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Abstract
Hard turning is garnered as a cost-effective alternative to grinding; however, the process is marred with reliability and
predictability issues. Surface roughness, cutting temperature, and cutting force are three essential elements affecting hard
turning reliability. The current endeavor analyzes the machinability features of hardened medium carbon steel by measuring
the performance of surface roughness, cutting temperature, and cutting force of the steel under high-pressure and dry cutting
conditions using Coated carbide. An artificial neural network (ANN), response surface methodology (RSM) and adaptive
neuro-fuzzy interference system (ANFIS) are utilized to model responses under two different scenarios. With aP-value less
than 0.05, all parameters had a statistically significant effect on the output responses under dry and HPC circumstances, and
themodel projected values closelymatched the experimental values under both situations. Several statistics show that the three
output responses are effectively represented by all modeling approaches, including correlation (R), determination (R2), mean
square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). As demonstrated by the
correlation coefficient factor, ANFIS has a high predictive value; this indicates that the predicted response and experimental
outputs have a significant consistency.

Keywords Modeling · ANFIS · ANN · RSM · Hard turning · HPC

1 Introduction

The use of hard turning to produce high-hardness steel
products with acceptable machining parameters has recently
gainedpopularity. It is also used tofinishpartswith a hardness
of over 45 HRC to obtain error-free and precise parts. Many
studies have shown that hard turning produces components
with improved surface polish and dimensional precision
[1]. Hard turning removes more material than grinding and
reduces machining time by 60%. The high cutting zone tem-
perature, increased tool wear and break, poor surface polish
and non-optimal cutting parameters make hard turning a less
attractive alternative to grinding [2].

Hardened steel is machined dry in the majority of turn-
ing operations [3]. Cutting fluids are currently being used
in hard-turning processes to improve efficiency and cutting
performance. High-pressure coolant (HPC) reduces cutting
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zone temperature, smoothes the surface, and extends tool
life when turning hardened steel [4]. HPC outperformed dry
and overhead fluid applications in hard-turning stainless steel
with coated carbide inserts [5]. HPC lubrication appears to be
a promising means of improving workpiece surface integrity
and tool performance.

Bouacha et al. [6] investigated the effect of cutting param-
eters on surface roughness and cutting force components in
hard turning of AISI 52,100 with a CBN tool using response
surfacemethodology (RSM). The results illustrate howmuch
feed rate and cutting speed influence surface roughness, and
that the depth of cut has the greatest influence on cutting
forceswhen compared to feed rate and cutting speed.Accord-
ing to ANOVA data, cutting temperature is mostly impacted
by cutting speed, feed rate, depth of cut, the quadratic value of
feed rate, the interaction between cutting speed and feed rate,
and the interaction between cutting speed anddepth of cut [7].

Coated tools, when used to transform hard materials into
complex shapes andpieces, have thepotential to cutmanufac-
turing costs by up to 30 times their original value [8]. Ezugwu
and colleagues [9] discussed the effect of high-pressure lubri-
cation (HPC) on turning with coated carbide. In completed
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and extreme conditions, tool life is increased by up to 350
and 740%, respectively. In the hard machining of steels, both
coated and uncoated carbide tools are widely used. After
testing the performance of uncoated carbide and coated car-
bide tools on hardened steel turning, Das and colleagues
[10] discovered that coated carbide tools performed signifi-
cantly better than uncoated carbide tools. Coating technology
advancements have allowed for the development of coated
carbide tools with qualities such as hardness, high tough-
ness values, enhanced fracturing strength, wear resistant
capabilities, and improved thermal shock resistance. Coat-
ing materials have high wear resistance and are chemically
inert, which protects the tool and workpiece from chemical
interaction during the machining process [11].

Surface roughness is an important factor in product pro-
duction and has a substantial impact on [12] machining costs
when turning. A piece of work’s surface finish is affected
by cutting factors such as cutting speed, feed rate, and depth
of cut. High-pressure coolant application is a viable method
for increasing surface smoothness [13].During hard turning,
several reasons are thought to be responsible for the chal-
lenges, with cutting temperature being the most significant.
Another study found that HPC reduces cutting temperature,
chip-tool interface temperature, tool wear, and increases sur-
face smoothness [4]. Cutting forces can help explain the
machining process because they are directly related to cut-
ting conditions and tool conditions. HPC also reduces cutting
forces during hard turning compared to dry machining [14].

Modeling and optimization methods in metal cutting
are critical in today’s rapidly expanding industrial sector
since they reduce tooling, production, and maintenance
costs while simultaneously increasing total productivity.
While the predictive model sets the equation connecting
input and output to define the machining process’s objective
function, the optimization approach offers an optimal or
near-optimal solution(s) for the stated objective function
that the production engineer can execute on the shop floor.
Among the several artificial intelligence-based soft comput-
ing systems, the artificial neural network (ANN) has been
extensively used in machining operations because of its
superior prediction accuracy. Sharma et al. [15] developed
an ANN model of surface roughness in terms of speed, feed
rate, depth of cut, and approaching angle for hard turning
and discovered a 76.4% accuracy. ANN is regarded as a
highly effective empirical technique since it considers the
non-linear relationship between the process’s input and out-
put parameters (performance characteristics). Additionally,
neural networks with a single output fared better than neural
networks with two outputs combined [16].

Another modeling and optimization method is RSM,
which is used to acquire the levels of machining parameters
that are required to achieve the desired level of responsive-
ness in a given situation. The RSMmodel produced excellent

results in terms of forecasting cutting temperature and sur-
face roughness [7, 17]. Surface roughness forecasts were
accurately predicted by the ANN model, which generally
exhibited better overall performance, especially when com-
pared to the conventional RSM model [18]. In a recent work
ANN model was also found effective than RSM model in
predicting surface roughness and cutting force components
under dry conditions [19].It was also found in another article
that ANN outperformed RSM when it came to forecasting
cutting temperature in HPC [20]. ANN was also found to be
more accurate than RSM in predicting cutting forces in a sep-
arate study [21]. Sometimes, nevertheless, it was found that
the RSM model was a better way to predict surface rough-
ness than ANN [22]. Another artificial intelligence tool, the
adaptive neural fuzzy inference system (ANFIS), enables the
industrial business to grow positively [23]. ANFIS is a strong
modeling technique that is based on a fuzzy inference sys-
tem and a neural network. It is used to describe complicated
interactions in numerous fields of industry and engineer-
ing that are difficult or impossible to explain using classical
models [24]. This artificial intelligence technique has been
effectively used in the modeling of a variety of machining
processes, including turning, milling, and drilling [25, 26].
In another recent study, the ANFIS model was found to be
very reliable in predicting cutting temperature with very little
error [27]. However, in another study, ANFIS outperformed
ANN in terms of obtaining cutting force components, tool
wear, and surface roughness during HPC [28]. In addition,
the ANFIS Model was found to be more reliable than the
RSMModel in forecasting flank wear and surface roughness
under dry conditions [29].

A systematic comparison has been performed between
the three contemporary ML and statistical model. As there
have been no systematic comparison between these three
popular models on the same data in hard turning process
under dry and HPC condition, this study will help in the
decision making and choosing the best model in real life sce-
narios. Although it can be seen from the literature review that
numerous predictivemodels havebeendeveloped to study the
impact of variables (cutting speed, feed rate, depth of cut) on
responses and, certain experimental research into the capa-
bilities of high-pressure cooling (HPC)was carried out; to the
best of our knowledge, no such research has been conducted
employing ANN, ANFIS, and RSM models under HPC for
predicting machining performances. The goal of this study is
to get a better knowledge of surface roughness, cutting tem-
perature, and cutting force during the hard turning ofmedium
carbon steel under the impact of HPC and Dry. The objec-
tive of this study is to find the optimum model for predicting
surface roughness, cutting temperature, and cutting force in
the hard turning process, which will help to reduce costs and
boost productivity.
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Table 1 Experimental conditions

Machine tool Centre lathe 10 hp (China)

Work material Hardened Medium Carbon Steel, AISI 1045

Composition C � 0.420–0.50%, Fe � 98.51–98.98%, Mn � 0.60–0.90%, P ≤ 0.040% and S ≤ 0.050%

Size External dia. � 87 mm, Internal dia. � 48 mm and L � 230 mm

Hardness (HRC) 56

Tool holder PSBNR 2525 M 12 (WIDIA)

Cutting tool insert Coated carbide (SNMG 120,408 TN 4000)

Working tool geometry − 6°, − 6°, 6°, 15°, 75° and 0.8 mm

Process parameters

Cutting speed (V) 96 ~ 174, m/min

Feed (f) 0.10 ~ 0.14 mm/rev

Depth of cut (d) 0.2 ~ 0.6 mm

Machining Environment High-pressure coolant (HPC)

HPC supply properties

Coolant type HC Straight run, VG 68

Pressure 70 bar

Flow rate 4 L/min through an external nozzle having 0.5 mm tip diameter

2 Machine, material, methodology

Under high-pressure coolant conditions, the experiment was
executed at a variety of industrial feed rates (f), cutting speeds
(V), and for a variety of cut depths. With the help of a sturdy
and solid lathe with a capacity of 10 horsepower and a max-
imum spindle speed of 1400 rpm, the machining trials were
carried out. The experimental strategy involved hard turning
of hardened steel in dry and high-pressure coolant environ-
ments. The cutting speed, V (96, 135, and 174 m/min), and
feed rate, f (0.1, 0.12 and 0.14 mm/rev) ranges were chosen
based on tool manufacturer recommendations and industrial
practices. For the finishing operation of the studied tool-
work-piece combination, the suggested depth of cut range is
0.3 mm to 2mm (Widia TMValue). Taking this into account,
the d value was selected to (0.2, 0.4 and 0.6 mm) [30]. Table
1 shows the current experimental conditions, which are as
follows:

To satisfy the criteria of the current research activity,
which include an uninterrupted supply of coolant at a pres-
sure of approximately 70 bar over a reasonably long cut,
a coolant tank was used. The experimental setup is pho-
tographed in conjunction with the high-pressure coolant
system, which consists of the motor-pump assembly, relief
valve, flow control valve, and directional control valve. Cut-
ting fluid must be drawn from the coolant tank, pressurized
to high pressure with a vane pump, and then rapidly intruded
through the nozzle. A high-pressure coolant jet is directed
at an angle through a nozzle from an appropriate distance
away from the chip-tool interface, and it is focused on such
a way that it reaches the rake and flank surfaces and shields

the auxiliary flank, enhancing dimensional precision. The
experimental setup is shown in Fig. 1(a).

After each cut, the surface roughness of the machined
surface was determined using a Talysurf (Surtronic 3+) with
a sampling length of 0.8 mm. The average cutting temper-
ature in high-pressure coolant conditions was determined
using a reliable tool-work thermocouple approach with suit-
able calibration [30]. The view of calibration set up and
temperature calibration graph are shown in Fig. 1(b). A
dynamometer (Kistler) was used to measure the main cutting
force (Fc) during hard turning at various V-f-d combinations
under high-pressure coolant conditions. Charge amplifiers
were used to amplify the charge signal generated by the
dynamometer (Kistler). A computer-based data acquisition
system is used to acquire and sample the amplified signal
at a sampling rate of 2000 Hz per channel. The time-series
profiles of the collected force data indicate that the forces are
reasonably constant throughout the length of the cut and that
effects such as vibration and spindle run-out are minimal.
Table 2 shows different process inputs with their levels and
Table 3 shows the experimental responses for all the experi-
mental run.

2.1 Predictive models

2.1.1 Artificial neural network model

Nowadays, artificial neural networks are acknowledged as
one of the most robust nonlinear mapping systems, capable
of solving a wide variety of problems such as optimization,
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Fig. 1 a Photographic view of the experimental set up, b Photographic view of the calibration set-up and temperature calibration curve for carbide
and hardened medium carbon steel

Table 2 Factors and levels used
in the experimental plan Level Cutting speed(m/min) Depth of cut(mm) Feed rate(mm/rev) Cutting condition

1 96 0.2 0.1 Dry

2 135 0.4 0.12 HPC

3 174 0.6 0.14 –
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Table 3 Experimental data
Exp.
No

Cutting
speed
(m/min)

Feed rate
(mm/rev)

Depth of
cut (mm)

Cutting
condition

Surface
roughness
(Ra)

Cutting
temperature
(T)

Cutting
force (F)

1 135 0.12 0.4 HPC 0.85 892 188

2 135 0.14 0.2 HPC 0.86 892 162

3 135 0.12 0.4 HPC 0.88 898 189

4 174 0.14 0.4 HPC 0.89 923 210

5 174 0.1 0.4 HPC 0.68 898 148

6 96 0.12 0.6 HPC 1.03 911 266

7 96 0.14 0.4 HPC 1.12 898 274

8 174 0.12 0.2 HPC 0.71 892 129

9 135 0.1 0.6 HPC 0.81 936 219

10 174 0.12 0.6 HPC 0.85 911 223

11 135 0.12 0.4 HPC 0.86 898 188

12 96 0.12 0.2 HPC 0.81 866 154

13 135 0.14 0.6 HPC 1.1 923 308

14 135 0.1 0.2 HPC 0.69 848 111

15 96 0.1 0.4 HPC 0.81 873 186

16 135 0.12 0.4 HPC 0.85 904 187

17 135 0.12 0.4 HPC 0.83 892 188

18 135 0.12 0.4 Dry 1 967 238

19 135 0.14 0.2 Dry 1.01 980 175

20 135 0.12 0.4 Dry 1.06 974 237

21 174 0.14 0.4 Dry 1.12 992 253

22 135 0.1 0.6 Dry 0.98 948 267

23 135 0.14 0.6 Dry 1.35 999 389

24 96 0.12 0.2 Dry 1.06 936 170

25 174 0.12 0.2 Dry 0.78 967 135

26 135 0.12 0.4 Dry 0.99 961 237

27 174 0.1 0.4 Dry 0.77 955 188

28 135 0.1 0.2 Dry 0.72 923 133

29 174 0.12 0.6 Dry 1.06 980 305

30 96 0.14 0.4 Dry 1.28 974 292

31 96 0.1 0.4 Dry 0.96 917 220

32 135 0.12 0.4 Dry 1 967 237

33 96 0.12 0.6 Dry 1.18 974 330

34 135 0.12 0.4 Dry 0.97 967 236

pattern recognition, control, time series modeling, and func-
tion approximation, among others. For modeling complex
nonlinear relationships, ANN can be used in place of poly-
nomial regression and produces more precise results [31].
To augment existing data analysis technologies, ANNs are
recognized as one of the simplest mathematical models [32],
consisting of three interconnected layers with one or more
neurons in each layer. The first layer is referred to as the input
layer, and it is where the model gets numerical data as input.
At this point, a neuron is regarded as a single variable. The

second layer is referred to as the hidden layer; it receives data
from the input layer and processes it further. The third layer,
named the Output layer, is coupled to the hidden layer via
synaptic weights and gives an output (s). The precision of
an ANN model is determined by the configuration, the var-
ious functions, the training algorithm, and the weights and
biases. The primary disadvantage of building an ANNmodel
is selecting the ideal number of neurons to achieve the most
accurate outcome feasible.
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For predicting machining performances under HPC and
dry, this research utilized the most well-known and well-
established technique, a feed forward error back-propagation
training algorithmofANN.The algorithmhas a ‘3-n-1’ archi-
tecture and is used to predict cutting forces, temperature,
and surface roughness in the hard turning operation, and the
feed-forward back propagation algorithm yielded the most
error-free results [33]. Using the ‘nnstart’ wizard, MATLAB
R2020a has been utilized to create, train, and test the neural
network. Neural networks have been developed by using a
tangent of the sigmoid activation function in the hidden layer
and in the output layer because of their symmetric nature [34].

2.1.2 Response surface methodology

The response surface methodology is a synthesis of numer-
ous mathematical and statistical techniques that enables us
to optimize, develop, and improve a wide variety of pro-
cesses [35]. RSM is a statistical and mathematical technique
that generates a unique relationship between dependent and
independent variables, as well as mathematical connections
[36]. This model makes it simple to determine the effects of
process variables on output response, and its prediction and
optimization capabilities are also rather good. Additionally,
as shown in Eq. (1) and (2), the RSM model can be used to
construct both linear and quadratic models (2).

X � β0 + β1x1 + β2x2 + β3x3

+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+ βnxn+ξ

(1)

X � β0 +
k∑

(i�1)

βi xi +
k∑

(i�1)

βi i x
2 +

∑ ∑
(i< j)

βi j xi x j + ξ

(2)

Here X is the response parameter– cutting temperature,
surface roughness, and cutting force; In Eq. (1) β0 is the
fixed term while linear coefficient terms are β1; β2 …..; in
Eq. (2) the coefficients of linear, quadratic, and cross-product
terms are βi, βii, βij respectively; xi is the input variables (i.e.
cutting speed, feed rate and depth of cut).

CCD (Central Composite design) and BBD (Box-
Behnken design) are the two most frequently used designs
for optimizing multiple responses in hard turning opera-
tions. Box and Behnken first proposed RSM factorial designs
(BBD) with three-level factors to fit quadratic models to
the responses [37].In this research, the BBD of the RSM
approach was applied for the conduct of the experiment.

2.1.3 Adaptive neuro-fuzzy inference system

For diverse applications, an adaptive neuro-fuzzy inference
system is a fusion intelligent computing approach that inte-
grates ANN with a fuzzy system. [37, 38]. Jang was the first
to launch it in 1993 [39]. This network has a five-layered
hybrid system with various functions, as shown below.

Layer I (Fuzzy layer): This ANFIS layer turns a col-
lection of inputs to a fuzzy set by the use of a membership
function. The adaptive nodes in this layer perform the fol-
lowing functions:

Z1, i � μPi(M)(i � 1, 2)

Z1, j � μQj(N)(j � 1, 2)(2) Z1, k � μRk( O) (k � 1, 2)
(3)

Here input variable nodes M, N, and O are with i, j, k, P,
Q, and R are the labels associated with the input node.μ(M),
μ(N), andμ(O) are considered as membership functions and
because of versatility Gaussian shape membership function
was selected.

Layer II(product layer (π)): The output signal is
obtained bymultiplying the input signal by the node function
and the nodes are fixed in this layer.

Z2, i � Wi � μPi(M).μQj(N).μRk(O), ( for i; j and k � 1, 2)
(4)

where Z2, i represents the output of layer II and the strength
of fuzzy rule setup is Wi.

Layer III (normalized layer (N)): This layer computes
the normalized firing strength of a rule acquired from the
preceding layer, as well as a, has fixed node network whose
strength is expressed as:

Z3, i � Wx � Wi

(W1 + W2 )
, ( f or i � 1, 2) (5)

Here the output of layer III is Z3, i, andWx is the normalized
strength rule.

Layer IV(defuzzy layer): Each node represents a section
of the fuzzy rule that is consistent, and nodes can be adjusted
in this layer.

Z4, i � Wxi . f i , ( f or i � 1, 2) (6)

where the normalized weighting factor of the ith rule is Wxi-
and fi is a fuzzy rule for i � 1, 2 so fuzzy rule for a system is
given as:

f i � (Pix1 + Qix2 + Ri)

andPi, Qi, and Ri are the set parameters.
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Layer V(Total output layer):Defuzzification of the sub-
sequent part of the rule is achieved in this layer by adding
the outputs of all the rules.

Z5, i � �iWni.fi, (for i � 1, 2) (7)

Here Z5, i is the output of this layer.
ANFIS system has several advantages over traditional

estimating methods, the most significant of which is that it
does not require any changes to the existing model structure.
It is possible to simply supplement the model with new input
parameters, as well as to automatically explore the non-linear
relationship between the input parameters (cutting speed,
depth of cut, feed rate) and the output parameters (surface
roughness, cutting temperature, cutting force).

2.2 Comparison parameters

The significance of the ANFIS, ANN and RSM models
were evaluated concerning different statistical parameters
like the coefficient of correlation (R), coefficient of deter-
mination (R2), mean square error (MSE), root mean square
error (RMSE), mean absolute error (MAPE). The represent-
ing equationsEqs. (8), (9), (10), (11), (12) of these parameters
are given below

R �
∑n

1(x − x)(y − y)√∑n
1 (x − x)2

∑n
1 (y − y)2

(8)

R2 � (

∑n
1(x − x)(y − y)√∑n

1 (x − x)2
∑n

1 (y − y)2
)
2

(9)

MSE �
∑n

1(y − x)2

n
(10)

RMSE �
√∑n

1(y − x)2

n
(11)

MAPE � 1

N

n∑

i�1

|Actual − predicted|
Actual

× 100 (12)

3 Result and discussion

3.1 ANNmodel

The back-propagation technique was employed as the learn-
ing algorithm in this modeling method. The Bayesian reg-
ularization technique termed ‘trainbr’ by MacKay [40] can
be used to overcome difficulties associated with imprecise

noisy input and over-or under-fitting in neural network train-
ing. So, theBayesian regularization algorithmcalled ’trainbr’
was chosen as the training algorithm in thismodelingmethod.
The hyperbolic tangent sigmoid function ’tansig’ was used as
the transfer function for the hidden and output layers, respec-
tively, during modeling. It is worth noting that the ’tansig’
was chosen for its symmetrical character [34].

To identify the ideal architecture, we created and tested
many networks with varying layers and neurons in the hid-
den layer. Using a trial and error strategy to determine the
most accurate model is one of the most effective methods for
ANN model training, especially when a hybrid model such
as an ANN-genetic model is not utilized [41]. As a result,
the number of neurons in the hidden layer was calculated
statistically. The applied technique for determining the ANN
model with the lowest error in predicting surface roughness
under HPC is illustrated in Fig-2. The ANNmodel with three
inputs (cutting speed, depth of cut, and feed rate), one hidden
layer, 14 neurons in the hidden layer, and one output per-
formed the best at predicting surface roughness under HPC.
As illustrated in Fig. 2, we can see that when three outputs
are predicted simultaneously, the model’s accuracy declines.

Table 4 detail various ANN models for three distinct out-
put responses and their associated RMSE. The number of
hidden layers were varied starting from a base point of 6
hidden layers. As can be seen from Fig. 2 the RMSE value
started to decrease after 8 hidden layers; however, the RMSE
value started to increase after 20 hidden layers. Increasing
the number of steps did not improve the results either. The
optimal ANN structure for surface roughness under HPC is
3-14-1 based on the lowest RMSE value, but the RMSE was
high when we applied the same structure for other responses.
As a result, different responses based on a trial-and-error
technique resulted in diverse ANN structures. Actual and
anticipated data were compared to determine the adequacy
of the ANN models and in all cases, predicted values were
found to be close to observed values, showing that the data
were well-fitted. The R, R2, MAPE, MSE, RMSE between
the simulated and experimental data for surface roughness,
cutting temperature, and cutting force under HPC and Dry
conditions are shown in Tables 7, 8. The R-values for various
responses under various conditions are depicted in Fig. 3.

3.2 RSMmodel

According to the BBD, the investigation was carried out to
investigate the effect of factors (cutting speed, depth of cut,
and feed rate) on surface roughness, cutting temperature, and
cutting force inHPCanddry cutting conditions usingDesign-
Expert13 software. Different linear and quadratic equations
were created by expressing the responses concerning three
input factors using experimental results.
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Fig. 2 The error of the ANN models in predicting the Ra in terms of the number of neurons and hidden layer

Table 4 Optimum ANN model and corresponding lowest RMSE

Responses Under dry ANN-Structure Lowest RMSE Responses Under HPC ANN-Structure Lowest RMSE

Surface Roughness (μm) 3-10-1 0.022331316 Surface Roughness (μm) 3-14-1 0.010942127

Cutting force (N) 3-6-1 1.451414615 Cutting force (N) 3-8-1 0.452207264

Cutting temperature (˚C) 3-18-1 1.451414615 Cutting temperature (˚C) 3-3-2-1 4.121278679

The RSM model equations, Eq. 13–18 are expressed in
terms of coded factors below.

(13)

(Surface Roughness)HPC � 0.86 − 0.080A + 0.090B

+ 0.12C − 0.020AB

− 0.025AC + 0.030BC

(Surface Roughness)Dry � 1.02− 0.094A+ 0.13B+ 0.17C

(14)

(Cutting Force)HPC � 195.88− 21.25A+57.50B+36.25C

(15)

(Cutting Force)Dry � 237.76− 16.38A + 84.75B + 37.63C

+ 2.50AB − 1.75AC + 20.00BC

(16)

(Cutting Temperature)HPC � 897.35 + 9.50A + 22.88B

+ 10.12C − 6.50AB

+ 0.000AC − 14.25BC

(17)

(18)
(Cutting Temperature)HPC � 963.59 + 11.63A

+ 11.87B + 25.25C

hereA�Cutting Speed, B�Depth of cut and C� Feed rate.
The analysis of variance (ANOVA) is used to assess the

impact of several variables on the dependent variable (surface
roughness, cutting temperature, and cutting force shown in
Table 5. The ANOVA table contains the sequential sum of
squares, from which the percentage contribution of factors is
calculated, as well as the F-value and P-value. The P-value
reflects the significance of a factor at a 95% confidence level.
Thehigher theF-value, the greater the relevance of that factor.

Cutting speed, feed rate, and depth of cut are all statisti-
cally significant for RSM surface roughness, cutting force,
and cutting temperature models, as the P-values are less than
0.05. The important interactions for the surface roughness
model under dry cutting conditions are depth of cut-feed rate
and feed rate speed. The depth of cut-feed rate is the sole
relevant interaction term for the cutting force model under
dry and cutting temperature under HPC.

Figure 4 depicts the regression curve of actual and
expected surface roughness, cutting force, and cutting tem-
perature for the RSM model. The regression coefficient
values for three output response models are shown in Table
7, and these results indicate that the model is appropriate for
predicting surface roughness, cutting force, and cutting tem-
perature in both machining conditions. Because of the larger
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Fig. 3 Actual vs Predicted surface roughness (Ra) under a HPC and b Dry, Actual vs Predicted cutting force (F) under c HPC and d Dry Actual vs
Predicted cutting temperature (T) under e HPC and f Dry
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Table 5 a ANOVA table for surface roughness under HPC and Dry b ANOVA table for Cutting force under HPC and Dry c ANOVA table for
Cutting temperature under HPC and Dry

Response 1-Surface roughness under HPC Response 2-Surface roughness under Dry

ANOVA for Response surface 2FI Model ANOVA for Response surface Linear
Model

(a)

Source Ss df F- value p-value Ss df F- value p-value

Model 0.24 6 98.03 < 0.0001 0.42 3 90.55 < 0.0001

A-Cutting Speed 0.051 1 123.55 < 0.0001 0.07 1 45.87 < 0.0001

B-Depth of Cut 0.065 1 156.37 < 0.0001 0.13 1 81.54 < 0.0001

C-Feed rate 0.12 1 289.69 < 0.0001 0.22 1 144.24 < 0.0001

AB 1.60E − 03 1 3.86 0.0778 – – – –

AC 2.50E − 03 1 6.03 0.0339 – – – –

BC 3.60E − 03 1 8.69 0.0146 – – – –

Residual 4.14E − 03 10 1.43 0.3811 0.02 13 – –

Lack of Fit 2.82E − 03 6 1.43 0.3811 0.015 9 1.52 0.365

Pure Error 1.32E − 03 4 – – 4.52E-03 4 – –

Cor Total 0.25 16 – – 0.44 16 – –

Response 3-utting force under HPC Response 4-Cutting force under Dry

ANOVA for Response surface linear Model ANOVA for Response surface Linear
Model

(b)

Source Ss df F-value p-value Ss df F- value p-value

Model 40,575 3 99.52 < 0.0001 72,568 6 537.4 < 0.0001

A-Cutting Speed 3612.5 1 26.58 0.0002 2145.13 1 95.31 < 0.0001

B-Depth of Cut 26,450 1 194.62 < 0.0001 57,460.5 1 2553.13 < 0.0001

C-Feed rate 10,512.5 1 77.35 < 0.0001 11,325.13 1 503.21 < 0.0001

AB – – – – 25 1 1.11 0.3167

AC – – – – 12.25 1 0.54 0.4776

BC – – – – 1600 1 71.09 < 0.0001

Residual 1766.76 13 – – 225.06 10 – –

Lack of fit 1764.76 9 392.17 < 0.0001 223.06 6 74.35 0.0005

Pure error 2.00E + 00 4 – – 2 4 – –

Cor. total 42,341.76 16 – – 72793.06 16 – –

Response 5-Cutting temperature under HPC Response 6-Cutting temperature under
Dry

ANOVA for response surface 2FI model ANOVA for response surface linear model

(c)

Source Ss df F-value p-value Ss df F- value p-value

Model 6709.5 6 17.35 < 0.0001 7309.8 3 56.13 < 0.0001

A-Cutting speed 722 1 11.2 0.0074 1081.1 1 24.9 0.0002

B-Depth of cut 4186.13 1 64.96 < 0.0001 1128.1 1 25.99 0.0002

C-Feed rate 820.12 1 12.73 0.0051 5100.5 1 117.49 < 0.0001

AB 169 1 2.62 0.1364 – – – –
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Table 5 (continued)

Response 5-Cutting temperature under HPC Response 6-Cutting temperature under
Dry

ANOVA for response surface 2FI model ANOVA for response surface linear model

AC 0 1 0 1 – – – –

BC 812.25 1 12.61 0.0053 – – – –

Residual 644.38 10 – – 564.37 13 – –

Lack of fit 543.58 6 3.6 0.118 479.57 9 2.51 0.1944

Pure error 100.8 4 – – 84.8 4 – –

Cor total 7353.88 16 – – 7874.1 16 – –

F-value, the feed rate is the most critical factor in surface
roughness and cutting temperature in dry cutting conditions.
Similarly, the depth of cut for cutting force and cutting tem-
perature contribute the most under HPC.

The three-dimensional response surface plots of surface
roughness underHPC are shown in Fig. 5. Figure 5(a) depicts
the relationship of surface roughness with feed rate and cut-
ting speed, whereas Fig. 5(b) depicts the relationship with
cutting speed anddepth of cut, andFig. 5(c) feed rate-depth of
cut. Low surface roughness is associated with low feed rate,
depth of cut, and high cutting speed in dry and HPC cutting,
whereas high surface roughness is associated with high feed
rate, depth of cut, and low cutting speed. The high-pressure
coolant lowers surface roughness in all circumstances. Sim-
ilarly, in dry and HPC cutting, low feed rate, depth of cut,
and cutting speed are associated with low cutting tempera-
ture, while the high cutting temperature is generated at high
feed rate, depth of cut, and cutting speed, and HPC creates
more cutting temperature than dry cutting circumstances. In
dry and HPC cutting conditions, low feed rate, depth of cut
and higher cutting speed is associated with low cutting force,
whereas high force is created at low feed rate, depth of cut,
and lower cutting speed, and HPC also reduces cutting force
during machining operation when compared to dry cutting
condition.

3.3 ANFIS model

This section explains how the experimental data and the
ANFIS model output differ based on the machining param-
eters. Table 6 shows the ANFIS output values for surface
roughness, cutting temperature, and cutting force under HPC
and dry cutting conditions.

The suggested ANFIS model for surface roughness,
cutting force, and cutting temperature under both cutting con-
ditions with three input parameters and one output parameter
comprises the approach below to predict the process output
parameters.

• In the command window, enter all of the input values and
their corresponding output responses, and then load every-
thing into the ANFIS editor toolbox, which is primarily
based on the Sugeno fuzzy model, as shown in Fig. 6.

• The fuzzy inference system is then created using the grid
partitioned technique.

• In most cases, the proposed fuzzy set’s membership func-
tion can be parameterized membership function.

• A total of 1000 epochs are used to train the model. The
input and output parameters are modified during the train-
ing process, and the error is minimized for each epoch.
Figure 7depicts the error minimization process.

• The data was then tested using fuzzy inference systems
that adapt their rules in a self-manner and predicted surface
roughness values using ANFIS.

In all cases, R values greater than 0.9 suggest a strong
link between the actual and anticipated values; the created
ANN models, which were trained using actual values, accu-
rately predicted the responses [42].The adaptive neuro-fuzzy
interference system performs well in terms of coefficient of
correlation, coefficient of determination (R2), MSE, MAPE,
and RMSE for all three outputs. The coefficient of determi-
nation reflects how much of the variance between the two
variables is explained by the linear fit and it is shown in
Fig. 8. The value of the Correlation coefficient (R) for sur-
face roughness under HPC is 0.9973, indicating that 99.73
percent of the variance is predictable. Tables 7, 8 displays all
of the correlation coefficients and related RMSE and MAE.
All of the correlation coefficients are close to one, indicating
that the variables are positively linearly connected and that
the scatter plot follows virtually a straight line with a positive
slope.

3.4 Comparative analysis of ANN, RSM and ANFIS
models

The ANFIS, ANN, and RSM techniques were used in this
study to predict surface roughness, cutting force, and cutting
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Fig. 4 a Surface roughness under HPC b Surface roughness under Dry c Cutting force under HPC d Cutting force under Dry e Cutting temperature
under HPC f Cutting temperature under Dry

temperature under HPC and Dry cutting circumstances. The
predictive models created by ANFIS, RSM and ANN were
compared based on their prediction accuracy as measured by
their coefficient of determination (R2), coefficients of corre-
lation (R), Mean absolute error (MAE) and root mean square
error (RMSE) shown in Table 7, 8. The good relationship
between the input values demonstrated that the models built
are suitable for simulating actual results. To assess the accu-
racy of the constructed ANFIS, ANN and RSM models, the
predicted data were compared with the actual data, as shown
in Fig. 9. The values were plotted against the run numbers of

the experiment. The results reveal that the model projected
values for surface roughness, cutting force, and cutting tem-
perature under HPC and Dry cutting circumstances were in
close agreement with the corresponding experimental values
in all three approaches. However, ANFISmodels were found
to be marginally more accurate in predicting responses than
ANN and RSM.

The R2 computed byANFISwasmore accurate as the val-
ues were closer to one than the ANN and RSM techniques.
This means that the models produced by ANFIS were more
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Fig. 5 Response Surface plot of Surface roughness under HPC

Fig. 6 Command window of ANFIS

effective and better at predicting responses. Based on the sta-
tistical analysis, all of the approaches produced high-quality
simulations due to their data fitting and prediction abilities.

Fig. 7 Error minimization process of ANFIS

Table 6 illustrate the prediction performance of the
ANFIS, ANN, and RSM models for surface roughness, cut-
ting force, and cutting temperature. The most approximate
locations have a reduced failure rate; the differences between
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Table 6 Predicted values by ANFIS, ANN and RSM

Number Cutting condition Predicted surface roughness
(Ra)

Predicted cutting force (F) Predicted cutting
temperature (T)

ANFIS ANN RSM ANFIS ANN RSM ANFIS ANN RSM

1 HPC 0.854 0.86244 0.86 188 187.667 195.88 896.8 897.728 897.35

2 HPC 0.86 0.86128 0.86 162 162 174.63 891.9994 891.435 898.85

3 HPC 0.854 0.86244 0.86 188 187.667 195.88 896.8 897.728 897.35

4 HPC 0.89 0.89074 0.88 210 210.001 210.88 922.9986 922.016 916.98

5 HPC 0.68 0.68519 0.68 148 147.988 138.38 897.9971 897.593 896.73

6 HPC 1.03 1.0327 1.05 266 266.011 274.63 910.9993 912.855 917.23

7 HPC 1.12 1.1039 1.09 274 273.997 253.38 898.0004 898.096 897.98

8 HPC 0.71 0.70735 0.71 129 129.005 117.13 892.0015 892.675 890.48

9 HPC 0.81 0.80892 0.8 219 219.688 217.13 935.9992 929.395 924.35

10 HPC 0.85 0.85324 0.85 223 223.006 232.13 910.9998 912.642 923.23

11 HPC 0.854 0.86244 0.86 188 187.667 195.88 896.8 897.728 897.35

12 HPC 0.81 0.81352 0.83 154 154.001 159.63 865.9994 859.788 858.48

13 HPC 1.1 1.0949 1.1 308 307.451 289.63 922.9977 930.099 916.1

14 HPC 0.69 0.68755 0.68 111 111.383 102.13 847.999 854.449 850.1

15 HPC 0.81 0.81073 0.79 186 185.994 180.88 873.0003 871.826 877.73

16 HPC 0.854 0.86244 0.86 188 187.667 195.88 896.8 897.728 897.35

17 HPC 0.854 0.86244 0.86 188 187.667 195.88 896.8 897.728 897.35

18 Dry 1.004 1.00441836 1.02 237 237.34 237.76 967.1998 969.474 963.59

19 Dry 1.01 1.01534335 1.06 175 175.002 170.64 979.999 980.289 976.96

20 Dry 1.004 1.00441836 1.02 237 237.34 237.76 967.1998 969.474 963.59

21 Dry 1.12 1.0936854 1.09 253 253.004 257.26 991.999 995.476 1000.46

22 Dry 0.98 0.98017051 0.98 267 266.996 264.89 947.9991 949.059 950.21

23 Dry 1.35 1.31583045 1.31 389 388.334 380.14 998.999 995.53 1000.71

24 Dry 1.06 1.05162935 0.99 170 169.996 171.89 935.9991 935.408 940.09

25 Dry 0.78 0.80543241 0.8 135 135.118 134.14 966.999 966.183 963.34

26 Dry 1.004 1.00441836 1.02 237 237.34 237.76 967.1998 969.474 963.59

27 Dry 0.77 0.76092591 0.76 187.999 187.996 185.51 954.999 954.208 949.96

28 Dry 0.72 0.74647365 0.73 133 138.725 135.39 922.9991 921.979 926.46

29 Dry 1.06 1.03917986 1.05 304.999 305.011 308.64 979.999 980.382 987.09

30 Dry 1.28 1.27605494 1.28 292 292.008 293.51 973.999 974.753 977.21

31 Dry 0.96 0.95876816 0.94 220 219.992 214.76 916.9991 921.891 926.71

32 Dry 1.004 1.00441836 1.02 237 237.34 237.76 967.1998 969.474 963.59

33 Dry 1.18 1.19084393 1.24 330 330.002 336.39 973.999 972.19 963.84

34 Dry 1.004 1.00441836 1.02 237 237.34 237.76 967.1998 969.474 963.59

projected and experimental data are fewer for ANFIS mod-
els than for RSM and ANN models. ANN models, on the
other hand, outperform RSM models. The obtained R2 for
surface roughness ANFISmodels is 0.9947 (under HPC) and
0.9896 (under dry), while their values for ANN models are
0.9867 (under HPC) and 0.9837 (under dry). This can also
demonstrate the capabilities of ANFIS models, which also
show smaller residuals in Ra, F, and T (at various cutting

conditions) as compared to ANN and RSMmodels. Further-
more, the RMSE and MAE values in Table 8 demonstrate
that ANFIS models outperformed ANN and RSM models
in terms of prediction capabilities for the evaluated material
and process. According to the arguments presented above,
ANFIS outperforms ANN and RSM in predicting surface
roughness, cutting temperature, and cutting force under HPC
and Dry cutting circumstances.
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Fig. 8 a Surface roughness under HPC b Surface roughness under Dry c Cutting force under HPC d Cutting force under Dry e Cutting temperature
under HPC f Cutting temperature under Dry

Table 7 R and R-squared values of ANFIS, ANN and RSM

Responses Cutting condition ANFIS predicted data ANN predicted DATA RSM predicted data

R R-square R R-square R R-square

Surface roughness HPC 0.997346 0.9947 0.99333 0.9867 0.991615 0.9833

Dry 0.994786 0.9896 0.99182 0.9837 0.976883 0.9543

Cutting force HPC 1 1 0.9993 0.9986 0.978928 0.9583

Dry 1 1 0.9998 0.9996 0.998449 0.9969

Cutting temperature HPC 0.993126 0.9863 0.98194 0.9642 0.955196 0.9124

Dry 0.994585 0.9892 0.99015 0.9804 0.963483 0.9283
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Table 8 RMSE, MAE values of
ANFIS, ANN and RSM Responses Cutting

condi-
tion

ANFIS predicted data ANN predicted data RSM predicted data

RMSE MAE RMSE MAE RMSE MAE

Surface
rough-
ness

HPC 0.008812 0.05851 0.0143 0.82592 0.015146 1.27095

Dry 0.016306 0.647195 0.02233 1.69319 0.034641 1.173574

Cutting
force

HPC 0.342997 0.05882 0.45221 0.1444621 10.19448 4.76247

Dry 0.342997 0.06266 1.45141 0.34462 3.638359 1.17357

Cutting
tempera-
ture

HPC 2.435039 0.12596 4.0501 0.34184 6.157018 0.55827

Dry 2.233436 0.0827355 3.13024 0.24292 5.760722 0.519803

Fig. 9 a Comparison of Actual (Ra) with predicted ANN, RSM and ANFIS predicted (Ra) b Comparison of Actual (F) with predicted ANN, RSM
and ANFIS predicted (F) c Comparison of Actual (T) with predicted ANN, RSM and ANFIS predicted (T)

3.5 Comparison with recent works

A detailed comparative analysis between the proposed
ANFIS framework with the previous works on predicting
machining response in hard turning process has been pre-
sented in this section. In [19] Surface roughness and cutting
force under dry condition was predicted using ANN and

RSMmodel.The final R-Squared value for surface roughness
and cutting force were 0.9679 and 0.9980 respectivley. In
another paper, surface roughness was predicted usingANFIS
Model and the R-squared value was 0.9801 [43]. Cutting
gemperature was predicted by ANN and ANFIS under dry
conditions and the final R-squared values were 0.8978 and
0.9594 respectivley [28] in another article.
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In [19] prediction was only made in dry conditions, also
the predictive accuracy was significantly lower than the pro-
posed ANFIS model which was 0.9896 and 1 for surface
roughness and cutting force respoectively. In [43] the predic-
tionwasmade for only two output parameterwhich narrowed
the scope of that model; wherease the proposed model was
prepared for 6 output parameters, which made our model
more generic. In[28] the prediction was only made for one
response under one condition and the accuracy was also
lower than the proposedANFISModel in thiswork.From this
analysis, it can be showed that the proposed ANFIS Model
imparts significant improvement over the exsting works on
hard turning process under Dry and HPC conditions.

4 Conclusion

Using ANFIS, RSM, and ANN, the researchers investi-
gated the effects of varying cutting conditions on surface
roughness, cutting temperature, and cutting force by varying
cutting speeds, depth of cut, and feed rates. The following
are some key takeaways from the discussion just above about
how things turned out:

• The cutting speed, feed rate, and depth of cut are all statis-
tically significant. Because of the larger F-value, the feed
rate is the most important factor in determining surface
roughness and depth of cut for cutting force.

• In addition to improving the surface quality, high-pressure
coolant also provides a low surface roughness, which
allows for the attainment of the required precision. When
compared to dry cutting conditions, it also lowers the cut-
ting temperature and cutting force.

• As a modeling technique, the response surface methodol-
ogy can help uncover unimportant major factors, inter-
actions, or unimportant quadratic terms in the model,
reducing the problem’s overall complexity.

• Findings from simulations of the analyzed properties using
ANFIS,ANN and RSMmodels based on real data showed
that each model can produce correct results.

• ANN and RSM were shown to be inferior in prediction
when compared to ANFIS models, which had a larger and
better determination coefficient (R2) (close to 1).Addition-
ally, RMSE, MSE, and MAPE were used to verify this, as
these parameters had lower values in ANFIS than RSM
and ANN.
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Fig. 10 Response Surface plot of Surface roughness under Dry

Fig. 11 Response Surface plot of Cutting force under HPC
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Fig. 12 Response Surface plot of Cutting force under Dry

Fig. 13 Response Surface plot of Cutting temperature under HPC
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Fig. 14 Response Surface plot of Cutting temperature under Dry
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