.34 2 Significant

F 1 32.053 32.053 80.250 < 0.001 46.52 1 Significant

P 1 11.155 11.155 27.930 < 0.001 16.19 3 Significant

V * V 1 0.084 0.084 0.210 0.652 0.12

F*F 1 0.256 0.256 0.640 0.434 0.37

P*P 1 1.612 1.612 4.040 0.061 2.34

V*F 1 2.083 2.083 5.220 0.036 3.02 4 Significant

V* P 1 0.000 0.000 0.000 0.975 0.00

F* P 1 0.166 0.166 0.410 0.528 0.24

Error 17 6.791 0.399 9.85

Total 26 100 R2 � 90.15%

(b) Burr height

V 1 15.088 15.088 34.400 < 0.001 14.56 3 Significant

F 1 31.126 31.126 70.960 < 0.001 30.04 2 Significant

P 1 46.754 46.754 106.590 < 0.001 45.12 1 Significant

V * V 1 2.050 2.050 4.670 0.045 1.98 4 Significant

F*F 1 0.591 0.591 1.350 0.262 0.57

P*P 1 0.101 0.101 0.230 0.638 0.10

V*F 1 0.013 0.013 0.030 0.864 0.01

V* P 1 0.033 0.033 0.080 0.787 0.03

F* P 1 0.407 0.407 0.930 0.349 0.39

Error 17 7.457 0.439 7.20

Total 26 100.00 R2 � 92.80%

(c) Radial overcut

V 1 21.028 21.028 101.21 < 0.001 35.19 1 Significant

F 1 9.252 9.252 44.53 < 0.001 15.48 3 Significant

P 1 6.061 6.061 29.17 < 0.001 10.14 5 Significant

V * V 1 8.910 8.910 42.89 < 0.001 14.91 4 Significant

F*F 1 0.079 0.079 0.38 0.546 0.13

P*P 1 0.151 0.151 0.73 0.406 0.25

V*F 1 10.019 10.019 48.23 < 0.001 16.77 2 Significant

V* P 1 0.665 0.665 3.20 0.091 1.11

F* P 1 0.064 0.064 0.31 0.587 0.11

Error 17 3.532 0.208 5.91

Total 26 100.00 R2 � 94.09%

cutting speed, and square term of cutting speed at 30.04%,
14.56%, and 1.98%, respectively.

From Fig. 14a, a more significant radial overcut is
observed with higher cutting speed due to increased drill
wandering motion during entry. An increase of 19.21% in
radial overcut is observed due to a rise in cutting speed from
lower to higher levels.

A similar trend is also observed with a change in feed and
pecking depth in Fig. 14b and c. With the increase in feed,

chip size also becomes larger [5], and due to this, chip evac-
uation becomes difficult, resulting increase of lateral forces
causingmore overcut (similar resultswere observed inMMD
of nickel-based super-alloy by Zhou et al. [53]. An increase
of 11.32% is observed in radial overcut by a rise in the feed
from lower to higher levels.

With higher pecking depth, chip length also increases,
resulting in more wandering motion due to chip entangling
with the flute, and therefore more radial overcut is observed
on the hole entry side. The increase of 9.13% in radial overcut
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Fig. 12 Mean variation of thrust
force with cutting speed, feed
and pecking depth
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Fig. 13 Mean variation of burr
height with cutting speed, feed
and pecking depth
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is observed due to a rise in pecking depth from lower to higher
levels.

From the ANOVA results in Table 13c, the linear terms
of cutting speed, feed, pecking depth, square term of cutting
speed, and the interaction term of cutting speed and feed
are significant towards radial overcut with P-value less than
0.05. Linear cutting speed has significantly contributed with
35.19% followed by interaction term of cutting speed and

feed, linear term of feed, square term of cutting speed, and
linear term of pecking depth at 16.77%, 15.48%, 14.91%,
and 10.14%, respectively.

3.4 Multi-response optimization

From the previous section, it is observed that a unique optimal
solution to optimize all responses is not available; therefore
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Fig. 14 Mean variation of radial
overcut with cutting speed, feed,
and pecking depth
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multi-response optimization is carried out to obtain a single
optimal solution. The Desirability Function Analysis (DFA)
method is implemented for multi-response optimization. In
DFA, desirability values ranging from 0 to 1 are calculated
using desirability functions. In the current study, responses
like thrust force, exit burr height, and radial overcut should be
minimized; hence smaller the better desirability function is
used. A composite desirability value is determined by assign-
ing equal weights to the desirability values of individual
responses. The process parameter setting where the maxi-
mum composite desirability value is observed represents an
optimal condition.

The results of DFA are presented in Fig. 15. The opti-
mal process parameter setting is obtained at cutting speed of
18.8 m/min, feed of 4 μm/rev, and pecking depth of 25 μm.

3.5 Comparison of Ti–Al–N coated and uncoated
tools

In this section, 20 holes are machined at fixed condition of
process parameters, at optimal cutting speed 18.8 m/min,
feed 4μm/rev, and pecking depth 25μmobtained previously
from DFA. An uncoated carbide micro-drill of same length
and similar geometry is used to machine 20 holes at optimal
conditions. The performance of both the drills are analysed
in terms of thrust force, exit burr height and radial overcut.
This provides an insight on the influenceof toolwear progress
towards the responses while machining at a fixed condition
(optimal process parameter settings).

Fig. 15 Multi response optimization plot

The Fig. 16 shows an increase in thrust force with the
number of holesmachined for both themicro-drills. A similar
trend can also be observed in exit burr height, and radial
overcut.

The coefficient of variation is calculated for comparing
the performances of micro-drills based on the variability in
measured response values of twenty holes machined. The
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Fig. 16 Variation of responses with number of holes machined

Coefficient of Variation (CV ) is a statistical measure is used;
CV represents variability in sample of measured values of
individual responses. CV is calculated using Eq. 17 in per-
centage [54].

CV (%) � standard deviation of sample

Mean of sample
× 100 (17)

The CV of 6.59% and 5.43% in thrust force, 13.67% and
11.65% in burr height, 10.04% and 9.72% in radial overcut
with uncoated and Ti–Al–Nmicro-drill are observed, respec-
tively. The Ti–Al–N coated micro-drill displayed a better
performance as the lower coefficient of variation is observed
compared to the uncoated tool for all responses.

3.5.1 Tool wear

The tool wear after machining twenty holes using both
uncoated and the Ti–Al–N coated micro-drills is also com-
pared and image of the tooltip before and after machining is
shown in Fig. 17.

From Fig. 17, the dominant wear mechanism observed is
adhesion and abrasion. The adhesion of work material due
to affinity with the tool is observed more with the uncoated
tool than Ti–Al–N coated tool. The low thermal conductiv-
ity of Titanium alloy (Cp-Ti grade 2) and machining under
dry conditions also contributes to high chip tool interface
temperature causing adhesion wear [8].

The wear on the flank surface is observed in both the tools
due to material adhesion and abrasion during machining.
The flank wear is measured after machining twenty holes
using a stereomicroscope, the maximum flank wear value
of 28.09 μm for uncoated micro-drill and 19.30 μm for
Ti–Al–N coated micro-drill are observed. The magnitude of
flank wear is found more in the uncoated micro-drill, and
clear evidence of chipping of cutting edges is observed.

The Fig. 17 also reveals the chisel edge wear in both the
micro-drills after machining, caused mainly due to abrasion
and blunting of chisel edge is also noticed.

3.5.2 Chip morphology

The current study is concluded with an analysis of chip mor-
phology. Themorphology of the formed chips determines the
easewithwhich the drilling process is carried out. In orthogo-
nal cutting processes such as turning andmilling formation of
chips ends as they leave the cutting edges, whereas in drilling
chips flows along the flutes even after they are formed. Due
to the complex shape of the drill with spiral flutes, the chips
are not uniformly generated. The chips formed during holes
machined at optimal settings to study tool wear are collected.
The SEM images of typical continuous spiral chips generated
are presented in Fig. 18.

In the current study, continuous spiral chips are formed
with uncoated micro-drill whereas squeezed continuous spi-
ral chips are formed with Ti–Al–N coated micro-drill. As
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Fig. 17 Stereo microscope
images of tool tip

 

(a) Uncoated micro-drill

After 20 holesBefore machining

(b)Ti-Al-N coated micro-drill

Before machining After 20 holes

shown in Fig. 18a, squeezed spiral chips are observed with
the uncoatedmicro-drill can be attributed to high temperature
at the chip tool interface during machining. Therefore chips
formed get welded to the cutting edge, thus obstructing the
flow resulting in squeezed spiral chips entangling between
the flutes and work-piece surface [55]. The pitch between the
spirals is also lesser due to the squeezing; hence the chips do
not break easily. These reasons eventually cause an increase
in thrust forces due to difficulties in chip evacuation and also
elevate wandering motion causing more radial overcut.

On the contrary, with the Ti–Al–N coated micro-drill,
chips formed due to deformation flow easily in a continu-
ous spiral form, as shown in the Fig. 18b, which is easier to
evacuate. Therefore, the coating on the tool is found effec-
tive in reducing the temperature at the chip tool interface.
Moreover, the chips have a larger pitch between spirals and
breaks, easily indicating ease of machining hence generates
lesser thrust forces than uncoated tool.

4 Conclusion

The mechanical micro-drilling process is carried out in the
current study under dry conditions to machine micro-holes
on Titanium: Cp-Ti grade-2 using Ø 0.4 mmTi–Al–N coated
micro-drills. The current study develops predictive mod-
els for thrust force, burr height, and radial overcut using
Generalised Regression Neural Network (GRNN), Adap-
tive Neuro-Fuzzy Inference System (ANFIS), and Multiple
Regression Analysis (MRA) techniques. The experimental
data generated based on the full-factorial design by varying
cutting speed, feed, and pecking depth is used to trainmodels.
The model’s performance is evaluated based on data gener-
ated by additional experiments for testing and validation. The
major findings of the study are:

• Both GRNN and ANFIS models are more effective in pre-
dicting all responses than MRA models. Among them,
GRNN models showed better performance with Maxi-
mumAbsolute PredictionError (MAPE) of 4.92%, 4.41%,
and 4.68% in predicting thrust force, burr height, and
radial overcut compared to the ANFIS model with MAPE
of 5.27%, 5.17%, and 5.22%, Whereas MRA models
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Fig. 18 Chips formed at V �
18.8 m/min, F � 4 μm/rev and P
� 25 μm

Pitch

-drill

Pitch

(b)

(a) Chips formed with uncoated micro

Chips formed with Ti-Al-N coated micro-drill

predicted with MAPE of 11.72%, 9.27%, and 11.71%
respectively.

• The effects of process parameters on output responses is
analyzed using ANOVA. The results suggest that feed and
pecking depth played a significant role in increasing thrust
force and burr height, respectively while cutting speed
increases the radial overcut considerably.

• The multi-response optimization is carried out using DFA
and optimal process parameter settings to simultane-
ously minimize responses is obtained at cutting speed of
18.8m/min, feed of 4μm/rev, and pecking depth of 25μm.
The average thrust force of 6.65 N, average burr height of
32.40 μm and radial overcut of 12.60 μm.

• At optimal parameters, the performance of the Ti–Al–N
coated, uncoated micro-drills is evaluated by carrying out
additional experiments. Compared to an uncoated micro-
drill, the Ti–Al–N coatedmicro-drill showed a reduction in
average thrust force from 8.83 to 6.65N (24.68%), average
burr height from 36.33 to 32.40μm (10.81%), and average
radial overcut from 15.64 to 12.61 μm (19.36%).

• In the tool wear analysis and chip formation, Ti–Al–N
coated micro-drill effectively reduced flank wear from
28.09 to 19.30 μm (31.29%) compared to the uncoated
micro-drill. Continuous spiral chips are observed with
Ti–Al–N coated micro-drill, indicating ease of machin-
ing compared to squeeze continuous spiral chips formed
with uncoated micro-drill.

The current research can be extended to model other qual-
ity attributes like cylindricity and surface roughness under
minimum quantity lubrication and other near-dry machining
conditions.
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