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Abstract
Multidisciplinary, large scale, and dynamic essence of production-logistic systems make their design knowledge complex.
As a result, designers from different disciplines mostly design these systems with sequential approaches. This does not
address the impact of single design decisions on overall system performance, which may lead to inconsistencies between
different disciplines or failures. This paper aims to realise the integrated design of such systems by introducing a framework
that incorporates Systems Engineering and Object-Oriented methods to develop a model that holistically embodies design
knowledge of such systems. Thismodel is constructed in Finite-State-Machine formalism to achieve an executable architecture
and integrated with optimization models to allow simulation of alternatives and to observe the impact of design decisions
on system behaviour. Supportive algorithms are introduced for refinements of design alternatives according to the simulation
results. A fuzzy assessment approach is introduced to also assess the alternatives against qualitative criteria. The framework
integrates simulation and fuzzy assessment results and performs a multi-criteria assessment to select an alternative for the
detailed design. Therefore, the framework can stand as a decision support framework at early design stages, giving insights
to designers about the impact of single design decisions on system overall performance and satisfaction of various objectives.

Keywords Design · Production systems · Modelling · Decision support systems

1 Introduction

Performance of assembly, production, and logistic systems
are strongly dependent on the decisions made at their early
design stages [1–3]. These systems operate based on dynam-
ically interacting processes using soft/physical resources.
Such systems are considered complex due to having large-
scale andmultidisciplinary design knowledge (design knowl-
edge refers to the available information after requirement
analysis) [4]. In this paper, the described systems are called
‘complex engineering process-based system’ (CEPS).

Some problems in the design of CEPSs are stated as aimed
to address them by the introduced approach in this paper.

1- Inconsistency between different design disciplines
2- Incomprehensive design assessment/validation due to

not having a holistic-integrated design approach.
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2-1 Assessment without considering the impact of
dynamic interactions on a CEPS’s performance.

2-2 Assessment against eighter qualitative or quantita-
tive criteria and not both concurrently

3- Domain specific (not generic) approaches

Four overall phases can be defined in the design of CEPSs,
requirements definition, conceptual design, configuration
design, and detail design. It is not very easy to draw a line
between design phases. The early-stage design, which is the
scope of this paper, refers to the conceptual design stage.

The complex structure of CEPSs usually makes the
designers to design different aspects of a CEPS sequentially
[5]. As a result, the design at a higher-level ismostly finalized
before proceeding to the next level [6]. In this context, opera-
tional policies aremostly designed after the physical design is
finalized. For example, in designing a warehouse, designers
decide on narrowaisles to reduce the space cost. This does not
allow storing the new and picking the existing items in the
same aisle concurrently (requires wide aisles). Concurrent
storing-picking is an operational policy that is called double-
command [7]. The operation time in the double-command
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process is mostly shorter than single-command, so fewer
operators may deliver the same throughput. Therefore, a
wide-aisle warehouse with the double-command-mode can
lower the total cost. Generally, sequential approaches (not
integrated) do not completely reflect the impact of single
decisions on overall performance due to not having a holis-
tic approach in addressing all types of design requirements
simultaneously.

The performance of a CEPS is a function of the dynamic
interactions between its resources, which can hardly be
formulated with analytical methods (e.g., optimization).
Therefore, it is necessary to use methods, such as simula-
tion, that can capture the dynamic aspect of a CEPS to assess
the impact of design decisions on its performance. However,
simulation is often used at later design stages when impor-
tant decisions are already made [8]. Integrated design in this
paper means assessing the impact of design decisions on a
CEPS’s performance as a function of the dynamic interac-
tions between its resources.

Design of a CEPS is mostly subjected to multiple objec-
tives satisfaction; quantitative (e.g., cost) and qualitative
(e.g., safety). Optimization is the most applied approach for
design assessment against quantitative objectives. However,
the latter does not fit well with optimizationmethods [9]. The
different nature of conflicting objectives further complicates
the assessment/selection of better design alternatives. These
problems are magnified due to the gap between academic
approaches and what practitioners exercise [10]. Compa-
nies may develop specific approaches, which are not generic
enough to be applicable in other domains.

A set of objectives are stated and their satisfaction by
application of the introduced approach manifests the con-
tributions of this work to this research context.

I. Enabling integrated design by.

a. holistically addressing all types of design requirements
b. observing the design decisions’ impact on the system’s

dynamic behaviour.

II. Enabling multidisciplinary design to achieve design con-
sistency.
III. Enabling multi-aspect design assessment by supporting
the decision-making regarding the selection of better alterna-
tives by considering different types of performance criteria.
IV. Having a generic design approach such that the frame-
work is applicable in different domains.

2 Literature review

Designers devise models as their artefacts to analyze a spe-
cific design knowledge and set up a solution [11]. In CEPS

design, modelling can serve three purposes; developing sys-
tem architecture, design assessment, and validation [12].
System architecture embodies the system structure and func-
tion. Validation establishes evidence to assure an alternative
accomplishes objectives [13]. This section reviews those
research works that developed a modelling approach for
CEPS design and did not focus on one modelling aspect of
CEPSs, as shown in Table 1.

2.1 System architecting and validation

Different studies [14, 15, 17, 24, 26] used various meth-
ods for system architecting such as Object-Oriented (OO)
or Function-Modelling (FM), but provided limited architect-
ing guidelines.

The following works [14, 15, 24] used simulation-based
validation while developing the architecture with languages,
such as SysML/UML, which have simulation limitations
[32]. Object-Process-Methodology (OPM) formalism offers
simulation capabilities but has shortcomings in capturing
system’s dynamic state at a specific time. Although, it is
tried to bridge this gap by Model-to-Model transformation
(MtM), working with transformation engines requires high-
level programming skills [17]. Thiers [7] introduced a design
methodology to support the analysis of logistics systems by
using model-based systems engineering. An abstract model
of a token flow network was developed to realize the MtM
transformation between SysML and Petri Net (PN). How-
ever, the full automation of MtM transformation was not
achieved. Moreover, no explicit approach for system archi-
tecting was suggested. The methodology could not address
different control and planning policies in one analysis model
and suggested modelling the system behaviour in separated
behavioural diagrams.

Koo developed a modelling language for system archi-
tecting, named Object-Process Network (OPN) [27]. OPN
was based on the core concepts of PN and intended to
support system architecting by automating communication
and computational tasks in architectural reasoning. However,
OPN had shortcomings in providing explicit mechanisms
for automatically generating alternatives and modelling the
constraints that were related to the integration of a sys-
tem’s entities. Moreover, OPN was not an intuitive language
and had shortcomings in representing the static relationships
between a system’s entities.

Meng [14–16] introduced an approach to model a Recon-
figurable Manufacturing System (RMS) by application of
coloured timedobject-orientedPetriNets. The approach used
the OO method to identify the elements in an RMS and sug-
gested four classes as basic elements: material processing
equipment, storage equipment, robot, and Automatic Guided
Vehicle (AGV). From the OO and domain modelling per-
spective, the defined classes were not comprehensive enough
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Table 1 Classification of modelling approaches

System architecting Quantitative
assessment

Qualitative
assessment

Validation MtM

Approach

Formalism OO Not
defined

FM Axiomatic
design

Optimization Fuzzy
logic

Fuzzy
logic

Formalism Simulation

UML,
SysMl

[14–16] [17] [16] [18] [19–23] Petri Net [14–16, 24] [14, 16, 24]

OPM [24] [25] [24] [25]

Not
defined

[26, 27] [28, 29] [30] FSM [31]

to illustrate a generic RMS. Generally, all RMSs do not use
AGV and robots. Moreover, operational procedures were not
addressed in that modelling approach. Also, it was not prop-
erly indicated how to formulate the problem to achieve a
rigorous system configuration, such as equipment number.
The presented work basically used OO at the solution level
after the system architecture was finalized.

Silva and Alves [33] introduced a methodology for
manufacturing systems design that produce a family of sim-
ilar products. The methodology consisted of three phases:
generic design, conceptual design, and detail design. This
methodology was descriptive and did not suggest application
of anymethod for system architecting, formulating solutions,
and analysing the results.

Existing works mostly modelled operational policies as a
fixed part of models, so simulation did not clarify the impact
of different policies on performance. Abdoli and Kara [31]
introduced architecting guidelines by incorporating the OO
and Finite-State-Machine (FSM) methods to develop an exe-
cutable system architecture (explained shortly).

2.2 Design assessment

Some works addressed quantitative and some qualitative
assessment. Some studies [28, 29] used axiomatic design
(AD) theory for architecting and assessment. However, AD
gives less attention to design validation [34]. Cochran et al.
[28, 29] introduced a methodology for designing manufac-
turing systems by application of AD, called: Manufacturing
System Design Decomposition (MSDD). Return on invest-
ment was considered as the primary Functional Requirement
(FR-1). Design Parameter-1(DP-1) was defined as ‘Manu-
facturing system design’ to fulfil FR-1. The next levels’ FRs
were defined as measures of performance to maximize rev-
enue. DPs were associated with FRs at each level. MSDD
mainly provided the means to assess the design alternatives
and did not address the design validation.

Dauby and Dagli [18] proposed an assessment approach
by defining ‘canonical design primitives’ as possible genres
for physical components and fuzzy logic was used to assess
the impact of switching between primitives. That work only
addressed the quantitative and not qualitative performance
criteria. Moreover, the impact of interactions between design
primitives on the system’s performance was not addressed.
Kulak [30] used fuzzy logic for equipment selection, but
the impact of equipment interactions with other system ele-
ments was not considered. Sasaki and Gen [35] used fuzzy
logic in optimization formulation, inwhich the objectives and
constraints were modelled as fuzzy variables. The research
used GA as the search algorithm and encoded a chromo-
some that represented the generalized upper bounding for
fuzzy objectives and variables. That approach only addressed
the quantitative objectives. Moreover, that approach did not
address the associated uncertainty with design choices.

Singh and Dagli [19] and Pape et al. [21] introduced
similar approaches for evaluating system alternatives, called
System of Systems (SoSs). The individual systems could
decide whether to participate in an SoS or to make an
interface with other individuals. Therefore, different SoS
alternatives varied in the participation of individual systems
or in developed interfaces. The performance characteristics
of an SoS were defined by qualitative criteria, such as afford-
ability. In the CEPS design context, it is needed to allocate a
design option to each design requirement (such as machin-
ing equipment). Therefore, the decisions of participation or
making interfaces were not equivalent to developing differ-
ent alternatives in the CEPS design context. Other similar
works assumed that individual systems might have priorities
that affect their choice of participation [22, 23]. Accordingly,
individual systems could negotiate with an SoS manager
regarding deadlines and funding. The individual systems and
SoS manager were modelled as agents and a fuzzy deci-
sion analysis was developed to perform the negotiations.
Although, this approach resulted in a more comprehen-
sive assessment, still had similar shortcomings to previously
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Fig. 1 Relation between problems, research objectives, and gaps

described work. Singh et al. [20] used fuzzy-Analytical Hier-
archy Process (AHP) for decision-making on selection of
manufacturing system types among; reconfigurable, dedi-
cated, and flexible. Fuzzy logic was used to model the ratio
scales because AHP has shortcomings in capturing the tied
uncertainty into subjective judgments [36].

Some studies developed decision support frameworks for
the selection of the most environmentally friendly supplier
among existing ones by considering their logistic activities
and processes performed to select the supplier that leads to a
less environmental impact [36, 37]. These works compared
different strategic options and did not address the system
design in terms of configuring different options to develop
and assess system alternatives.

2.3 Research gap

The following shortcomings are identified in reviewedworks
[12]. Figure 1 demonstrates how the research gaps led to a
lack of practical design frameworks and consequently led to
explained problems in design practices, shown on the left-
hand side of Fig. 1. The right-hand side of Fig. 1 shows
how the realization of objectives contributes to addressing the

practical design problems because this paper aims to present
a framework that is practical and can be used in real design
applications.

i. Demonstrating the system architecture and embodying
dynamic behaviour in separated modelling formalisms

ii. Modelling operational policies as model invariants
iii. Lack of an integrated generic modelling framework

that: 1) addresses different aspects of modelling at early
design stages, 2) provides a systematic interconnection
between different models to interchange information.

Besides a recent work by Abdoli and Kara [31], the
reviewed works realize some modelling aspects of CEPS
design but not all in an integrated manner [18]. However,
integrating different models enhances the consistency of the
exchanged data/information [38]. Algorithmic approaches
have not been used efficiently,while they canhelp in perform-
ing repetitive tasks [24]. The design process is knowledge
propagation from one model to another. Thus, an integrated
modelling approach can overcome the design methodolo-
gies’ shortcomings thatmainly guide thedesignprocesswith-
out generating solutions. Different modelling approaches
answer narrowly defined design questions. Sequential design
approaches also hardly integrate various design stages or cap-
ture the connection between low-level design decisions and
high-level system objectives [39]. This highlights the impor-
tance of having an integrated design approach [40].

Model-based design is a way of formalization by defining
the semantics of representing something before describing
it. Model-based design relaxes the application of framework
from the CEPS domain, assuring it is domain neutrality [16].

There is a lack of a generic modelling approach providing
prescriptive guidelines for system architecting, multi-aspect
assessment, and validation, which can assist in the integrated
design of CEPSs [16, 41].

Modelling is both art and science, which conceptual mod-
elling lying more at the artistic end [42]. Two designers may
use one modelling approach and resultant models can be dif-
ferent with different capabilities. A prescriptive approach
reduces the modelling effort and supports the design pro-
cess more effectively [43]. The proposed framework utilizes
different methods and supporting algorithms and system-
atically integrates them. The framework prescribes how
to develop models (by introducing novel approaches for
methods’ application) and algorithms. Eachmodel/algorithm
serves a specific role in this framework. Systematic inter-
connection between models and algorithms allows a smooth
inter-operability between them to serve framework objec-
tives. Contributions of the proposed framework rely on how
the methods are employed and the systematic models’ inte-
gration. Each of the applied methods/formalisms may (may
not) have been used before for other narrowly defined design
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purposes, yet the prescribed approaches in this framework
are novel and contribute to satisfying research objectives.

3 Framework structure and appliedmethods

An overview of the framework and justification of methods
selection is provided in this section. This research used Sys-
tems Engineering (SE) for defining the framework structure,
in terms of its tasks and their logical sequence, due to the
multidisciplinary nature of CEPSs. Because SE encompasses
interdisciplinary activities and concentrates on system prop-
erties rather than on single disciplines [44]. In SE process,
after requirement analysis, the system architecture is devel-
oped [44], which is equivalent to design at early stages. In
the trade study step, design alternatives are configured, their
performance is studied, and one is nominated for detailed
design. V-model of SE gives high attention to design vali-
dation from early stages, conforming to the importance of
observing the dynamic behaviour at early stages by inter-
connecting the integration-validation phase with architecture
design. Hence, the proposed framework addresses: architec-
ture design, validation, and trade study, see Fig. 2.

The framework develops an executable architecture for
observing the behaviour (dynamic performance) of alterna-
tives by simulation. However, design is a process of design
generation, evaluation, and redesign [45]. The proposed trade
study mechanism serves a multitude of alternative genera-
tion, design constraints realization, and assessment. The OO
modelling is a well-known approach for designing complex
systems with multi- hierarchal structures [46]. Hence, the
framework uses the OO method and architecting guidelines
are developed for capturing the complexity of holistically
modelling CEPSs.

In the framework, the validation happens at the sys-
tem level. Discrete-Event-Simulation (DES) is a promising
method for validation of the dynamic aspects of CEPSs [40].
PN is a widely used formalism in this context. However, a
PN-model structure can look complicated even for small-
scale systems [14, 47]. The FSM represents system structure
by dynamic states of system elements. Hence, the framework
maps the mentioned ‘architecting guidelines’ into FSM for-
malism to develop an executable architecture.

Design knowledge database in this framework stores
design options with their properties, called design-objects.
‘Alternative generation’ algorithm configures the design
alternatives by allocation of design-objects to design require-
ments while the ‘Feasibility checking’ algorithm crosses off
the infeasible alternatives.

The framework uses optimization/quantification models
to develop a numerical model for alternatives, which are
later simulated for validation. The framework uses Linear-
Programming (LP) and Automated Layout Design Program

(ALDeP). The latter is only used if layout design is needed.
Other optimizationmethods can also beusedbecause the ana-
lytical formulations of CEPSs belong to NP-hard problems
and no optimization method can guarantee to find the global
optimum [48]. The proposed framework used LP because of
its broad application field including scheduling, and resource
allocation. For layout development, CORE or CRAFT can
also be used instead of ALDeP.

Many studies argue that qualitative properties are more
critical for a system’s lifetime value [49]. Yet, qualitative
aspects (e.g., safety) are not very easy to be assessed by
optimization models due to the inherited uncertainty in qual-
itative assessment [50]. In the literature, combinations of
qualitative assessment methods are used such as fuzzy-AHP
or fuzzy-Quality Function Deployment to assess the quali-
tative aspects of a CEPS [51]. However, fuzzy logic played
the key role in capturing the uncertainty in qualitative assess-
ment. The framework includes a fuzzy assessment approach
to assess the alternatives against qualitative objectives.

This framework uses simulation results as one and fuzzy
assessment as another source of information in the trade
study step. A feedback algorithm is introduced to modify
an alternative according to the simulation results. TOPSIS
(Technique for Order of Preference by Similarity to Ideal
Solution) is widely used in Multi Criteria Decision Making
problems because it allows different criteria have their own
measuring units. TOPSIS also considers different importance
for criteria. This framework uses TOPSIS to rank the alterna-
tives and identify the final alternative that demonstrates better
performanceby considering simulation and fuzzy assessment
results. The framework is implemented in MATLAB, how-
ever other platforms can be used too.

Examples of awarehouse design are given in the following
sections to explain themethods’ applications and the connec-
tion between different artefacts in the framework. However,
this does not impact the domain neutrality of the framework,
as its application is presented in two case studies from dif-
ferent domains later in the paper.

4 Developing an executable system
architecture

Abdoli and Kara [31] introduced architecting guidelines
using the OO method for holistically modelling the archi-
tecture of a CEPS (decomposition hierarchy). Accordingly,
a CEPS is decomposed into processes that deliver the main
function of a CEPS, as the transformation of an item’s
state from input to output. For instance, warehousing pro-
cesses can be defined as; receiving, storing, picking, and
shipping [52]. Each process can have any type of phys-
ical/operational enablers with their Design Requirements
(DRs). The architecture is constructed in FSM formalism
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Fig. 2 The overall structure of the framework with applied methods and their data exchange flow

to achieve an executable architecture and is named System-
State Meta-Model (SSMM). These architecting guidelines
are briefly explained here and interested readers are referred
to this reference [31] for details.

The OO-based hierarchal decomposition approach is
mapped into FSM formalism by embodying nested states
in SSMM, an example is shown in Fig. 3. In this approach, a
CEPS is firstly modelled as a parent state in FSM and then is
decomposed into sub-states to embody theCEPS’s processes,
called process-state. Each process-state is decomposed into
further sub-states that represent its needed enablers, called
enabler-state. Further, each enabler-state is decomposed into

sub-states, which address its specific DRs, called DR-state.
The possible design options/genres for each DR-state are
modelled as its sub-states, called object-state. The devel-
oped SSMM in FSM realizes a holistic design approach
by embodying all types of DRs. For the warehouse case,
enablers of storing process are defined as operational pol-
icy, equipment, and infrastructure. For instance, it is a DR to
define an operational policy for allocating the Stock Keeping
Units (SKUs) to storage modules. Hence, ‘SKU-Allocation’
is defined as a DR-state, which includes two sub-states show-
ing two possible operational policy options: ‘Class-Based
Storage’ (CBS) and ‘Random’.
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Fig. 3 SSMM for warehouse-case study

FSM allows defining functions for a state to model its
behaviour. In this framework, a function is associated with
each object-state to model its dynamic behaviour, called
object-functions. An object-function returns the dynamic
state of an object-state with certain outputs (e.g., equipment
available capacity), called Dynamic Variables (DVs). Rela-
tion between object-functions (in exchanging DVs) must be
defined to embody the interactions between enablers.

In SSMM, a design alternative is configured by activating
one object-state for a DR-state. For instance, one alternative
is configured by activating ‘CBS’ policy state while another
is configured by activating ‘Random’ state. This model is
named SSMM because it demonstrates system architecture
by states while it is a meta-model that various system alter-
natives conform to it.

5 Trade study process

5.1 Alternative generation and feasibility checking
algorithms

The alternative generation algorithm generates alternatives
by exploring the stored design-objects in the design knowl-
edge database [53]. The algorithm uses an array of variables,
which each represents a DR with a unique ID, see Eq. 1. In
this equation, Z andKare respectively the numbers of defined
DRs and design-objects. The feasibility checking algorithm
eliminates those alternatives that combination of employed

Fig. 4 Characterizing the solution space in the process of searching for
a better design alternative

design-object results in an unfeasible system due to incon-
sistencies between their disciplines.

The applicability attribute of a design-object clarifies
whether it can be employed for a DRID. The consistency
attribute clarifies the consistency/compatibility of a design-
object with others. Each design-object has an identifier,
called Uniqueness-Key (UK). Generated alternatives at this
stage are called ‘qualitative’ because they only show the
employed genres for DRs.

CEPSQualitative reference-model = [
(−)DR1

, ., (−)DRid
, ., (−)DRz

]
(1)

ApplicabilityUK = (Applicability1, . . . , Applicabilityz)
(2)

ApplicabilityUK, id =
{
1; CanbeusedinDRid

0; Otherwise
∀id ∈ Z

ConsistencyUK = (
Consistency1, . . . , Consistencyk

)
(3)

ConsistencyUK, j =
{
1; I sconsistentwi thdesign − objecti

0; otherwise
∀i ∈ k

5.2 Optimization/quantification

Optimization models are applied to qualitative alternatives
to achieve a level of quantification, which with can be sim-
ulated. As explained, this framework uses LP and ALDeP
for quantification of alternatives [31]. Quantification models
return the required numbers of an employed design-object to
satisfy objectives/constraints (e.g., three forklifts are required
to meet throughput), as shown by ‘Number of Instances’ in
Eq. 4. Figure 4 demonstrates how this framework character-
izes the solution space. The quantified alternatives are stored
in the design database.
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CEPSQuantitative−Alternativet

= [
(−, −)DR1

, ., (UK, Number of Instances)DRI D
, ., (−, −)DRz

]

(4)

5.3 Fuzzy assessment framework

This framework utilizes a novel fuzzy framework for assess-
ment of alternatives against qualitative objectives by mod-
elling the domain expert’s opinion [54]. The fuzzy framework
has a hybrid-hierarchal structure and comprises fuzzy mod-
els in three levels: design-object, process, and system.
The fuzzy models with respect to their hierarchal order
are called ‘object-fuzzy-model’, ‘Process-fuzzy-model’, and
‘System-fuzzy-model’, see Fig. 5. The fuzzy framework has
a hierarchal structure such that the output of a lower-level
fuzzy-model is an input to the next-level model. The fuzzy
framework has a hybrid structure, so the fuzzy models get
extra inputs related to each assessment level. Hence, a fuzzy
model at a higher level has at least two input sets: output of
a lower-level fuzzy model and extra inputs from the design
knowledge.

5.3.1 Fuzzy framework structure

The rule-based fuzzy structure is used in the fuzzy framework
because it fits well to decision-making in the presence of
linguistic information. Also, the Mamdani approach is used
as the inference system because it fits better into rule-based
models and returns a single output [55]. The novelty of the
introduced fuzzy framework relies on its structure (hybrid-
hierarchal), hence the technical details of fuzzy logic are
not explained and interested readers are referred to literature
[55].

In rule-based models, a set of if–then rules maps inputs
to outputs [56]. Because the fuzzy framework aims to
assess the qualitative aspects of a CEPS, so linguistic
labels are defined for fuzzy inputs/outputs. The frame-
work uses ’Efficiency’ labels to demonstrate the input
fuzzy sets and ’Goodness’ labels for outputs, which Input
labels are labelled as ‘Not-Efficient’, ‘Marginally-Efficient’,
‘Efficient’, and ‘Very-Efficient’, and output labels as: ‘Not-
Good’, ‘Marginally-Good’, ‘Good’, and ‘Very-Good’.

In the presence of linguistic information, experts define
if–then rules and grade membership functions such that the
model returns satisfactory results with a test dataset [56]. For
instance, if the efficiency of a design-object against a ‘very-
important’ objective is ‘Very Efficient’ and against a ‘less-
important’ objective is ‘Marginally Efficient’, the goodness
of design-object is assessed: ‘Good’.

This paper uses the triangular function, which is exten-
sively used in the application of fuzzy logic in different
contexts. The framework uses the following widely used

procedure introduced by this reference [55] to grade the
membership functions. It includes three steps that should be
followed for each fuzzy variable:

(1). Defining a range that indicates the discourse universe
of a fuzzy variable; for example (0–1).

(2). Experts mark an interval in favour of the meaning of
each linguistic label used for the variable. This interval
is defined (0.45, 0.8) for ‘Efficient’ label, see Fig. 5.

(3) Experts mark a key-point within the defined interval,
significantly representing the meaning of the linguistic
label. Themembership function gets itsmaximum truth
degree in key-point. This is defined (0.75) for ‘Efficient’
label.

The membership function associated with each fuzzy set
covers a sub-range in the discourse universe. For exam-
ple, ‘Not-Efficient’ function covers (0–0.35) subrange while
‘Marginally-Efficient’ covers (0.25–0.6). The same fuzzifi-
cation is applied for variables that are exchanged between
fuzzy models. This novel structure facilitates the data
exchange between fuzzy models because both input and
output variables embody the same fuzzy magnitude about
the domain’s expert opinion. For instance, fuzzification of
‘Marginally-Efficient’ is similar to ‘Marginally-Good’.

All fuzzy models take the objectives’ importance as a
fuzzy input too. The fuzzy framework is implemented using
MATLAB fuzzy toolbox as an “off-the-shelf” platform, used
in different works [57]. However, other platforms can be used
too.

5.3.2 Fuzzy models

‘Object-fuzzy-model’: A CEPS performance is directly
related to the employed enablers for DRs. The ‘Object-
fuzzy-model’ assesses the goodness of a design-object to be
employed in an alternative. Thus, the domain expert’s opin-
ion about the efficiency of a design-object against objectives
is modeled as a fuzzy input for ‘Object-fuzzy-model’.

This framework uses a procedure to assist the domain
experts to express their opinion regarding the efficiency of
fuzzy inputs in all three fuzzy models:

(1) The expert expresses their opinion about an input by
selecting one efficiency label among: ‘Not-efficient’,
‘Marginally-Efficient’, ‘Efficient’, ‘Very-Efficient’.

(2) The expert picks a value from the sub-range covered by
the selected efficiency label. For instance, if the expert
selects ‘Efficient’, then they pick a value from the sub-
range of (0.45–0.8).

In the warehouse case, ’Cargomatic’ is a design-object
that can be employed for Unloading − equipmenttype1 as
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Fig. 5 Fuzzy Assessment framework structure

DR1. Objectives are safety satisfaction and future expan-
sion; the former is considered as very-important and the
latter as less-important. The expert assesses ‘Cargomatic’
as ‘Efficient’ against safety satisfaction and picks 0.55 from
the covered sub-range by ‘Efficient’ membership function.
This value (0.55) belongs to two membership functions
with different truth degrees: ‘Efficient’ and ‘Marginally-
Efficient’. This conforms to the main concept of fuzzy
logic. Although the idea was to assess ‘Cargomatic’ as ‘Effi-
cient’, multiple belongingness of 0.55 to ‘Efficient’ and
‘Marginally-Efficient’ embodies uncertainty in subjective
assessment. It is worth mentioning that instead of using the
above procedure, it is also possible to use the introduced
approach by this reference [58] to calculate the assessment
results in all three fuzzy models. Hence, the experts only
pick an efficiency label (such as ‘Very-Efficient’). Then the
introduced FIS can be used to either return a single value or
a linguistic term as fuzzy assessment output.

‘Process-fuzzy-model’: A process may need to have mul-
tiple interacting enablers to perform its function. ‘Process-
fuzzy-model’ assesses the goodness of a process as the con-
figuration of the employed design-object that interact with
each other. Thus, the first input set to ‘Process-fuzzy-model’
is the goodness of design-objects (output of ‘Object-fuzzy-
model’). The expert’s opinion about the interaction efficiency
between every two design-objects is modelled as the sec-
ond fuzzy input for the ‘Process-fuzzy-model’. For example,
the interaction efficiency of ‘Cargomatic’ and ‘Sunken-door’
against safety satisfaction is expressed as ‘Very-Efficient’,
while interaction efficiency of ‘Cargomatic’ and ‘Level-
door’ is expressed as ‘Not-Efficient’.

Experts define if–then rules. For instance, if the good-
ness of all employed design-objects is ’Very-Good’ and
interaction efficiency of any employed design-object against
very-importance objective is not ’Not-Efficient’ then the pro-
cess is assessed as ’Very-Good’.

‘System-fuzzy-model’: At the system level, certain pro-
cesses can be more important due to their major impact on
objectives’ satisfaction. In the warehousing domain, the stor-
ing process is very critical and its design directly impacts the
warehouse performance [53]. Thus, three input fuzzy sets are
defined for ‘system-fuzzy-model’: ‘Goodness’ of processes
(output of ‘Process-fuzzy-model’), processes’ importance,
and objectives’ importance. ‘System-fuzzy-model’ assesses
an alternative as an integration of processes. For instance, if
the goodness of very-important processes is ’Not-Good’ and
the goodness of less-important processes is not ’Very-Good’
then the ‘System-fuzzy-model’ assesses the alternative as
’Not-Good’.

The fuzzy framework provides a single value as a design
goodness score, which a higher score means a better alterna-
tive. The framework retrieves its needed data from the design
knowledge database. For example, the design-objects have
their interactions’ efficiencies as their attributes.

5.4 System validation

The number of design alternatives and DRs can be massive.
Accordingly, configuring an alternative in SSMM by acti-
vating the employed object-states in DR-states can take so
much time. Hence, it is needed to facilitate such a tedious
task to assure the practicality of the framework. On the other
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hand, the simulation results can provide some insights into
the dynamic behaviour of the alternatives, which can be used
in a systematic manner to improve them. To address these
issues, two supporting algorithms are introduced: ‘coupling
algorithm’ and ‘feedback algorithm’.

5.5 Coupling algorithm

‘Coupling algorithm’ retrieves the quantified alternatives
from the database and simulates themwith SSMM automati-
cally. This is called coupling algorithm because it configures
the SSMM such that represents one specific alternative. Gen-
erally, alternatives vary in their employed design-objects for
DRs. For each specific alternative, the coupling algorithm
activates the object-states equivalent to its employed design-
objects. For ease of referring, the alternative that is going to
be simulated is called ‘current-alternative’.

In SSMM, each DR-state has a constant value
called ‘DRID’, equivalent to the ID of DRID. For
instance, Storing − Allocation8 is a DR and its ID is
8. Accordingly, ‘SKU-Allocation’ state is equivalent to
Storing − Allocation8 and the DRID of ‘SKU-Allocation’
is also valued 8.

As explained, each design-object has an identifier called
Uniqueness Key (UK). The equivalent object-state to a
design-object carries a constant with the same value as UK.
For instance, CBS is a design-object, and its UK is valued
13. Likewise, CBS-state carries 13 as its constant value.

The coupling algorithm retrieves the quantitativemodel of
current-alternative from the database and obtains the UK of
the employed design-object for each DRID. For the ware-
house case, the current-alternative employed CBS as its
design-object, which its UK is equal to 13, as shown below.

WarehouseQuantitativemodel = [
(−)DR1 , ., (13)DR8 , ., (−)DRz

]

In SSMM, a transition condition is defined for each object-
state to compare the retrievedUKby coupling algorithmwith
the carrying constant by an object-state. In the warehouse
case, the algorithm finds that the employed design-object for
Storing − Allocation8 has UK of 13. There are two object-
states in the ‘SKU-Allocation’ state: ‘CBS’ and ‘Random’.
The transition condition in ‘CBS’ compares the retrieved UK
(13) with the carrying constant by CBS, which is also 13.
Therefore, the transition happens, and CBS-state is activated.
While the ‘Random’ state carries 14 as its constant.When the
transition is tested in the Random state, since the retrieved
value for Storing − Allocation8 is 13, not equal to 14, the
transition does not happen.

The coupling algorithm checks each DR-state and acti-
vates the employed design-objects for each DR-state. At this
stage, SSMM demonstrates a specific alternative that can be
simulated.

Coupling algorithm:
Find quantitative model of an alternative for simulation.
For id = 1: Z (number of DRs).

1. Find ‘DRID’ in DRid − state equivalent to DRid

2. In quantitative model, retrieve UK of employed design-
object for DRid.

3. Check transition conditions of object-states in DRid −
state

4. Activate the object-state that its constant is equal to
retrieved UK

End.

5.5.1 Feedback algorithm

It is critical that a design alternative satisfies objectives and
constraints (e.g., cost and throughput), so they are formulated
in SSMM and are called Design-KPIs. The object-functions
dynamically update these variables and return their value at
the end of simulation.

Due to the dynamic infarctions between the enablers
(more accurately the selected design-objects for DRs), the
simulation may return different values for the design-KPIs
compared to the calculated results by quantification mod-
els. For instance, the simulated throughput can be lower than
what was formulated as an LP constraint. Likewise, the total
cost can be higher than theLP result.Moreover, an alternative
may have the potential for better performance (e.g., through-
put can be satisfied with lower cost). This paper introduces
the ‘feedback algorithm’ to study the simulation results and
modify the quantification of alternatives to assure fulfilment
of constraints or improve objectives’ satisfaction.

This paper recommends formulating the ‘queue’ between
the processes and ‘utilization’ of physical enablers as
‘dynamic-KPIs’ in SSMM. The utilization is formulated for
those enablers whose limited capacity may affect objectives
satisfaction. Because optimization approaches mostly model
a system such that its enablers use their nominal capacity.
However, the different operation times of different enablers
may lead to a desynchronization between processes. Con-
sequently, enablers may run below their nominal capacity,
impacting the throughput. The queue between two processes
is formulated by considering the finish time of items in the
first process and their start time in the subsequent process.
The utilization of enablers is formulated by considering the
accumulated values of their busy times during the available
working time.

The feedback algorithm includes two procedures. The first
addresses modifying the alternatives to meet the throughput
if it was not satisfied according to simulation results. The sec-
ondprocedure aims to reduce the number of physical enablers
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without compromising on throughput satisfaction to improve
the alternatives from the cost reduction perspective.

If an alternative does not satisfy the throughput, the pro-
cess that experiences a long queue (bottleneck) ismodified by
increasing the number of the physical enabler (e.g., machin-
ing equipment) that its limited available capacity caused the
bottleneck situation. That is identified by studying the uti-
lization of the physical enablers in the bottleneck process.
Hence, the enabler with the highest utilization is the first
candidate to increase its number of instances.

If the utilization of an enabler in one process is consider-
ably low, the number of instances for that enabler is reduced,
because the process might be able to meet throughput with a
smaller number of enablers.

Feedback algorithm:

A) Throughput constraint satisfaction procedure

I. Select Bottle-Neck process (BN).
II. Define ‘Difference’ as: ‘required-throughput’ –

‘simulated-throughput’
III. In BN, find enabler(s) that had highest simulated

utilization; call it enablerx
IV. Find ‘Number of Instances’ for enablerx in quan-

titative model of alternative
V. ‘Updated-Instances’ = ‘Number of Instances’ +(

Difference
Capcityof enablerx

× operation time of enablerx
)

VI. Call quantification to apply needed changes
according to ‘Updated-Instances’

B) Objectives’ improvement procedure

I. Do these steps for each enabler of a process
II. Define: n = ‘Number of Instances’, ‘Minimum’ =

‘Number of Instances’
III. Find Total-Busy-Time (TBT) of all instances of

enabler
IV. Perform this loop while the below equation holds

(a) For k = 1: n-1

(Avaiable time) × (n − k)

(Avaiable time) × n
≤

∑n
i=1 TBT of instance i

(Avaiable time) × n

≤ (Avaiable time) × (n − k + 1)

(Avaiable time) × n

(b) If above equation holds then ‘Minimum’ = n-k
+ 1

V. ‘Updated-Instances’ = ‘Minimum’

The introduced feedback algorithm addresses simple
modifications to alternatives in a systematic manner to accel-
erate the design process and reduce mistakes. A modified
alternative is simulated again. The algorithm can be called
several times until the alternative satisfies the constraints or

there is no place for further improving the objectives. A cer-
tain number of iterations can be defined as another stopping
condition for the algorithm.

From the SE perspective, an alternative is validated at this
stage. The SSMM, coupling algorithm, feedback algorithm,
and quantificationmodelswork in tandemand exchange their
results as shown in Fig. 2.

5.6 Technique for order of preference by similarity
to ideal solution

The introduced framework provides two sources of infor-
mation to analyse/assess the performance of alternatives:
the simulation results for the quantitative objectives and the
fuzzy assessment for the qualitative ones. This framework
uses TOPSIS for ranking alternatives and final selection of a
better alternative.

The TOPSIS procedure is explained briefly here and inter-
ested readers are referred to the literature for details. TOPSIS
hypothesises two alternatives: positive and negative ideal
alternatives. The former illustrates the best performance
against all criteria while the latter demonstrates the worst.
TOPSIS finds a real-alternative that is closest to the positive
and is farthest from the negative ideal-alternative. The total
number of feasible alternatives is defined as m while n is the
total number of assessment criteria (e.g., simulated total cost
and fuzzy assessment).

TOPSIS application:

I I- Do it for i = 1: m

1. Let xij be the given score of alternativei against
criterion j. Construct matrix X as: X = [

xij
]
m×n

2. Let J be the set of benefit criterions, which their
maximization is desired (e.g., throughput):

3. Let J′ be the set of cost criterions, which their min-
imization is desired (e.g., cost):

4. Let zm be each criterion weight:
5. Construct normalized weight matrix: W =[

wj
]
1×n,

∑

j
wj = 1; wj = zj/

∑

j
zj m = 1: n

6. Construct normalized decision matrix r: r =[
xij

]
m×n; rij = xij√ ∑

i x
2
ij
for i = 1: m and j = 1:

n
7. Construct weighted normalized decision matrix:

v = [
vij

]
m×n, vij = wj × rij,

8. Positive Ideal-alternative: A∗ = {v∗
1, . . . , v∗

n};
v∗
j = { max (vij) if j ∈ J; min (vij) if j ∈ J′}

9. Negative Ideal-alternative:A′ = {v′
1_ , . . . ,

v′
n},v′

j = {min(vij) if j ∈ J; max(vij) if j ∈ J′}
10. Separation from Positive Ideal-alternative is: S∗

j =
[
∑

j
(v∗

j − vij)2
]1/2

i = 1 : m
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11. Separation from Negative Ideal-alternative is:S
′
j =

[
∑

j
(v

′
j − vij)2

]1/2
i = 1 : m

12 Calculate relative closeness to ideal solution, C∗
i as:

C∗
i = S

′
j/

(
S

′
j + S∗

j

)
i = 1: m 0 < C∗

i < 1

II. II- Select the alternative with Ci
∗ closest to 1.

TOPSIS takes simulation and fuzzy assessment results of
alternatives and ranks them from the best to worst, which
the best one is handed-off for detailed design. Hence, this
framework can stand as a decision support framework at early
design stages of CEPSs.

In the next section, two case studies are presented to
demonstrate the applicability of the proposed framework and
its advantages compared to existing approaches in the liter-
ature.

6 Case studies

6.1 Warehouse design case

A pharmaceutical company wants to construct a warehouse
that will receive three SKU types: SKU-A, SKU-B, and
SKU-C. Stakeholders defined the design objectives as cost
minimization, safety satisfaction, and future expansionwhile
meeting the required throughput. The warehouse managers
defined the process enablers as equipment, infrastructure, and
operational policy. Thewarehousemanagers definedDRs for
process enablers and their possible design-objects. This is all
part of the design knowledge used as input for the framework.
Warehouse SSMM is demonstrated in Fig. 3.

Generally, the warehousing function starts by receiving
consignment and continues by storing SKUs. The assign-
ment policy determines how to allocate SKUs into the storage
modules. The CBS policy allocates the high-demand SKUs
in modules that require less travel-time (operation time) in
storing/pickingprocesses,while this increases the travel-time
for low-demand SKUs. The random storage policy allocates
SKUs to any available spot. The batch and single picking are
two operational policies for the order-picking process, the
former consolidates orders and make a picklist. Whereas in
the single-picking policy, the orders are picked separately.
The travelled distance of the operator directly affects the
operation times in storing/picking processes. Having a cross-
aisle between storage aisles can reduce the travel-distance,
because the operator can exit/enter aisles without passing the
entire aisle length, yet awarehousewith a cross-aisle requires
more space.

Fig. 6 Defined design-objects for the warehouse case study

6.1.1 Alternative generation

The qualitative reference model of the warehouse is shown
below, which includes 20 defined DRs.

WarehouseQualitative−referenceModel:
[Unloading − equipmenttype1, Unloading − doorposition2,
Unloading − doortype3, Staking − timing5,
Stacking − infrastructuretype6, Stacking − equipmenttype7,
Storing − Allocation8, Storing − timing9,
Storing − parallel − mode10, Storing − Equipment − type11,
Storing − storage − module − type12, Storing −
aisles configuration13, Picking − pick − listing14,
Picking − parallel mode15, Picking − Equipment − type16,
Shipping − door − type17, Shipping − door − position18,
Shipping − timing 19, Shipping − Equipment − type 20].

Figure 6 shows the stored design-objects in the design
database with their attributes (as input data such as applica-
bility, consistency, and efficiency) to be used by feasibility
checking/alternative generation algorithms, quantification
models, and fuzzy framework.

The feasibility checking algorithm crossed-off almost half
of the generated alternatives, showing the high risk of design
failure without having an integrated design approach. Three
generated alternatives are shown for demonstration.

AlternativeA = [(1)1,(3)2,(5)3,(7)4,(7)5,(10)6,(11)7,
(14)8,(7)9,(15)10,(11)11,(17)12,(20)13,(21)14,(15)15,(12)16,
(6)17,(3)18,(8)19,(2)20].

AlternativeB = [(1)1,(3)2,(6)3,(7)4,(7)5,(9)6,(11)7,
(13)8,(7)9,(15)10,(11)11,(17)12,(20)13,(22)14,(15)15,(11)16,
(6)17,(3)18,(7)19,(11)20].

Alternativec = [(1)1,(3)2,(5)3,(7)4,(7)5,(10)6,(11)7,
(13)8,(7)9,(16)10,(11)11,(18)12,(20)13,(22)14,(16)15,(11)16,
(6)17,(3)18,(8)19,(2)20].

6.1.2 Quantification

The LP model is formulated for cost minimization and is
constrained to the required throughput. The cost factors are
defined as fixed and operational costs of design-objects and
space cost. The cost-related data are defined as attributes of

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) 17:353–370 365

Table 2 Warehouse case study
result Alternative Total cost according to

quantification
Fuzzy score Total cost (validated) TOPSIS rank

AlternativeA 4,660,583 0.4173 4,719,396 2

AlternativeB 7,130,002 0.7436 7,321,965 3

AlternativeC 4,788,013 0.54 4,648,492 1

design-objects. ALDeP is applied on alternatives to develop
a layout according to the employed design-objects. For more
details regarding quantification see Online Appendix A [31].
The quantification results for the demonstrated alternatives
are given in Table 2.

6.1.3 Fuzzy assessment

The fuzzy framework assesses the alternatives against
the qualitative objectives: ‘safety-satisfaction’ and ‘future-
expansion’. The importance of objectives was defined by
the managers and modelled as fuzzy inputs for the fuzzy
models. The objectives’ importance and processes’ impor-
tance include four fuzzy sets: ‘Less-Important’, ‘Marginally-
Important’, ‘Important’, ‘Very-Important’. Fuzzifications of
fuzzy variables are given below:

‘Not-Good’, ‘Not-Efficient’, and ‘less-Important’:

f(x, −1, 0, 0.35) =

⎧
⎪⎨

⎪⎩

1 x < 0
0.35−x
0.35 0 ≤ x ≤ 0.35

0 Otherwise

‘Marginally-Good’, ‘Marginally-Efficient’, and
‘Marginally-Important’:

f(x, 0.25, 0.4, 0.6) =

⎧
⎪⎨

⎪⎩

x−0.25
0.15 0.25 ≤ x ≤ 0.4

0.6−x
0.2 0.4 ≤ x ≤ 0.6

0 Otherwise

‘Good’, ‘Efficient’, and ‘Important’:

f(x, 0.45, 0.7, 0.8) =

⎧
⎪⎨

⎪⎩

x−0.45
0.25 0.45 ≤ x ≤ 0.7

0.8−x
0.1 0.7 ≤ x ≤ 0.8

0 Otherwise

‘Very-Good’, ‘Very-Efficient’, and ‘Very-Important’:

f(x, 0.75, 1, 1) =

⎧
⎪⎨

⎪⎩

0x ≤ 0.75
x−0.75
0.25 0.75 ≤ x ≤ 1

11 ≤ x

Warehouse managers defined the importance of safety-
satisfaction and future-expansion respectively: Important-
0.6 andMarginally-Important-0.4. Managers expressed their

opinion about efficiencies of design-objects, their interac-
tions, and process importance, which are fuzzy inputs to the
fuzzy framework. Details are given in Online Appendix B.

Fuzzy assessment and simulation results of validated alter-
natives (after applying the feedback algorithm) are shown in
Table 2.

6.1.4 TOPSIS

Two criteria were defined for the TOPSIS to assess alterna-
tives: total validated cost and fuzzy assessment result with
the relative importance of respectively 0.7 and 0.3. Table 2
shows calculated ranks by TOPSIS for each alternative.

6.1.5 Discussion on case study

AlternativeA shows a lower total cost compared to
AlternativeC according to the quantitation models. These
alternatives differ in their employed design-objects in stor-
ing/picking processes. AlternativeA employs ‘pallet-rack’
and ‘forklift’ in storing and ‘turret-truck’ in the picking pro-
cess.Alternativec employs ‘shelve-rack’ and ‘forklift’ in both
processes. Although, ‘pallet-rack’ is more expensive than
‘shelve-rack’, storing in or picking from the ‘pallet-rack’
takes less time. The ‘turret-truck’ has a shorter operation
time compared to the ‘forklift’, but the ‘turret-tuck’ is more
expensive. The quantification models calculated that three
‘forklifts’ are required to perform the storing process on
‘pallet-rack’ to satisfy throughput, while four ‘forklifts’ are
required if the ‘shelve-rack’ is employed. Three ‘turret-truck’
can satisfy the throughput in the picking process if the ‘pallet-
rack’ is employed, while if ‘forklift’ is employed four is
needed. Thus, AlternativeA demonstrated a lower total cost
calculated by quantification models: employing three ‘fork-
lifts’ in storing and three ‘turret truck’ in the picking process.

Alternativec employs ‘CBS’ and ‘double-command’ as
its operational policies in storing/picking process. ‘Double-
command’ policy allows picking the ordered SKUs after
storing some SKUs. Thus, the operator-equipment can cut
one empty travelling activity in storing and picking pro-
cesses. The combination of ‘CBS’ and ‘double-command’
policies reduces the total operation time. In Alternativec, the
utilization of equipment in storing and picking processes was
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respectively 59% and 67%. This shows that the total work-
ing hours of four ‘forklift’s in Alternativec was between the
total working hours of two and three ‘forklifts’ within the
available working-time. Therefore, the feedback algorithm
reduced the number of ‘forklifts’ in both picking/storing pro-
cesses to three in the quantification model of Alternativec.
The quantification models are called again to check the con-
straints satisfaction in other processes after such an update.
Simulation of updated Alternativec revealed the throughput
satisfaction.

2 × 5 < Simulated working-hours for ‘forklift’ < 3 × 5.

→ 50%
(
2×5×100

4×5

)
< Utilization < 75%

(
3×5×100

4×5

)
.

If a sequential design approach was followedwithout hav-
ing an integrated design approach in addressing all design
requirements at the same time including the operational
policies, the results could have been different in cost min-
imization. It is hard to achieve such insight without having
an integrated design approach as realized in this framework.

Both AlternativeA and Alternativec received a lower
fuzzy score compared to AlternativeB. This demonstrates
the necessity of having a multi-aspect assessment approach.
One alternative could be considered promising from the
cost minimization perspective, while might not be the best
with respect to qualitative objectives. Application of TOPSIS
allows ranking the alternatives by considering their excel-
lence on multiple conflicting objectives.

The novel introduced fuzzy framework has a hierarchi-
cal structure helping to reduce the number of if–then rules
in fuzzy-assessment models by reducing the number of
input-variables in each fuzzy-model. The number of if–then
rules increases exponentially when the number of variables
increases, as called ‘curse of dimensionality’ [59]. The hier-
archical structure of the framework helps to break the ‘curse
of dimensionality’ in design assessment of CEPSs given the
scale and complexity of their design knowledge [60].

6.1.6 Lessons learnt from the case study

Simulation of all alternatives can be timely; hence this
research suggests applying a supervisory approach to select
and simulate a limited number of alternatives without losing
an optimum alternative. However, it is hard to guarantee to
find a global optimum because the analytical formulation of
CEPS belongs to the NP-hard problem class.

If two subsequent processes do not share resources, if the
first process operates properly such that the second can start
its operation on time, the employed design-objects in the first
process might not impact the operation of the latter process.
If the unloading (P11) and the stacking processes (P12) finish
their jobs within the available time, their employed design-
objects do not impact operations of the storing (P3), shipping
(P4), and picking (P3). In this case study, the unloading can

employ different design-objects, leading to three possible
configurations as shown below. The numbers in parentheses
show the UKs of the employed design-objects.

P11 − Configuration1:[(1)1,(3)2,(5)3,(7)4].
P11 − Configuration2:[(1)1,(3)2,(6)3,(7)4].
P11 − Configuration3:[(2)1,(3)2,(6)3,(8)4].
There are four feasible configurations for the stacking pro-

cess, so the number of possible combinations for unloading
and stacking process configurations is 3× 5= 15. Likewise,
the process configurations of storing, picking, shipping lead
to 320 combinations.

In total 4800 feasible alternatives are generated. This
research selected 15 alternatives that covered all 15 combina-
tions for the unloading/stacking process configurations. The
selected 15 alternatives were simulated and validated partic-
ularly against their unloading/stacking processes. Then the
simulation results of these two processes were written for all
feasible 4800 alternatives according to their combination for
unloading/stacking process configurations.

Among 15 combinations of unloading/stacking, the com-
bination that hadminimum cost while satisfying the through-
put was selected. This combination was used to simulate all
320 possible combinations of [P2, P3, P4]. However, the sim-
ulation results were only updated for storing, picking, and
shipping processes. This supervisory approach was done to
reduce the computational cost related to the simulation time,
so instead of simulating 4800 alternatives, 15 + 320 alterna-
tives were simulated.

6.2 Reconfigurable manufacturing system design
case

To illustrate the advantages of the proposed framework com-
pared to the existing approaches, the framework is applied
to another case study solved with other approaches in the lit-
erature [24, 61]. The used input data are from the literature
belonging to the design knowledge of the case study.

This case study is briefly explained here and interested
readers are referred to the literature and Online Appendix C
and D for details [61]. The case is about designing a recon-
figurable manufacturing system to produce two products:
ANC-90 and ANC-101. The required hourly throughput for
each product respectively is 120 and 180. The objective is
cost minimization. Products require common and specific
machining operations. Different machine tools are available
with different capacities, operation times, and fixed costs.
The system is to be designed as a flow line including a max-
imum of ten sequential and five parallel machines.

Youssef and ElMaraghy [61] used genetic algorithm for
costminimization by finding optimum configuration in terms
of the number of stages, machines’ selection, and machines’
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Fig. 7 Altenative1-A possible
optimal configuration

Table 3 Results of second case study

Alternative Throughput Total cost (validated) Rank

1* 300 $14,645,000 +
$1,140,000(extra
machine) = $15,785,000

1

1 302 $14,645,000 +
$1,140,000(extra machine
in process 2) + $725,000
(extra machine in process
8) = $16,510,000

2

2* 300 $17,115,000 3

2 300 $17,115,000 3

number in each stage. Figure 7 shows a found optimal config-
uration (called Altenative1) with a total cost of $14,645,000.
Boxes show the machines’ names.

Wang and Dagli [24] used a combination of a genetic
algorithm and simulation by PN, in which the encoded chro-
mosome took machines’ cost and simulated throughput to
choose a new configuration (population). They obtained
another optimal configuration (see Fig. 8) with a higher
total cost ($17,115,000), called Alternative2. They argued
that Altenative1 could not satisfy throughput by simulation,
which this current paper also found a similar issue.

In this case study, the only enabler was defined as
machines. This paper defines operational policies as another
enabler to show the importance of having an integrated
design approach. Accordingly, two possible policies are
defined: ’Batching’ and ’No-batching’. The described case
was aligned with the ’No-batching’ policy, in which AN90
and ANC101 could enter the production line one by one.
Under the ’Batching’ policy, each item can enter the pro-
duction line in batches consisting of the same item type.
Alternative∗

1 and Alternative∗
2 are defined similar to respec-

tively Alternative1 and Alternative2, except new alternatives
use batching policy.

The alternative generation and feasibility checking algo-
rithms developed feasible alternatives, which are quantified
by an LPmodel. The alternatives are simulated for 540work-
ingminutes. The feedback algorithm is applied to alternatives
while outputs of the first 60 min are excluded to eliminate
the ramp-up period effect. Table 3 shows the results. TOP-
SIS is applied to alternatives by considering the total cost and
throughput with the relative importance of 0.7 and 0.3.

6.2.1 Discussion on case study

The LP results show that Alternative1 have a minimum
total cost. The simulation results show that Alternative1
and Alternative∗

1 cannot produce 300 parts per hour, while
Alternative2 andAlternative∗

2 satisfy the required throughput.
The reason for such a deviation is that different opera-
tion times of different machines causes desynchronization
between processes and finished parts in one machine can-
not immediately get service from the next, causing a queue
between stations (bottleneck). Consequently, the machine
after bottleneck might work below its nominal capacity,
which is against the optimization formulation or assump-
tion. Wang and Dagli [24] argued similarly about the reason
for this deviation. The feedback algorithm identified the sec-
ond process as a bottleneck in Alternative1 and Alternative∗

1.
Thus, the quantitativemodels of the alternativeswereupdated
and the number of machines in the second process was
increased from ‘one’ to ‘two’.

The modified Alternative1 and Alternative∗
1 are simu-

lated again, while Alternative1 could not meet the required
throughput and Alternative∗

1 could. The feedback algorithm
found process-eight as the bottleneck, so the number of
machines is increased in the process-eight from ‘two’ to
‘three’. The modified alternative is simulated again and
could meet the throughput. Alternative∗

1 shows a better per-
formance compared to Alternative1 due to the selection of
‘bathing’ policy (less desynchronization).

The proposed framework can find a better solution in sat-
isfying the objectives compared to found solutions in the
literature. The scale of this improvement could be higher if
the case study had more realistic assumptions. For instance,
if changeover times were addressed, the impact of opera-
tional policy selection could be more significant. Moreover,
the framework allows ranking the alternatives by considering
their performance against qualitative/quantitative objectives.
However, the reviewed approaches only considered quanti-
tative ones.

7 Conclusion and future work

Generally, simulation-based optimisation problems face sev-
eral challenges, which the computational cost is a widely
accepted one. The simulation takes a long time when the
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Fig. 8 Altenative2-possible
optimal configuration

number of variables is large, while the number of design
variables is large at early design stages. Thus, the compu-
tational cost may limit the application of simulation-based
optimization in this context. Although the simulation-based
optimizations do not guarantee finding a global optimum,
an investigation of the application of simulation-based opti-
mization can be future work for this work. This research also
faced the computational cost problem, which was tried to
be addressed with a supervisory approach. A future research
direction would be the investigation of the application of
more advanced supervisory methods for searching solution
space more efficiently.

The SSMM simulates the alternative behaviour under
some assumptions (e.g., deterministic operation time of
machines). However, the occurrence of some events that are
against earlier assumptions may impact the system perfor-
mance. This is called uncertainty, which can be embodied in
SSMMbydefining some time-events or probability functions
to model possible failures or processing times variability.
Accordingly, the simulation results include the impact of
uncertainty on an alternative’s performance.

The integrated design of CEPSs with a holistic approach
allows capturing more dimensions of the solution space.
As shown in Fig. 9, the optimization models seek to find
an optimum solution in a solution space whose dimensions
is defined by (limited to) quantifiable design requirements.
When the solution space is searched by adding the opera-
tional policies dimension, a better solution might be identi-
fied. Although some limited aspects of operational policies
can be modelled with complicated optimization formula-
tion, the possibility of trapping in a local optimum might
increase by adding more variables to the optimization mod-
els. This highlights the need for using simulation at early
design stages.

SSMM is a key artefact in the proposed framework
and embodies three aspects of a CEPS: system architec-
ture, decisions regarding the allocation of design options to
design requirements for configuring a design alternative, and
dynamic behaviour of an alternative. Such a rich embodiment
is one of the key contributions of this research and is the fruit
of a novel application of proper modelling approach (OO),
innovative application of a modelling formalism (FSM), and
seamless incorporation of the framework artefacts such as

Fig. 9 Multi-dimensional solution space

SSMM, fuzzy assessment framework, TOPSIS, quantifica-
tion models, and supporting algorithms.

SSMM has a hierarchal structure, which its nested states
can be used as design modules for encapsulating the detailed
design. Therefore, the SSMM can stand as a design platform
for designers in different disciplines. The detailed design can
solidify the simulation result during design iterations.

Systematic interconnection between models allows a
smooth information propagation and realisation of data
integrity/consistency.This is the result of the consistent appli-
cation of architecting guidelines in different models and
artefacts of the framework. Such integrity is a significant
relief in collaborative design where the design knowledge is
large scale and multi-disciplinary.

Because of having a multi-aspect design assessment,
this framework allows obtaining a deep insight into the
performance of alternatives and the existing trade-offs in
objectives’ satisfaction. Therefore, the introduced approach
can stand as a decision support framework for the integrated
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design of complex engineering processed based systems at
their early design stages.
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