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Abstract

In order to have a competitive edge, manufacturing companies have to develop superior quality products at minimum cost.
Tolerance design is the most critical part of concurrent engineering in which optimal values of tolerances have to be determined
for all components of an assembly, with due consideration towards the cost as well as quality. In this paper, tolerance design
optimization of two products namely piston — cylinder & punch die assembly are considered. To solve the constraint-based
optimization problems which are nonlinear and multi-objective in nature, novel techniques like Particle Swarm Optimization
(PSO), and the Non Dominated Sorting Genetic algorithm IT (NSGA 1II) have been used. The results of the piston-cylinder
assembly have been compared to those of complicated and evolutionary techniques like Simulated (SA) and Genetic Algo-
rithms (GA). In addition, their performances have been examined.
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1 Introduction

To be competitive in the global market, manufacturing
companies have developed minimal-cost, superior-quality
products. Producing superior-quality goods at a low cost
in today’s market involves the simultaneous consideration
of design and production processes. In this case, tolerance
design is critical. Tolerance design is the process of allocat-
ing tolerances to individual components or subassemblies to
reach the final assembly tolerance. To produce a high-quality
product at a low cost, the tolerances must be established
to perform the desired function with the least amount of
machining. In practice, tolerances are typically established as
an informal compromise between usefulness and production
expense. The tolerance design optimization issue of piston-
cylinder assembly and punch and die assembly is used for
the study.

Machining costs, product quality, and the cost of quality
loss are all affected by tolerance requirements for manufac-
tured item dimensions. Tolerance specification is based on
qualitative estimations of tolerance cost, allowing mechan-
ical assembly component tolerances to be specified for the
lowest practical production cost. Assembly tolerances are
frequently dictated by performance requirements, whereas
component tolerances are determined by the manufacturing
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process’s capabilities. The most prevalent problem that engi-
neering designers face when defining tolerances is defined
assembly tolerance between assembly components.

The component tolerance of an assembly may be dis-
tributed uniformly across all of its constituent parts. However,
according to the conditions, the complexity of the product
or the production process, every component tolerance could
have a variable manufacturing cost. Component tolerances
may be supplied to reduce manufacturing costs by defin-
ing objective functions for every component dimension and
applying it to each component dimension. Improper tolerance
specifications can also lead to poor product performance and
market share loss. Tight tolerances can lead to higher process
costs, whereas loose tolerances might result in more waste
and assembly problems. In peer-reviewed journals, several
cost-tolerance models have been published. A good function
for determining machining cost can be utilized to distribute
the optimal tolerances. Tolerance should be as low as feasi-
ble. Tolerance allocation has always been done based on the
designer’s expertise, handbooks, and guidelines. As a result,
the assembly quality cannot be assured, and the production
cost may be greater than necessary. Optimization is essen-
tial to attain the aforementioned goals. The Particle Swarm
Optimization approach and the Non-dominated sorting algo-
rithm (NSGA 1II) are given in this paper for handling the
single and multi-objective, constraint, nonlinear program-
ming problems. A systematic optimization strategy for the
tolerance allocation problem has been created using PSO
and NSGA 1II.

2 Literature review

A review of current studies suggests many tolerance syn-
thesis mechanisms. It is separated into classic optimization
approaches such as statistical methods, complicated meth-
ods, stochastic integer programming, and so on, as well as
non-traditional strategies such as GA and SA algorithms and
fuzzy neural learning.

The overwhelming majority of publications on
optimization-based tolerance synthesis have made use
of cost-tolerance models, which have been published in
peer-reviewed journals. Dong et al. [1] established unique
tolerance synthesis models that were based on the tolerance
of manufacturing costs. When the nominal ranges of the
design variables are employed, Siddall [2] modified the fun-
damental design optimization issue to contain the optimum
allocation of manufacturing tolerance and the optimum allo-
cation of manufacturing tolerance. As defined by Lee and
Woo [3], tolerance synthesis is a probabilistic optimization
technique in which a random variable is related to a dimen-
sion as well as the tolerance associated with that dimension.
As the complexity of mechanical components increases, the
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above-mentioned optimization-based tolerance synthesis
procedures become untenable. Gadallah and EIMaraghy [1]
were among the first to use quality engineering parameter
design methodologies to tackle the problem of tolerance
optimization. The notion of a quality loss function is another
application of quality engineering. Several studies in the
literature, including Bhoi et al. [4, 5], Bho et al. [6], and
Beng et al. [7], In order to solve the tolerance scheduling
problems, employ the loss function concept.

Numerous different attempts aimed to deal with the
impracticality of optimization-based tolerance provisiondif-
ficulties resulted in the development of a variety of innovative
solutions based on comparatively recent procedures such
as genetic algorithms, neural networks, evolutionary algo-
rithms, and fuzzy logic. Genetic algorithms are one such
technique. To promote tolerance, Kopardekar [7] employed
a neural network, which they developed themselves. Back-
propagation is utilized to prepare the network that produces
part tolerances to test how effectively it manages machine
competency and industrial production issues like a mean
shift. Ji et al. [8], Ta-Cheng Chen et al. [9], and Hupinet et al.
[10] employ fuzzy logic and simulated annealing, while Ji
etal. [8], Ba-Cheng Bhen et al. [9], and Bupinet et al. [10] do
not. Joth Ji et al. [11] and NoorulHagq et al. [6] application of
the genetic approach with the assistance of PSO and NSGA
I

3 Materials and functional methods
3.1 Assembly of the piston and cylinder

The piston-cylinder bore assemblage was suggested by Al-
Ansaray, as well as Deiab [12]. The dimensions of the piston-
cylinder bore assemblage are presented in Fig. 1.

The cylinder bore diameter (dc) is 50.856 mm, and the
clearance is 0.056 0.025 mm. When measured in millimeters,
the piston diameter (dp) is 50.8 mm, and the cylinder bore
diameter (dc) is 50.856 mm. To complete the piston cylinder-
bore assemblage, the subsequent eight machining operations
are planned in the following order: On the piston, rough turn,
final turn, coarse grind, as well as completion grind are con-
ducted; on the cylinder bore, drill, bore, semi-finish bore, as
well as grind, are completed. The piston’s main machining
limits in millimeters are, 0.005 < t; <0.02, 0.002 < t; <
0.012, 0.0005 < t3 < 0.003 and 0.0002 < t4 < 0.001, and
the primary machining limits in millimeters for the cylinder
bore are, 0.007 < t5 < 0.02, 0.003 < tg < 0.012, 0.0006 <
t7 < 0.005, 0.0003 < tg < 0.002.

This effort will find the best machining tolerance alloca-
tion of piston and cylinder about the clearance between them.
The piston has atl1d design limit, while the cylinder bore has
at21d design tolerance. The machining tolerance limitations
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Fig. 1 Piston-cylinder bore assemblage [8]

are tli for the piston (I = 1,2,3,4) and t2i for the cylinder bore
(I =1,2,3,4) for the four cylinder bore production methods.

3.2 Impartial function

The impartial function of minimizing the machining cost is
measured in this work. The total cost of machining (Cy,) is
articulated as,

Cn = Fi(t1) + F(t2) + F3(t3) + Fa(tg)
+ Fs(t5) + Fg (t¢) + F7(t7) + Fg (tg) (1

The exponential cost tolerance model F (t) is used in
this work to find the machining cost of piston cylinder bore
assembly

F(t) = (—2 2
= (m) +as 2
Subject to,

(1) tyg+tag <0.001
where tjg = t4(Piston) and tyq = tg(Cylinder bore)
(i) For the piston, the margins on the machining limits are,
t; +t <0.02, tp +t3 <0.005,t3 +t4 < 0.0018

(iii) For the cylinder bore, the restraints on the machining
are,
ts +tg < 0.02, tg + t7 < 0.005,t7 + tg < 0.0018
where ag through a3 are parameters for each cost toler-
ance equation computed from the assessment data are
given in Tablel.

3.3 Punch and die assembly

The problem considered is an assembly consists of an upper
punch, lower punch and die. The upper, lower punch and die
components are presented in Fig. 2.

The dimensions are given that the punch diameter is
7.5mm, and the die diameter is 7.55mm. The clearance
amongst punch and die is 0.05 £ 0.025 mm. There are three
machining processes involved in punch manufacturing, and
two machining processes are involved in the die manufac-
turing process. The machining process plan for the punch is,
turning, profile grinding and finally polishing, and for the die
is, wire cutting and polishing,

The ranges of dimension in millimeters of the machining
acceptances for the punch are, 0.0075 < t; <0.045, 0.003 <
t2 < 0.0075, 0.002 < t3 < 0.0045

The ranges of dimensions in millimeters of the machining
tolerance for the die are0.001< t4 < 0.0075, 0.002 < t5 <
0.045

3.4 Decision variables and constraints

There is just one resultant dimension in this case, which is
the clearance between punch and die, as well as the punch
and die dimensions that make up the dimensional chain. The
precision with which the punch and die parts are machined
in relation to the clearance between them. For the punch die
assembly, seven design elements are taken into account for
optimal machining tolerance allocation.

The design limits parameter for the punch is t, and the
die is tq. The machining limits parameters for the punch are
t1, t2, t3 and for the die t4, ts.

The designer establishes tolerances for the resulting
dimension and machining limits, which are determined by
the entire punch and die diameter design. Tolerances must
be at or below the same level as the manufacturer’s clearance
tolerance, which is specified by, t, + tg < 0.005

(i) The decision tolerance for a particular component fea-
ture is equivalent to the final machining limits for that
feature and is expressed as,

t, = t3 for the punch and tq = t5 for the die

@ Springer



2352 International Journal on Interactive Design and Manufacturing (LJIDeM) (2023) 17:2349-2359

Table 1 Price tolerance limits for

the eight machine methods for Coefficient Fi(ty) Fa(t2) Fi(t3) Fa(ty) Fs(ts) Fe(te) F7(t7) Fg(tg)
the piston-cylinderbore
assemblage [4] ag 5 9 13 18 4 8 10 2
a) 309 790 3196 8353 299 986 3206 9428
a 5 x 2.04 x 5.30 x 2.19 x 7.02 x 2.97 x 6.0 x 3.6 x
1073 103 1074 1074 1073 103 104 1074
a3 1.51 4.36 7.48 11.99 2.35 5.29 9.67 13.12
Fig. 2 Punch and die assembly Uppar Punch

Lowar Punch

Dia
—-—H—-t-—-—{- 4 Qearance Between
4 Punch & Oie 1 Q4S5 £ QIS nm

(iii) The constraints in the machining tolerance for the 4 Material combination
punch is, tj+ t; < 0.04, t; +t3 < 0.007

(iv) The constraints in the machining tolerance for the die ~ The material combination used by the manufacturer for the
is, t4 + t5 < 0.008 punch is given by (percentage):
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PUNCH : AISI (OHNS)

Carbon : 0.9
Manganese : 1.2
Silicon : 0.4
Chromium : 0.5
Tungsten : 0.2
DIE : AISI D3 (HCHC)

Carbon 2.00-2.35
Manganese 0-0.6
Silicon 0-0.6
Chromium 11-135
Tungsten : 0-1

4.1 Independent function

The major goal of the challenge is to decrease the overall cost
of lower/upper punch and die machining while satisfying the
product’s functional requirements. The entire cost is the sum
of the machining and quality-loss costs.

To successfully machine a component, three machining
processes are used in a punch, and two machining processes
are used in a die. The combined Reciprocal powers and
Exponential model were used to establish the relationship
between tolerance and cost for each machining operation. In
earlier studies, the machining cost was exclusively evaluated
to have the best tolerance allocation. Scrap or rework costs,
on the other hand, are incurred when manufactured compo-
nents fail to meet standards. As a result, the total cost must
include machining as well as rework/scrap charges. The cost
of rework/scrap is determined by an excellence loss func-
tion, which designates that the superior the departure after
the nominal, the superior the excellence loss sustained by
the client.

4.2 Development of tolerance allocation model

The machining cost M (t) is multiplied by the Excellence Loss
Cost QLC to create the tolerance allocation model. Using
combined reciprocal powers and an exponential equation,
a nonlinear, constraint, multi-objective tolerance allocation
model was built. The machining cost is calculated using the
combined reciprocal powers and exponential model. SPSS
version 8 software is used to find the model parameters.
According to Wu et al. [13], the combined reciprocal pow-
ers and exponential model have fewer modelling errors when
compared to empirical production data. The unequal curva-
ture of the empirical production data necessitates the use of
two distinct basic functions to produce a decent fit in both

the flat and rapid ascending regions. The exponential func-
tion accounts for the flat area in this model, whereas the
reciprocal power function explains the fast-climbing region.
To calculate the quality loss, the Taguchi loss function is
utilized. A quality loss function defines the rework or scarp
cost, stating that the greater the departure since the nominal,
the greater the quality loss suffered by the client. With the
least amount of machining expense and excellence loss, each
component’s tolerance design optimization may be created.
The manufacturing restrictions are specified by the multi-
objective tolerance distribution model,

Min {M(t) + QLC} 3)
The machining cost for the upper punch and die assembly

is:

Min {(Ptluming i Pgroﬁle grinding " Pgolishing " PZ/ireculling N Pgolishing) " QLC}

“

where
Machining cost of turning for punch is:

P1turning = A1 + B1ti~C1 + D_| xe -Eqxt;
Machining cost of profile grinding for punch is,
profilegrinding _ -C -E,xt
P, =A,+B,t *+D,xe™?
Machining cost of polishing for punch is,
polishing _ -C -Egxt;
P, =A;+B,t, *+D,xe™
Machining cost of wire cutting for die is,
wirecutting _ -C -E4xt;
P, =A,+B,t, “+D,xe™*
Machining cost of polishing for die is,
|
t.
Ax '
A2\l

P3p::)lishing= A3+B3ti—c3 + D3xe-|§3x\K QLC . IT:‘Z

A: consumer quality loss. t;: module tolerance. T: 1-sided
tolerance stack up limit . A;,B;,C;i,D;,E;: model parameters (i
= 1,2..) are shown in Tables 2 and 3. I: Number of component
tolerances.

5 Optimization process

5.1 Particle swarm optimization method

Particle Swarm Optimization (PSO) is a stochastic optimiza-
tion approach created by Bberhartas well as Kennedy [14]
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Fig.3 A flow chart depicting the optimization process utilizing the proposed NSGA-II approach

Table 2 Tolerance parameter of the three machining processes for punch

Cost tolerance curve Parameter coefficients

A; B; G D; D;
Turning —21.59377595 58.388701354  —.360098309 —-9176.266023 855.47876417
Profile grinding —3811.446161 8305.1383926 —.187552144 1803.1792686 147.80269978
Polishing —31.55366008 15.862621336 350281953 —76.02848810 150.95713557
Table 3 Tolerance parameter of the two machining processes for die
Cost tolerance curve Parameter coefficients

A B; G D; Dy

Wire cutting —1829.952314 2304.2245188 —.036964633 319.07996288.44085744
Polishing —31.55366008 15.862621336 350281953 —76.02848810 150.95713557

and motivated by the social behaviour of swarming birds or
fish schools. The particle swarm model was invented as a
simple social system simulation. The initial intention was to
make an aesthetically pleasing rendition of a flock of birds
or a school of fish. The particle swarm model, on the other
hand, was found to be an excellent optimizer.

PSO is analogous to the flocking behaviour observed in
birds, which has been previously documented. Take the fol-
lowing example into consideration: A swarm of birds is on
the prowl for food in an unidentified location. There is just
one kind of edible item in the area being searched, and it
is a sandwich. The birds are oblivious to the fact that their
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meal is being served. They do, however, have an understand-
ing of how far the dish has progressed with each repetition.
So, how do you go about finding the food? Following the
bird that is closest to the meal is the most successful method.
PSO applied what it had learned from the scenario to the
optimization issues.

In PSO, each clarification is represented in the search
area by a "bird." It’s referred to as a "particle" by us. The
fitness function examines all particles’ fitness values to opti-
mize them, as well as their velocities, which control their
flight. The particles traverse the problem space in the same
order as the present optimal particles. PSO begins with a
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collection of random particles (solutions), in addition, then
iterates through successive generations in search of an opti-
mal solution. A further "best" value captured by the particle
swarm optimizer is the greatest value achieved so far by every
particle in the population throughout the simulation. This is
referred to as a "global best" and is abbreviated as "gbest."’

v[]= o x v[] + Cyrand () x (pb[]—pr[])
+ Cy x rand() x (gbest[] — present[]) (©6)

pr(]= pr(] + vII )

where v[] denotes particle velocity and existing[] denotes
the current particle (solution). Gbes t[] = Greatest between
defined as mentioned above rand pbest[] = Best solution
between every particle () = Inertia = Random numbers
amongst 0 and 1 Cy, C; are learning factors, generally C;
= Cp = 2. Weights are commonly 0.8 or 0.9 C{, C;, are
learning factors, generally C; = C, = 2.

5.2 Particle swarm optimization algorithm

The following is the process used in most evolutionary tech-
niques:

Random population creation at the start of computing each
subject’s fitness value. The distance to the optimum is exactly
proportional to it. ii. Fitness-based population reproduction.
iii. If all requirements have been met, they come to a halt.
Otherwise, go back to (ii).

We may deduce from the technique that PSO and GA
have a lot in common. Both procedures start with a randomly
created population that is evaluated using fitness values. Ran-
dom approaches are used to refresh the population and look
for the best solution. Both systems aren’t guaranteed to work.

PSO, on the other hand, lacks genetic machinists such as
boundary and mutation. The particle’s internal velocity is
updated. They have a memory as well, which is required for
the algorithm to work.

5.3 Implementation of particles swarm optimization

Formation of the initial population at random i. Develop-
ing fitness score for each subject. It is proportional to the
distance from the optimum. ii. Based on fitness levels, pop-
ulation reproduction occurs. iii. Stop after all requirements
have been met. Otherwise, go back to (ii). For piston-cylinder
assembly, the greatest preceding point, that is, the position
equivalent to the greatest function importance of the ith par-
ticle, is stored as pbest (pi) = (pil.pi2,...pi8), and for punch
and die assembly, pbest (pi) = (pil.pi2,...pi8). For the piston-
cylinder assembly, the position change (velocity) of the ith
particle is vi =(vil,vi2,...vi8), and for the punch and die

assembly, vi =(vil,vi2,...vi5). Equations 1 and 2 are used
to modify the particles, where I = 1,2,...N and N are the pop-
ulation size. At each repetition, Eq. 1 is utilized to compute
the ith particle’s new velocity, while Eq. 2 supplies the new
velocity to its present position. Each particle’s performance
is evaluated using a fitness or objective function [15-23].

5.4 Parameters used for piston-cylinder assembly

The number of population/particles (N) = 100 to 500
The quantity of iterations = 50 to 500

Measurement of particles = 8

Knowledge factors

Ci=2

C, = 2 and Inertia weight factor (o) = 0.9

5.5 Parameters used for punch and die assembly

The number of population/particles (N) = 100
The number of iterations = 100

Dimension of particles = 5

Learning factors

Ci=2

C=2

Inertia weight factor (w) = 0.9

5.6 NSGA-II: elitist non-dominated sorting genetic
algorithm

Kalyanmoy Deb [24] created the NSGA-II procedure.
NSGA-II varies from non-dominated Sorting Genetic Algo-
rithm procedure (NSGA) implementation in several respects:

The elite-preserving approach used by NSGA-II assures
that previously identified good solutions are preserved.
The NSGA-II sorting method is both quick and non-
dominant. The NSGA-II algorithm does not need several
user-adjustable parameters, making it user-independent. It
began with a haphazard parent population. The people are
organized via non-domination. A novel accounting mecha-
nism was developed to lower the computing complexity to
0. (N2). A fitness score is assigned to each solution based
on its level of non-dominance (1 is the greatest level). As a
result, fitness reduction is an unavoidable result. Binary tour-
nament selection, recombination, and mutation techniques
were used to produce the N-person child population Q,. Fol-
lowing that, in each generation, we use the approach below.
A Ri=PiUQi mixed population emerged first. It encourages
elitism by allowing parent solutions to be compared to solu-
tions for the entire population of children. Ri has a population
of 2N people. Following that, the Ri population is classified
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according to whether or not it has been influenced by a domi-
nant gene. As solutions from the first front are added, the fresh
parent population Pi+1 is generated. This process is repeated
till the population size reaches or exceeds N. The first N
points are chosen after sorting the replies from the preceding
acceptable front using a crowded comparison criterion. We
utilize a partial order relation n, as illustrated below since we
need a wide variety of options.

i >y jif (irank < jrank) or ((irank:jrank) and (iﬁtness > jﬁtness)

(®)

To put it another way, we choose the point with the low-
est non-domination rank out of two options with different
non-domination ratings. If both points are on the same front,
we choose the one that is in a less densely populated region
(or with a superior crowded distance). When determining
which solutions to choose from Ri, fewer dense portions of
the search space are given greater weight. The Pi+1 popula-
tion is created as a result of this. This size N population is
currently being utilised for assortment, crossover, and muta-
tion to produce an inventive size N population, Qi+1. The
binary tournament assortment operator is still engaged, but
the crowded comparison operator n is now the criteria. For a
certain number of generations, the technique outlined above
is repeated [20-23].

As can be seen from the preceding explanation, NSGA-
II employs a quicker non-dominated sorting methodology,
(ii) an elitist approach, and (iii) no nicking parameter, in
addition to the other features described above. The usage
of a crowded comparison principle in the random selection
and population decrease fosters volatility in the results. On a
variety of challenging test tasks, it has been demonstrated that
NSGA-II outperforms other existing elitist multi-objective
EAs. Figure 3 depicts the NSGA-procedures II that have been
proposed for finding the optimum solution.

6 Results and discussion
6.1 Piston cylinder assembly

With a particle size of 100 to 500, an iteration size of 50-
500, an inertia weight factor of 0.9, and a learning element
of cl=c2=2, the PSO algorithm was performed. The results
of PSO for various particle combinations and iterations have
been tested and are shown in Table 4. As per the reference
of Al-Ansary,M.D. et al. [12], the GA procedure requires
160 bits binary numbers and a total evaluation of 10000(100
samples and 100 generations,) for which the machining cost
obtained is $ 66.91.But in PSO with the same number of total
evaluations of 10000( 50 iterations and 200 particle size), the
cost obtained is $65.33 (Table 4 ).
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Table 4 Total machining cost for different iterations and particles size
by using PSO

No. of iterations Particles size (birds) Cost ($)
50 100 72.006
50 200 65.330
50 300 66.248
50 400 66.243
50 500 65.036
100 100 68.707
100 200 66.454
100 300 65.260
100 400 65.155
100 500 64.886
200 100 68.799
200 200 67.608
200 300 65.395
200 400 65.518
200 500 65.179
300 100 65.348
300 200 70.301
300 300 65.043
300 400 65.170
300 500 65.222
400 100 66.067
400 200 64.975
400 300 65.497
400 400 64.872
400 500 64.989
500 100 74.294
500 200 65.266
500 300 66.398
500 400 66.145
500 500 65.147

In addition, the GA technique needs three operators
(reproduction, crossover, and mutation), whereas the PSO
procedure only necessitates one (velocity up-gradation).
Similarly, the NSGA II algorithm was run with an inhabitants
size of 100, a cross over the probability of 0.7, a mutation
probability of 0.2155, a mutation parameter of 10, and a total
number of generations of 100. The NSGA 1II results for var-
ious random seed values were tested, and the optimal value
is shown in Table 5. The NSGA II algorithm surpasses the
GA algorithm because it is a quicker non-dominated sorting
technique that is based on an elitist strategy and does not
need any nicking parameters.
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Table 5 Optimum machining tolerance (mm) and total machining cost ($) for PSO compared with other solutions

Tolerance(mm) Complex method Simulated Genetic Particle swarm Non-dominated
(Al-Ansary annealing(SA) algorithm(GA) optimization (PSO) sorting genetic
et al.1997) (Al-Ansary et al. (Al-Ansary et al. algorithm

1997) 1997) (NSGA-II)

t11 0.016292 0.01635 0.0163 0.016259 0.016252

ti2 0.003707 0.00365 0.0037 0.003740 0.003747

t13 0.001253 0.00135 0.0013 0.001260 0.001253

tia 0.000545 0.00045 0.0005 0.000537 0.000543

] 0.016278 0.01624 0.0163 0.015804 0.016284

too 0.003721 0.00376 0.0037 0.004196 0.003713

03 0.001278 0.00124 0.0013 0.000804 0.001287

tg 0.000455 0.00055 0.0005 0.000463 0.000457

Cost($) 71.00 67.21 66.91 64.87 66.756866

72 7 95 1
z Z 901
5 £
8 69 5 851
2 3
= 2 g A
S =
g 66 § 751
i S~ 5 701
(o)
F 651
63 T T T T ]
0 50 100 150 200 250 60 T T T T )
No of iteration 0 20 40 60 80 100

Fig.4 Solution history for PSO technique

As per Table 4, it can be observed that the machining
cost has been reduced for PSO when compared to com-
plex methods, SA, GA and even NSGA II, whose best result
is $66.756866.The best result obtained by PSO is given in
Table 4, and it is $64.872 (400 iterations and 400 particles).
The optimal machining tolerance value for the assembly of
piston-cylinder bore for all the techniques is given in Table 5.
The optimum machining tolerances are within the specified
limit and also satisfy the constraints. Figures 4 and 5 show
the solution history of the PSO and NSGA II techniques. It is
observed that the PSO converges earlier than that of NSGA
II. Though data on computational time is not available, def-
initely it may be less for PSO when compared with GA and
NSGA II.

No of generations

Fig.5 Solution history for NSGA II technique

6.2 Punch and die assembly

The results of PSO and NSGA 1I are tabulated for analysis.
The cost of machining with PSO and NSGA is Rs. 371.15
and Rs. 367.874115, respectively. Tables 6 and 7 show the
achieved tolerances for PSO and NSGA 1I, respectively. The
findings obtained using PSO and NSGA II for the remaining
two situations (A=10 and 20) are likewise shown in Tables 6
and 7. In all three scenarios, NSGA II outperforms PSO and
produces the lowest machining cost with the best machining
tolerances. Figures 6 and 7 show the solution histories for
PSO and NSGA I, respectively.

@ Springer
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Table 6 Optimum tolerance with total cost using PSO

A Tolerance(mm)

t1 to t3 ta ts5

Machining cost (Rs) Quality cost (Rs) Total cost (Rs)

0 0.0278
10 0.0109
20 0.0102

0.0048
0.0048
0.0042

0.0022
0.0023
0.0028

0.0051
0.0054
0.0058

0.0029
0.0026
0.0022

371.15 0
377.61 8.10
379.78 15

371.15
385.71
394.78

Table 7 Optimum tolerance with total cost using NSGA II

A Tolerance (mm)

ty t t3 7] t5

Machining cost (Rs) Quality cost (Rs) Total cost (Rs)

0 0.035273
10 0.011064
20 0.010095

0.004724
0.004755
0.004716

0.002276
0.002245
0.002284

0.005276
0.005246
0.005290

0.002723
0.002753
0.002709

367.874115
374.551802
375.868835

0
8.221178
14.62439

367.874115
382.772980
390.493225

470 1

—A=0
A=10
A=20

8 3 8 &

Total costinRs

370

3%0

0 50 100 150 200
No of iterations

Fig.6 Solution history for PSO technique

8

N

=

o
L

—A=0
A=10
A=20

Total costinRs
J

g
,rf_l,

370 A

350

0 20 40 60 80 100
No of generations

Fig.7 Solution history for NSGA II technique (punch and die assembly)

7 Conclusions

The assignment of tolerances is the assembly’s most crucial
and difficult responsibility. The component’s functionality
is determined by the tolerance design. Higher manufac-
turing costs result in higher product quality, but tighter

@ Springer

tolerance. Lower production costs but lower product qual-
ity results from wider tolerances. The allocation of tolerance
was improved to improve product performance while reduc-
ing machining costs. As can be seen from the explanation
above, in addition to the other features mentioned above,
NSGA-II uses I a quicker non-dominated sorting method,
(ii) an elitist approach, and (iii) a no nicking parameter. The
results are more unpredictable when a crowded comparison
criterion is used in tournament assortment and population
reduction. It has been shown that NSGA-II performs bet-
ter than other multi-objective elitist EAs when tested on
a variety of challenging test problems. Figure 3 shows the
suggested NSGA-procedures II for identifying the best solu-
tion. The suggested approach, which makes use of PSO and
NSGA I, significantly reduces computing time and machin-
ing expenses.
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