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Abstract
The upcoming challenge for innovation in intelligent manufacturing design introduced a demand for agility and flexibility,
adapting production plants and processes to emerging needs and new services. Arrangements of service-oriented cyber-
physical components should replace computer-integrated plants, matching anthropocentric production lines. Manufacturing
should follow a process-oriented requirements cycle, linking different design phases based on traceability, associating problem,
solution, and collaboration with external and human agents. The first problem is how to provide a requirement cycle that fits
this demand, using a systemic and process-oriented (formal) method. This article proposes a model-based requirements cycle
for intelligent manufacturing systems (IMfgS). The proposal covers a functional, object-oriented approach and introduces a
goal-oriented method suitable for service design. Process orientation leads to Petri Nets’ schema, already used in plant design
manufacturing. The Petri Net formal approach synthesizes requirements and describes solutions, opening a possibility to trace
problems and solutions. A case study from the chemical industry illustrates that. A requirements life-cycle formalized in Petri
Nets includes transference algorithms from either UML or KAOS diagrams. The approach can be adapted to service-oriented
manufacturing, but that is not developed formally in this work. The requirements cycle has been adjusted to available tools,
making the proposal practical. Intelligent manufacturing is getting more attention, either because of demands for sustainable
manufacturing processes or the digitalization process and industry 4.0. New design processes demand more flexibility and
capacity to reuse and modify functions while also modifying the product/services they produce. New approaches recover
methods typically used in Software Engineering. However, such processes also bring complexity and the need for intensive,
interactive testing, even during the requirements phase.
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1 Introduction

Manufacturing (Mfg) is going through a disruptive change
where mass-production automated systems are gradually
replaced by models no longer coupled with itemized prod-
ucts. Integrated manufacturing evolves by adding new
sensors, computing platforms, communication, and power
supervisory systems. New concepts such as Cyber-Physical
Systems (CPSs), twin systems, intensive modeling, Indus-
trial Internet of Things (IIoT), and big data [1,2] complete
the transformation. Many of those changes affect directly
the relationship between workers and the automated pro-
duction lines [3], launching new design approaches [4–8].
The real challenge is anticipating requirements modeling’s
formalization - especially if the target is an automated and
service-orientedmanufacturing (Mfg) process. In such cases,
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it is crucial to include amodel for the couplingwith customers
in those formal requirements.

Process-oriented requirements engineering is the key to
achieving a formal approach that includes customer coupling.
Generically, the Requirements Engineering (RE) phase con-
sists of eliciting, modeling, and verification steps. A formal
presentation is not (conventionally) introduced in the model-
ing steps. In its turn, Intelligent Manufacturing requirements
are dynamic; that is, theywould actively influence the design,
and after that, the implementation and deployment[9,10] by
providing support to maintenance. In our proposal, dynami-
cal requirements are represented by invariants or background
rationales.

This paper proposes a life cycle for requirements engi-
neering applied to automated, intelligent manufacturing
arrangements with the following characteristics:

• Requirements are dynamic;
• Requirements are formally modeled using language rep-
resentations suitable to express the dynamic of automated
problems, such as Petri Nets;

• Requirements are formally analyzed and verified in each
step of the cycle;

• Requirements should include customer coupling;
• Requirements should be the basis for innovation and
maintenance, referring to requirements to include new
features.

Petri Nets (PNs) emerged as a suitable and formal pre-
sentation to dynamic requirements [11]. Different Petri
Nets proposals appeared since its proposition in 1962 until
the appearance of the ISO/IEC 15.909 (www.iso.org /stan-
dard/67235.html) standard. The standard defines the basic
types: Place / Transition, High Level, and Asymmetric nets
(15.909-1). An interchange format PNML (Petri NetMarkup
Language) (15.909-2)may allow a formalmodel to be shared
by different tools. User extensions (15.909-3) are accepted
since they respect the formal definitions of 15.909-1. Exten-
sions could be hierarchical nets, fusion places and transitions,
gates, time, and object-oriented nets.

Therefore, it is encouraging to use Petri Nets as a for-
mal presentation to requirements, fitting dynamic analysis
and intelligent issues derived from draft models in diagram-
matic (semi-formal) languages. UML is the most popular
diagrammatic language (used in different project domains).
Consequently, it is a suitable candidate to support new
approaches for requirements analysis. Recent proposals have
emerged, offering alternatives to functional development.
The goal-oriented method is the most promising in this
line[12].

Goal-oriented requirements engineering (GORE)
emerged from the search for alternatives to strictly func-
tional approaches [13]. It evolved to schematic presentations

like KAOS [12]. Goal-oriented diagrams can be transferred
to Petri Nets by specific algorithms. The authors of this
paper developed a software tool called ReKPlan (Require-
ment Engineering in KAOS for Planning) to transfer KAOS
diagrams automatically to Petri Nets [14].

The following section will show some basic concepts of
Petri Nets and how we intend to use them to formalize the
requirements of intelligent manufacturing systems modeled
inUML.A small example of evaporator controlwill illustrate
the process. Section 3 will discuss the proposed require-
ments life cycle using UML, followed by an alternative
goal-oriented approach. A case study from Roadef Chal-
lenge, a Car Sequencing problem [14], will be reproduced to
highlight these two different approaches’ differences. Sec-
tion 5 will analyze the current context for manufacturing
design and perspectives to match the proposed requirements
life cycle with tools commercially available. Finally, Sect. 6
will show concluding remarks and perspectives on further
work.

2 From draft to goal-oriented requirements

The requirements process’s efficiency could make the dif-
ference between success and failure in systems design [15],
especially for automated system domains. The requirements
cycle should deliver a consistent set of statements defin-
ing a closed vision of the problem, even if the description
is not complete - we would call that a model. It should
also be dynamic and guide the project’s evolution to imple-
mentation, including maintenance and final destruction. The
term “dynamic requirements” has been used since the 50s,
applied to different disciplines and domains with this same
meaning[16]. More recently, with the prevalence of func-
tional design, its use was reduced, particularly in automated
systems. However, the emergence of service-oriented man-
ufacturing and the demand for traceability brought back
the need to reinforce dynamic requirements again [16].
The design of service systems (or product-service systems)
demands recurrent checks for the satisfiability of require-
ments in different life cycle phases.

The early requirements phase must overcome two basic
problems:

• The genesys problem, which states that requirements
are derived from intentions and distinct (and sometimes
conflicting) viewpoints, which cannot be completely for-
malized;

• The scope creep when emerging requirements affect the
problem domain being used.
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Arequirement cycle that transfers diagrammatic and semi-
formal representation into a formal languagewould face both
problems. In this work, dynamic requirements should be rep-
resented by invariants, formalized using Petri Nets [17].

To face the genesys problem, we assume that the elicitation
process starts by capturing intentions and demands (from dif-
ferent viewpoints) in clustered semi-formal diagrams. UML
is a prominent example used in many object-oriented struc-
tured elicitation processes. It is used in this paper as a
reference. That means to make the life cycle iterative pro-
posal strictly a functional approach first, and then propose
the evolution to other methods (as the goal-oriented).

The requirements life cycle proposed in this paper starts
with a preliminary UML model initiating a cycle where
each model is analyzed and formalized. Models express sys-
tem dynamics by a state-transition (or Transition Systems)
schema both in requirements and the solution. That means
capturing semi-formal diagrams into Petri Nets [14,17].

2.1 The Petri nets formalism

Petri Netwas created in 1962withCarlAdamPetri’s doctoral
thesis, which focused on process management and commu-
nication between processes. With a hybrid background in
Mathematics and Computer Science, Petri based his for-
malism on bipartite graphs and transitions systems - a key
concept to computation theory. Such combination results in
a sound formalism that is also executable, an important cri-
terion to guide a formal presentation applied to Engineering
Design. Formally[18],

Definition 1 (Petri Net) A Petri net structure is a directed
weighted bipartite graph

N = (P, T , A, w)

where

P is a finite set of places, P �= ∅
T is a finite set of transitions, T �= ∅
A ⊆ (P × T ) ∪ (T × P) is a set of arcs from places to
transitions or from transitions to places
w : A → {1, 2, 3, . . .} is a mapping between the set of
arcs and the positive integers.

We will normally represent a set of places by P =
{p1, p2, . . . , pn} and a set of transitions by T = {t1, t2, . . . ,
tm}, whereP = n andT = m are the cardinality of the respec-
tive sets. A typical arc is an ordered pair (pi , t j ) or (t j , pi ),
deppending on its direction. A mapping can associate a non-
zero positive integer to its arc denoting a weight w, that is,
the amount of tokens required to flow in the arc.

The authors developed a Petri Net modeling environ-
ment calledGHENeSys (General Hierarchical EnhancedNet
System) to model Place/Transition and High-Level Nets1

following the standard ISO/IEC 15.909. A user extension
introduces fusion places, inhibitor gates, hierarchy, and timed
models. The hierarchical extension follows the Theory of
Structured Programming [19]. Hierarchical elements are
called macro-box and macro-activities and can be replaced
by homogeneous sub-nets. Borders elements belong to the
same type, either place or transition. We have then proper
elements. These elements are said live if there is at least one
path between two input and output border elements with-
out deadlock. In other words, there is at least one free path
leading from input to output. In this case, hierarchical levels
preserve properties [18].

Definition 2 (Macro-place (transition))Amacro-place (tran-
sition) is a substitution place (transition) element [20] that can
replace a place-bounded (transition-bounded) sub-net which
is a proper entity [19], that is, there is only one input e one
output element and at least one path between then without
traps or deadlocks.

Definition 3 (Pseudo-boxes) A special place element, a
pseudo-box, is a fusion place to match transfer signals pro-
videdbyother sub-nets - reinforcing the structured approach -
or external signals from the surrounding environment. Those
signals are observed but not controlled by the system being
modeled.

GHNeSys can be used for basic modeling and support
formal verification (model checking) using Petri Nets and
GHENeSys extension. Some of its essential elements are
depicted in Fig. 1.

In Fig. 1, Box and Activity are perfect matches to classic
place and transitions, respectively, but accept hierarchical
static (Macro-Box ) and dynamic (Macro-Activity) defini-
tions. The Pseudo-Box is a fusion place that denotes the
current sub-system’s connection with the application domain
elements or other sub-systems. Arcs are a pictorial repre-
sentation of the flux relation. Enabling Arcs are generally
associated with Pseudo-Boxes and inserted without destroy-
ing the state equation. They are also helpful in expressing
external connections.

2.2 Mapping UML to Petri nets

The number of articles dedicated to the translation of UML
diagrams toPetriNets increased significantly since the begin-
ning of this century [21–26] due to the growing interest in
formalizing the design process. Although different sets of

1 While a classic net set of tokens standing for items of control flow, a
High-Level Net admit static properties that can distinguish each mark.
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Fig. 1 GHENeSys is a unified extensions to the basic Place/Transition
and High-Level definitions, including elements as Pseudo-box - rep-
resenting observable but not controllable events -, hierarchy and time

UML diagrams have been used in the transfer, all share the
idea of selecting a minimal set.

We improved Baresi classic algorithm for translation from
UML to Petri Nets [21] in [17]. An illustrative (and realis-
tic) example will show this translation using an extended
set of diagrams: class, state, and activity translated to a
Place/Transition net usingGHENeSys. The example is based
on an evaporator system controller’s specification, shown in
Fig. 2.

The evaporator system works according to the following
(functional) description:

• Tank 1 starts to be filled by opening valves V1 and V2;
• Valves V1 e V2 are closed when Tank 1 is full;
• The Mixer turned on;
• After two time unit intervals, the Heater is turned on and
actuates for 20 time units. The solution evaporates and is
cooled in the Condenser.

• The Heater is turned off;
• The solution in Tank 1 is transferred to Tank 2 by opening
valve V3;

• The Mixer is turned off if Tank 1 is empty and valve V3
is closed;

• The solution must remain in Tank 2 for 32 time units and
then be liberated by opening valve V4.

• ValveV4 is closedwhen tank T2 is empty, and the system
returns to the initial state.

As established before, the functional approach is accurate
but does not cover non-functional requirements. We might

Fig. 2 Schema for the evaporator

want to insert exception or failure possibilities modeled in a
semi-formal language like UML.

UML diagrams represent the controller’s intended behav-
ior (requirements), including exceptions. State and class
diagrams are shown in Figs. 3 and 4 respectively 2.

Briefly, let us suppose that the required initial conditions
are not valid. Tank 1 is expected to be empty, V3 is closed, the
system has no alarm set, and there is no indication of a mal-
function in the mixer or the Heater. In that case, the sequence
described above goes smoothly. Otherwise, the malfunction
state is set, the alarm is turned on (if it is not on already), and
when tanks T1 and T2 are empty, it is turned off and returns
to the initial state.

Although the functional, intuitive description is purely
sequential, there are parallel actions, as shown in the Petri
Net representation.

Salmon et al. [17] proposed a UML-PetriNet translation
algorithm, based on Baresi’s work [21] 3. The net resulting
from this process is in Fig. 5. The diagrams of Figs. 3 and 4
were the input for this process.

We are not going into details about the translation algo-
rithm, but it is available in a previous work [17]. Require-
ments development based on UML/PN transference depends

2 Since it is only an illustration, we are focusing only on the controller.
3 Baresi proposed a directmatching, a bijection betweenUMLelements
and Petri Nets localities.
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Fig. 3 State Diagram for the Controller

on the designer’s ability to capture non-functional require-
ments. However, it can synthesize dynamic requirements,
that is, requirements that could be used as a reference during
the whole design process up to deployment.

Table 1 shows somedynamic requirements,which justifies
the use of Petri Nets formalization for the requirements mod-
eling, providing an executable language presentation used in
formal verification. OCL (Object Constraint Language) is
also used to describe dynamic requirements [27]. In the pro-
posed functional requirements development, OCL sentences
complement functional requirements, adding constraints
from the application domain, non-functional requirements,
or invariants. The following section will present the life cycle
based on a functional, object-oriented approach.

3 The requirements life cycle

The Petri Net in Fig. 5 was obtained by an algorithm [17],
using a minimal set of UML diagrams. The transference

Table 1 Dynamic requirements for evaporation matched with Petri
Nets invariants

Id OCL Specifications

1 (Tank1.Empty, Tank2.Empty) → V 1V 2.open

2 Tank1.Full → Mixer .On

3 Tank1. f ull → V 1V 2.close

4 Tank1.Empty → V 3.close,Mixer .of f

5 Tank2. f ull → V 4.open

6 Tank1.Empty, Tank2.Empty,mal f . f alse) → alarm.of f

composes the proposed functional requirement life cycle,
depicted in Fig. 6.

The process starts with eliciting a set of requirements
(from distinct viewpoints), checking for the generation gap4,
and generating a preliminarymodel. This semi-formalmodel
(Fig. 6) is formalized by transferring it to Petri Nets. Prop-

4 Missing requirements as occurs typically in early elicitation
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Fig. 4 UML Class Diagram for the Controller

erty analysis over the formal model will check for invariant
preservation, consistency, and closeness. Eventually, the
requirements could be verified and matched with general
(dynamic) requirements proposed in the definition of the
project. A revision process will look for gaps that justify
enhancing the requirement’s model, initiating another cycle.
When no enhancement is feasible, the requirement specifi-
cation is ready for documentation and to go forward in the
design process.

The requirements cyclewill be essential even in traditional
product-oriented manufacturing automation. Nevertheless,
it becomes more critical to design product-service systems
(PSS)[28,29]. Other formalization methods can be used to
generalize the application domain, such as Event-B [30].
However, Petri Nets would better represent generic systems
and process-oriented Model-Based Requirements Engineer-
ing (MBRE). Petri Nets can provide a formal state/transition
approach where concurrency is analyzed and applied to dis-
tributed systems.

Appying the cycle (Fig. 6) to the evaporator control
requirements (described by UML diagramas in Figs. 3 and

4), we transferred requirements to the Petri Nets shown in
Fig. 5.

Of course, the practical use of the methods discussed here
would require the requirement cycle’s encapsulation in a soft-
ware tool that helps with process scaling and documentation.
Features such as re-usability and version control are essen-
tial to achieve better results in practice. This paper intends
to focus only on the method and its theoretical background.
Still, we will discuss some ways to make it practical in the
last section.

The requirements cycle in Fig. 6 relies on a cyclic
refinement formal process that applies to functional and
goal-oriented approaches. However, scaling that to large
distributed production systems would bring some problems
(supposing UML as the requirements presentation):

• A demand to reduce redundancy and use a minimal set
of diagrams;

• Dealing with large packages of subsystems;
• Including restrictions and conflicts between elements and
subsystems;
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Fig. 5 Petri Net synthesized from UML diagrams for the Controller

Fig. 6 The proposed requirements development cycle

• Transferring hierarchical semi-formal presentation in
UML to hierarchical Petri Nets.

Therefore, there are enough reasons to look for alterna-
tive approaches to formalize the requirements process. A

different approach is obtained using KAOS (a goal-oriented
approach) as semi-formal presentation - which also is suit-
able to represent service-oriented manufacturing [4,31].

4 Goal-oriented requirements engineering
(GORE)

The increasing importance of requirements in systems design
[15] encourages the search for alternatives to replace a strictly
functional approach, both on software [32] and manufactur-
ing [33] design. An alternative approach emerged based on
goals, instead of functionalities [34]5.

5 The focus on goals can be retraced to C. Rolland and C. Souveyet
paper: Structured Analysis of Requirements Definition, IEEE Trans. on
Software Engineering, vol.3, num. 1, 1977.
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Fig. 7 The general requirements life cycle and the introduction of Petri
Nets to formal analysis

Goal-Oriented Requirements Engineering (GORE ) was
formalized by John Myloupolos [35] and Axel Lamsweerde
[12]. It inspired several works in requirements engineer-
ing. Focusing on goals instead of objects or functionalities,
GORE postpones the concern with non-functional require-
ments, making requirements modeling more flexible and
secure. However, GORE’s distinct advantage is the suitabil-
ity to treat the coupling between system and users, making it
more adherent to service-oriented design. This characteris-
tic also points to GORE as a suitable approach to designing
intelligent manufacturing systems [4,6].

Visual modeling is covered in GORE by a semi-formal
representation called KAOS. The following subsection will
give a brief description of KAOS diagrams.

4.1 KAOS diagrammatic representation

KAOS representation comprises four related (but not redun-
dant) modeling diagrams: goal diagram, object diagram,
operation diagram, and responsibility diagram. A goal dia-
gram is a tree in which all nodes except the root represent
related subgoals, and edges represent relations (such as
composition, refinement, dependency, or restriction). Project
statements are related to themain goal (the root). Fig. 7 shows
the core elements of KAOS diagrams. (Fig. 8)

Goals should be achieved by requirements, which, in its
turn, are associated with operations. Requirements should
fit informal demands or expectations from specific users or
stakeholders. Thus, it is possible to implicitly represent the
merging of different viewpoints addressed by various agents’
classes attributing their respective responsibilities. That is the
basis for traceability, which relies on invariants and dynamic
requirements concepts.

Requirements modeling using KAOS or UML differs sig-
nificantly from the approach directed to functionalities :

• In the number of diagrams: four to KAOS, instead of
thirteen structural and twelve behavior diagrams inUML.
The diversity of diagrams encourages searching formeth-
ods to reduce it to a minimal set;

Fig. 8 Main elements of Goal Diagram

• Using time in requirements analysis to schedule activities
turn the functional approach a challenge [36];

• Representingworkflow is also an issue formanufacturing
design, not fully assisted in UML or KAOS.

Linear Temporal Logic (LTL) is customarily used to
formalize KAOS diagrams. However, the best way to put
together logic-proof obligations, workflow, and eventually
time constraints (or even real-time) is to use a widely formal
graph representation, such as Petri Nets, capable of express-
ing concurrency and workflow and time extensions.

The following section will show an alternative require-
ments cycle replacing the semi-formal UML representation
with KAOS. Algorithms already developed for some of the
authors to transfer UML to Petri Nets [17]will be replaced by
a new one (also developed by the authors) to transfer KAOS
diagrams to Petri Nets.

4.2 Using Petri nets to analyze requirements

The proposed requirement cycle is process-oriented and
selected Petri Nets as a formal approach since it is widely
pointed to as suitable for this kind of application [37–39].

Petri Net is executable, which suits even better the require-
ment engineering process. A specific implementation of Petri
Nets that follows the standard ISO/IEC 15.909 is used to for-
malize and verify requirements. The modeling platform is
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called GHENeSys (General Hierarchical Enhanced Net Sys-
tem) [18].

GHENeSys can work with classic P/T Nets or High-Level
Nets as a unified net system. Extensions can also include
hierarchy, time slice, time, and specific fusion places.

We propose an algorithm to transfer goal-oriented dia-
grams to classic or High-Level Petri Nets. Analysis and
verification can then be performed, including invariant analy-
sis. Invariants are defined during the initial requirements life
cycle (RLC) or after semi-formal analysis and verification.
Generally, emerging requirements are discovered during the
net analysis and included in the requirements cycle.

Transfering KAOS to Petri Net implies a direct matching
between diagrams and net regions. We propose a transla-
tion between a KAOSMarkup Language (KML) and PNML
- the XML description of Petri Nets. An algorithm based
on heuristics [14] performs the transference from KML to
PNML (Petri Net Markup Language)[40]. We will use a
markup language associated with a unified extended Net
GHENeSys (General Hierarchical Enhanced Net System)
depicted in Fig. 9.

An illustration of a step in the requirements cycle using
a goal-oriented approach is given in the next section using a
problem proposed by the automotive industry.

4.3 Case study: A car sequencing problem

General requirements for this problem are: the Car Assem-
bling process must be flexible enough to fulfill particular
and personalized demands elicited from final users [41] or
to introduce requested items such as sunroof, customized
wheels, air conditioning, or other similar items. Customer
orders generally arrive at car factories in real-time and must
be assigned to production with severe deadline constraints.
A car sequence must be established daily, and its accuracy
directly affects the amount and quality of cars delivered.
(Nguyen, 2005) [42] shows a detailed description of demands
for the production process.

The challenge is to propose a digital system that collabora-
tively controls the sequence lines using the requirements life
cycle described in Fig. 6.Wewill use an alternative approach
based on KAOS to capture requirements and transfer them
to Petri Nets for formal analysis and verification. The trans-
ference between these representations is based on the match
depicted in Fig. 9.

We developed a software tool called ReKPlan (Require-
ment Knowledge for Planning) to capture goal and object
diagrams. Figure 10 has a snapshot of ReKPlan tool [14].

Synthesis of Petri Net comes from KAOS, or LTL equa-
tions6. Table 2 shows the LTL expressions for the car

6 Software tools commercially available can automatically derive LTL
expressions. Objectiver (www.objectiver.com) is one of them

Fig. 9 a Translation for basic elements. b Translation for refinements

sequencing problem. The Petri Net representation verifies
properties such as closeness, consistency, deadlock, fairness,
and invariants using the GHENeSys environment.

5 Perspectives for practical use of the
requirements cycle

The requirements cycle of Fig. 6 (either usingUMLorKAOS
development line) must be encapsulated in a software envi-
ronment to become useful in real projects. We implemented
RekPlan only to test basic features and reinforce the appli-
cability of the requirement cycle. Additional features and
integrated user experience are necessary to turn it into an
environment and practical method. Some of these issues are:

• Add database support to store semiformal requirements,
linked to the respective formal representation: SysML,
LTL, or Petri Nets;

• Add knowledge-based support for reusability of modules
or sub-systems;

• Extends the formal approach to support real-time require-
ments and modeling7;

• Introduces version control and non-relational data struc-
turing to extract better performance for traceability and
check dynamic requirements (invariants);

• Improves algorithms to automate the transference from
semiformal representation (UMLorKAOS) toPetriNets;

7 UML uses timeline diagrams, but KAOS does not have any formal-
ization for time dependency.
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Table 2 LTL sentences
associated to some goals of Goal
Diagram

Goal LTL Sentences

Cars painted when an order was recei - ved. ∀c :Car, ∃pa :PaintingArea,painter : Painter,
sg : SprayGun,color :Color; isOnPA(c,pa) ∧
sprayGunInPA(sg,pa) ∧ use(sg,color ) ∧ paint-
Color(c,color ) ∧ workingInPA(painter ,pa) ∧ ¬
painted(c) ∧ c.posPainting = painter .last-Painted
+1 ⇒ � painter . last-Painted= c.pos-Painting
∧ gs. sprayGunLimit=gs. sprayGunLimit+1 ∧
painted(c)

Cars assembled while painted in painting area. ∀c :Car,∃ass :Assembler, aa :AssemblingArea;
painted(c) ∧ isOnAA(c,aa) ∧ groupedAssem-
bled(c) ∧ workingAA(ass, aa ∧ ¬ assembled(c)
∧ c.posAssembling= ass.lastAssembled+1 ⇒ �
mnt .lastAssembled= c.posAssembling ∧ assem-
bled(c)

Cars grouped according spray gun limit. ∀ c:Car , ∃ op:Operator ; ¬ painted(c) ∧ ¬ assem-
bled(c) ∧ availableOperator(op) ∧ c.posPainting
= 0 ⇒ � groupedPaint(c)

Cars grouped by special features ∀c :Car, ∃ op:Operator ; painted(c) ∧ available-
Operator(op) ∧ ¬ groupedAssembled(c) ⇒ �
groupedAssembled(c)

Cars transported to painting when grouped. ∀c :Car, ∃tra :Transporter, ∃pa :PaintingArea,
sg :SprayGun; groupedPaint(c) ∧ available-
Transporter (tra) ∧ ¬ painted(c) ∧
¬ isOn-PA(c,pa) ∧ pa.currentPaint <

sg.sprayGunLimit ⇒ � isOnPA(c,ap) ∧
pa.currentPaint = pa.currentPaint +1 ∧
c.posPainting = pa.currentPaint

Cars transported to assembling when grouped. ∀ c:Car, ∃tra:Transporter, aa :AssemblingArea;
¬ assembled(c) ∧ ¬ isOnAA(c,aa) ∧ avail-
ableTransporter(tra) ∧ groupedAssembled(c) ⇒
� isOnAA(c,aa) ∧ aa.current- Assembled =
aa.currentAssembled +1 ∧ c.posAssembling =
aa.currentAssembled

Spray gun washed with solvent. ∀ sg :SprayGun, ∃ painter:Painter ; ¬ clean(sg) ∧
has(painter , sg) ∧ painter .qcarsPainted> 0 ⇒ �
clean(sg) ∧ painter .qcarsPainted= 0

Spray gun ready to paint after it was washed. ∀ c:Car , sg:SprayGun, ∃ painter:Painter ;
has(painter , sg) ∧ clean(sg) ⇒ � ¬ clean(sg)

• Builds a design environment in the cloud, reinforcing
collaborative work supported by data analysis.

Besides the practical aspects, a helpful system design tool
for intelligent manufacturing should also cover the tendency
to address Product-Service Systems (PSS), an ultimate goal
for Industry 4.0.

5.1 Intelligent manufacturing as product-service
systems

The idea of a symbiosis between product and service in a
unique artifact appeared at the beginning of this century in
works that pointed towards a way to insert sustainability in
projects, especially in production lines [43]. Initially, the tar-
get was to introduce “service features,” called servitization,

associated with vertical integration, combining manufactur-
ing and business processes. This approach evolved into a
product-service notion related to information systems and
manufacturing resources planning (MRP) Architecture[44].

Service was a perfect match for information systems,
and a Service-oriented Modeling Framework (SOMF) was
proposed by Michael Bell [45]. The framework was fully
implemented in the Enterprise Architect (www.sparx sys-
tems.com) platform and used to model requirements for new
information systems. SOMF was extended later to deal with
a broader concept of service (which would include manu-
facturing services) and implemented in the same Enterprise
Architect platform (but not commercialized) [46].

The next challenge is to achieve a complete implemen-
tation of the product-service design, including a definition
of the coupling with different classes of users (in a pro-
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Fig. 10 Goal Model for the Car Sequencing Problem using RekPlan tool

cess called value co-creation) [4,31]. This new environment
should treat a large amount of data to be applied to intelligent
manufacturing design [47].

Therefore, the current demand in intelligent manufactur-
ing design is to address product-service systems (PSS) [29]
in the requirements cycle. In the perspective of Industry 4.0
the target artifact is a vast network of cyber-physical arrange-
ments [4], which information source could also rely on big
data [47]. However, the first step to studying and building
proper tools to implement PSS’s is formally exploring the
requirements.

During the last decade, several software tools addressed
the design of service-oriented systems: Enterprise Architect
(Sparx) implemented SOMF, closely connected to informa-
tion systems using a functional, object-oriented approach; a
similar approach was used by Genesys (Vitech), using UML
as semiformal and SysML as a formal presentation. How-
ever, these attempts did not cover the user’s inclusion in the
modeling and design, neither the final user nor the worker
[48].

A goal-oriented approach was implemented by Objec-
tiver (Respect-IT), introducing LTL as a formal presentation.

It was used in this work as a general goal-oriented envi-
ronment to feed the process-oriented approach. Thus, our
proposal is based on using different practical systems con-
nected by a transfer language as KML (for KAOS), PNML
(for Petri Nets)8. The contribution is presenting the require-
ments development cycle based on a preliminary version of
KML, presenting a practical tool to transfer requirements to
Petri Nets: RekPlan. That could justify the goal-oriented as a
feasible alternative to the functional approach in intelligent
manufacturing.

PNML is used to transfer processes from RekPlan to Petri
Net analysis tools as PIPE2, used in this work, to perform
property analysis.

The transferrence algorithm fromUML comes from a pre-
viouswork of the same group [17]. It is inserted in the flexible
cycle shown in Fig. 6. Scalability is still an issue, as it is for
each tool we used, either commercial or academic. However,
it applies to real problems, as shown in Fig. 11, even if not
tested massively in manufacturing systems yet.

8 PNML is part of the ISO/IEC Standard 15.909, that defines Petri Nets
and its transfer language
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Fig. 11 Petri Net for Car Sequencing Problem

The critical point is that the proposal is prepared to face
distributed production arrangements, can be evolved to ser-
vicemanufacturing, and include alternatives to the functional
approach. Most importantly, it presents a clear formal devel-
opment cycle for requirements, relying on invariants.

Another advantage is using Petri Nets as a formalism to
intelligent manufacturing processes. Once Petri Nets typ-
ically represent processes in this area, it eliminates more
transferrences from requirements to design.

6 Conclusion and further work

Systemic design of distributed intelligent manufacturing will
demand formal approaches since the requirements phase,
following a requirement life cycle, as depicted in Fig. 6. Dif-
ferent segments in the industry follow specificmethods. Still,
the growing complexity of manufacturing in technical orga-

nization and flexibility, besides the cloud’s directions, will
reinforce a tendency to treat requirements formally.

UML modeling is the primary approach used in legacy
projects from the academy and industry. Therefore, any new
alternative must comply with this legacy. However, the func-
tional approach presents some problems for large systems,
including distributed arrangements and service orientation,
demanding the search for new alternatives.

Choosing a proper formal approach suitable to represent
requirements and design of processes became a key issue.
Petri Net can deal with dynamic processes and concurrency
and was proposed to compose a model-based requirements
development. Each enhancement is properly formalized and
analyzed before evolving. It suits a systematic approach
and is used to each component sub-system and the general
arrangement.

Another critical point is that new challenges in intelligent
manufacturing point to distributed arrangements of cyber-
physical systems (CpF) or cloud-based CpFs [49]. Thus, it
is crucial to search for alternatives to cover this demand.
Finally, it is also essential to attend to the service-oriented
flavor of new manufacturing systems.

The development cycle presented here covers only the
basic and alternative methods to formalize and analyze
requirements. However, a cognitive approach modeling user
and value co-creation [50,51] for service manufacturing is
being proposed as further work.

We are also worried about delivering a requirement
engineering cycle that is usable and scalable to practical
applications. Using different commercial and academic tools
connected by a transferrence language based on XML we
expect to reduce the time between new alternatives and their
application.

Finally, we are developing a cloud-based environment to
put together algorithms and tools already developed.
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