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Abstract
This paper is aimed to provide a new design modeling of the gripper via using the intelligent computing model. The gripper
is designed to get benefit of a symmetric structure and compliant mechanism that can manipulate the objects with a stable
force. The numerically experimental samples for the gripper are built and the finite element simulations are implemented.
The displacement of left hand is collected. An intelligent computing model is formulated via a hybridization of the teaching
learning optimization and feed forward neural network. The teaching learning optimization algorithm is embedded into neural
network to enhance the training process. The results determined that the mean square error values of the entire model, the
training, the testing, and validating are about 6.04e-07, 6.11e-07, 6.50e-08, and 1.10e-06, respectively. Furthermore, the
coefficient of determination value of the entire model, the training, the testing, and validating are 0.9975, 0.9970, 0.9998,
and 0.9677, accordingly. In addition, the proposed intelligent predictor is outperformed other regression methods such as
linear regression, full 2nd order polynomial regression, and traditional artificial neural network. Moreover, the errors among
the estimated from the proposed intelligent method and the prediction errors are less than 3%. It revealed that the proposed
intelligent methodology is a well-suitable predictor for modeling the behaviors of gripper. The gripper is capable of providing
a displacement amplification ratio of 2.85 and a max grasping force of 145.96 N. The gripper is potential for many practical
applications such as robotics and manipulators in agricultural and electrics engineering.

Keywords Intelligent method · Gripper · Compliant mechanism · Artificial neural network · Teaching learning-based
optimization

1 Introduction

In robotic industry, a gripper is attached on the arm of
robotics. The gripper uses the end effectors such as hands
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or jaws to grip the objects and release it to the desired tar-
get positions. Depending on different automatic applications,
the gripper is carefully designed or selected from commercial
products [1, 2]. Various types of grippers have been designed
to integrate them into industrial robots. The grippers can
implement various tasks in agriculture, electrics, automatic
systems, etc. A robotic gripper was designed with three fin-
gers and one actuator [3]. The developed gripper could grasp
the object with dimension of 100mm. The gripperwas driven
by the tendons. The enveloping angle for the tendonwasmin-
imized via genetic algorithm to improve the force efficiency.
Another type, a pneumatic robot gripper was designed to
manipulate eggplants [4]. In this study, the accelerometers
were attached to the fingers to assess their firmness. This
gripperwas capable of grasping the agricultural products. For
strawberry harvesting, a robotic gripper was developed and
it was driven by suing cables [5]. The gripper was equipped
with internal sensors which could minimize the positional
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errors, and it was mounted with an internal container to col-
lect berries during operation. The position of gripper was
optimally controlled via PID. A magnetorheological fluid
gripper was developed for industrial robots [6]. The designed
gripper could achieve a max grasping force of 50.67 N. A
gripper was designed for manipulating the complex objects
in industrial internet.

Over the last decades, the robotic grippers have been
developed in many automatic industries. The mentioned-
above grippers have still required many sensors, actuators,
and controller. Their design process is still complicated.
Due to attachment of many actuators and sensors, the entire
weight of robotic system is relatively heavy. These robotic
systems are costly.

In order to decrease the weight and cost of the robotic
grippers, compliant mechanism have been discovered in
designing alternative robotic grippers. The compliant robotic
grippers are benefits of 3D printer [7] or monolithic machin-
ing with high precision and less assembly. A constant-force
mechanism was proposed to design two jaws of a grip-
per which was employed to pick apples in agricultural
industry [8]. This constant-force mechanism was designed
via using distributed compliant mechanism. A microgrip-
per was designed using flexure mechanism and optimized
by hybridization of Taguchi method and differential evolu-
tional algorithm [9]. Another compliant microgripper was
optimized by a combination of Taguchi method and teaching
learning-based optimization (TLBO) [10]. For application
for DC motor, a compliant gripper was devoted and opti-
mized by grey relational analysis [11].

In enhancement of the gripping ability of robotic grippers,
many studies have applied metaheuristic algorithms. For
example, grasshopper optimization algorithm was applied
to optimize the stability of grip forces of two jaws of gripper.
Another study focused on improving the force transmission
or holding force stability of grippers using TLBO. It is noted
that compliant mechanism has no joints due to it is mono-
lithic manufactured. Therefore, mechanical behaviors and
kinematics become complicated. Especially, the two behav-
iors are vague. On the other hand, the behaviors of compliant
mechanism-based robotic grippers are difficult to analyze via
analytical procedures. So, it has a need to develop alterna-
tive modeling methods which can be considered as surrogate
models such as linear regression, 2nd polynomial regres-
sion, artificial neural network (ANN), and so on. Among
these techniques, ANN has still a well predicting ability for
nonlinear problems. Hence, metaheuristic algorithms have
been attached with ANN to predict and optimize engineer-
ing problems. For instance, genetic algorithm was combined
with ANN to optimize the FDMmachining parameters [12].
Besides, particle swarm optimization was applied to opti-
mize the ANN accuracy for laser metal deposition process
[13] and other fields [14]. However, the existing optimization

algorithms still require many tuning parameters and com-
plex computation. In order to decrease the tuning parameters,
many algorithms have been suggested such as TLBO and
Rao’s algorithms [15]. Until now, there is a lack of stud-
ies which have modeled the behaviors of grippers based
on metaheuristics and ANN. To get benefits of less tuning
parameters, the TLBO is embedded into the feed forward
ANN to enhance the prediction capacity of ANN and this
hybridization is applied to analyze the displacement of grip-
per.

The goal of this paper is to propose an intelligent approach
in modeling and analyzing the behaviors of a gripper for
advanced manufacturing application. The other parts of this
paper are arranged as follows. The related work is provided
in Sect. 2. A description of gripper and methodology are
presented in Sect. 3. And then, Sect. 4 provides the results
and discussion. Section 5 gives the comparative validation.
Section 6 draws the conclusions.

2 Related work

In modeling behaviors of compliant mechanisms with flex-
ure hinges, Ling et al. [16] summarized the analytical
methods, such as pseudo-rigid-body model, Castigliano’s
second theorem, compliance matrix method, elastic beam
theory, two-port dynamic stiffness model, Ryu’s method,
and beam constraint model. The mathematical explicit meth-
ods have significantly contributed in advancing compliant
mechanisms, especially in modeling simple structures. Nev-
ertheless, these methods are still challenging in modeling of
more complex structures and high-nonlinear behaviors, so-
called large deflection.

In addition, plenty of modeling techniques for the robotic
grippers have been developed. A robotic gripper was mod-
eled via establishing kinematic chain and Lagrange-based
dynamics [17]. A Cosserat theory was suggested to establish
the grasping force model for a soft robotic gripper [18]. A
microgripper was designed for picking micropins and it was
modeled via beam theory [19]. A two degrees of freedom
constant-force gripper was modeled by using pseudo-rigid-
body model [20]. For the gripper with a simple mechanism,
the mentioned analytical methodologies can be effectively
employed. However, they are still difficultly challenging for
complex gripper mechanisms.

In enhancing the performances of engineering structures,
machining process, as well as compliant mechanisms, the
heuristic optimization algorithms are often utilized. There
are popular optimization methods, including the Taguchi
technique and metaheuristic method. The surface roughness
of β phase titanium alloy was optimized via the Taguchi
to improve the machining surface quality [21]. The electri-
cal discharge machining quality of on pearlitic spheroidal
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graphite was enhanced by the grey-fuzzy method [22].
Besides, the particle swarm optimization (PSO) and with
firefly algorithmwere utilized to optimize themagnetic abra-
sive machining [23]. The Taguchi was employed to optimize
the dimensional accuracy of titanium alloy [24]. In real
world, multi-criteria are required for designing a product.
For instance, non-dominated sorting genetic algorithm II was
applied to optimize the spatial precision tilting manipula-
tor [25]. Multi-objective genetic algorithm was applied to
optimize the structural reliability [26]. The drilling parame-
ters for orthopaedic implants were optimized via using the
Taguchi-grey relational analysis method [27]. Considering
the metaheuristic methods, a few optimizers were intro-
duced for various engineering applications, e.g., particle
swarmoptimization, cuckoo search, bat algorithm, greywolf,
cat swarm algorithm, and grasshopper algorithm [28]. The
flower pollination algorithm was used for multi-area inter-
connected power system [29] and wireless sensor networks
[30].

Nowadays, the metaheuristic methods have been com-
bined with ANN in many studies. ANN was coupled with
PSO to solve the big data problems [31] and multistoried RC
buildings [32]. Besides, genetic algorithm, grey wolf opti-
mization and whale optimization algorithm were hybridized
withANN to estimate the pan evaporation [33]. Genetic algo-
rithm was used to optimize the ANN [34].

Although there have been many modeling procedures for
modeling the robotic grippers; however, there is no a cou-
ple of TLBO to improve the ANN ability for modeling the
gripper. So, this paper presents a hybridization of TLBO and
feed forward ANN. The gripper is a case study.

3 Description of gripper and proposed
methodology

3.1 Mechanical design of gripper

A gripper is designed to manipulate/grasp and release a
variety of different objects such as cylinder, square and irreg-
ular shapes. As illustrated in Fig. 1a, the proposed gripper
includes three main parts. The first part is input port where
an input load is acted by translation actuators, e.g., piezoelec-
tric actuator or other actuators (voice coil motor, or magnetic
actuator). The second part comprises elastic beams which
are used transfer the translation from the actuator to the out-
put port. Particularly, the elastic beams can be considered
as virtual joints with unstable rotation center. The third part
consists of two hands to grip the object. The thickness of grip-
per is 12 mm, as depicted in Fig. 1b. By exerting the input
load at the A point along the vertical direction, the left hand
and the right hand are moved along the horizontal direction.
The gripper is acted to open the jaws toward the object. And

then, it closes the jaws to hold the object. The holding reac-
tion forces of the object are based on the elastic energy of the
beams. Due to there is no kinematic joints, the mechanical
behaviors and kinematic behaviors of the gripper are vague.
Therefore, the behaviors of gripper are complex and difficult
to exactly analyze by analytical approaches. It is noted that
one of the largest contributions of the gripper is the output
displacement of hands which affected by deformations of the
beams with thicknesses T1, T2, and T3. The motion princi-
ple, the motion transfer and the displacement amplification
of the presented flexure-based microgripper is described as
follows: The input load or input displacement from the piezo-
electric actuator is acted on the input port. Then, the motion
is transferred to the foldable elements, and these flexure ele-
ments are deformed. The foldable elements/flexure hinges
can generate a large displacement. The output displacement
of the foldable elements is transferred to the rigid link AB.
Then, the motion of link AB is moved to the rigid links C1

and C2. The flexure hinges are connected to the links C1
and C2. Based on the deformation of the flexure hinges, the
motion is transferred to the left and the right hands of gripper.
The displacement amplification is generated by the foldable
flexure elements.

3.2 Proposedmethodology

As above discussed, the behaviors of gripper are relatively
complex. It needs to build the surrogate models. Popularly,
there are some common surrogate models such as polyno-
mial regression, linear regression, artificial neural network
(ANN), etc. In this study, a feed forward neural network [35]
is chosen to model the behaviors of gripper because it is sim-
ple in use with a few tuned parameters, as shown in Fig. 2a.
It comprises the input nodes (x1, x2, x3,…, xn), hidden nodes
inside hidden layer, and output node (y).

Besides, the prediction accuracy of the ANN can be
enhanced by using metaheuristic algorithms, e.g., GA, PSO
and so forth. To get benefit of less tuning parameters, the
TLBO optimizer is utilized to optimize the weight and bias
of the ANN, as given in Fig. 2b. The TLBO is a teaching
process with two main phases, comprising the teaching and
learning phases. More details of the TLBO can be found in
Ref. [36].

In this study, the proposed methodology is done by step-
wise procedure, as demonstrated in Fig. 2c. It includes the
following steps:

– Generation of datasets via finite element simulations.
– Initialization of feed forward neural network.
– Division of dataset comprises the training, testing, and val-
idating sets.

– The feed forward neural network is optimized by using
TLBO.
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Fig. 1 Proposed gripper (unit in
mm): a 2D model, b 3D model

Fig. 2 Flowchart: a feedforward ANN, b TLBO algorithm, c proposed framework
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– Establishment of the optimal ANN with best weights and
biases.

– Prediction of the behavior of gripper hand by the optimal
ANN.

Three design variables (T1, T2, T3) are three inputs of
the feed forward ANN and the displacement of left hand is
selected as the outcome. The number of hidden nodes can be
computed as follows.

Nh � 2 ∗ Ni + No, (1)

where Nh is the number of hidden nodes, Ni is the number
of inputs, and No is the number of outputs.

The mean square error of the feed forward ANN is con-
sidered as the objective function in the TLBO algorithm. The
MSE indicator can be calculated by.

MSE � 1

k

k∑

i�1

(
zi − ẑi

)2, (2)

where z is the simulated value and ẑ is the estimated value,
and k is input size.

In order to prove the robustness of the proposed method,
the TLBO-hybrid feed forward ANN is compared with other
regression techniques through two other indicators. The root
mean squared error (RMSE) value is computed by

RMSE �
√√√√1

k

k∑

i�1

(
zi − ẑi

)2, (3)

The coefficient of determination (R2) is calculated by.

R2 �
∑k

i�1 (zi − z)
(
ẑi − z

)
√∑k

i�1 (zi − z)2
∑k

i�1

(
ẑi − z

)2 (4)

where z is the simulated value and ẑ is the estimated value,z
is the average value and k is input size.

4 Results and discussion

4.1 Simulations

The designed gripper is fixed by screws at the holes, as in
Fig. 1. For the simulation, an input displacement of 0.4 mm
is acted along the vertical direction from the input port. The
output displacements of left hand and right hand are mea-
sured along the horizontal direction. The gripper is meshed
via BEAM188 elements. The fine meshes are applied for the
elastic beams while the 0 meshes are employed for rigid link

(see in Fig. 3a). The number of nodes and elements are 26,012
nodes and 14,389 elements, respectively. The beams/flexures
are refined with fine mesh to ensure the accuracy of FEA
because the deformation of gripper is mainly focused on the
flexure beams. Meanwhile, the coarse mesh is applied for
rigid links. In this work, the nonlinear FEA is applied for
simulating the gripper. The simulated results found that the
maximum stress is appeared at the beams where undergo a
large deformation during the gripper operation, as given in
Fig. 3b. In this paper, material Al 6082 is used for the grip-
per. Its yield strength is about 276MPa, Poisson ratio is 0.33,
density is 2770 kg/m3, and Young’s modulus is 69000 MPa.

With three main design variables (T1, T2, T3) and two
displacements of the left hand and right hand, the datasets
are established through central composite design. The fifteen
samples are made and the results are retrieved, as provided
in Table 1.

The results of Table 1 indicated that the displacement of
left hand is equal to the displacement of the right hand. It
means that the gripper can operate with a stable gripping
force. The results noted that the maximum displacement
of hands is 2.85 times more than the input displacement
(0.4 mm). It can conclude that the displacement is amplified
about 2.85 through the elastic beam systems. This ensures
a wide workspace of the gripper so that it can handle many
dimensions of objects.

4.2 Establishment of intelligent model
and prediction

The results showed that the displacements of two hands are
almost the same. Hence, the displacement of left hand is
selected as the datasets (Table 1). In order to formulate a
well-train predictor, the TLBO is embedded into the feed
forward ANN. The goal of established intelligent model is
to map the design variables and the displacement of gripper.
To do this, the TLBO is initialized an initial population of 50
and amax termination condition of 500. By using the Eq. (1),
the hidden nodes are equal to 7. TheMSE of the feed forward
ANN is chosen as the fitness function for the TLBO.

The training results found that the correlation coefficients
are close to 1, as depicted in Fig. 4.

Figure 5 demonstrates the best validation performance of
the proposed intelligent predictor. It showed that the MSE
value of the training is decreased at the 3rd epoch. Lastly, the
training state is illustrated in Fig. 6.

The modeling results from Figs. (4, 5 and 6) showed
that the optimal results found that the performance indica-
tors of the proposed intelligent predictor are relatively well.
Especially, the MSE values of the entire model, the train-
ing, the testing, and validating are approximately 6.04e-07,
6.11e-07, 6.50e-08, and 1.10e-06, respectively. Meanwhile,
the RMSE values are about 0.000778, 0.000782, 0.000255,
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Fig. 3 Simulations: a mesh,
b maximum stress

Table 1 Results of simulations
No Design variables (mm) Displacement (mm)

T1 T2 T3 Left hand Right hand

1 0.9 0.54 0.8 1.140684 1.140684

2 0.81 0.54 0.8 1.128893 1.128893

3 0.99 0.54 0.8 1.13385 1.13385

4 0.9 0.486 0.8 1.145641 1.145641

5 0.9 0.594 0.8 1.122255 1.122255

6 0.9 0.54 0.72 1.140757 1.140757

7 0.9 0.54 0.88 1.140618 1.140618

8 0.81 [0.486 0.72 1.145775 1.145775

9 0.99 0.486 0.72 1.120901 1.120901

10 0.81 0.594 0.72 1.096282 1.096282

11 0.99 0.594 0.72 1.129109 1.129109

12 0.81 0.486 0.88 1.146498 1.146498

13 0.99 0.486 0.88 1.121239 1.121239

14 0.81 0.594 0.88 1.095696 1.095696

15 0.99 0.594 0.88 1.129072 1.129072

and 0.001051 for the entire model, the training, the test-
ing, and validating, respectively. The R2 value of the model,
the training, the testing, and validating are about 0.9975,
0.9970, 0.9998, and 0.9677, accordingly. It can conclude that
the proposed intelligent model is well-suitable predictor for
modeling and predicting the behavior of gripper.

5 Comparison and validation

In demonstrating the robustness, feasibility, and effectiveness
of the proposed intelligent method, a few popular regres-
sion techniques are utilized for comparing purpose. The used
regression models comprise the linear regression, the full
2nd order polynomial regression, and the conventional ANN.
Threemetric indicators (MSE, RMSE, and R2) are computed

by using Eqs. (2–4). It is noted that the smaller values ofMSE
and RMSE provide a better predictor. Meanwhile, the higher
R2 value shows a greater predictor.

The comparing results are collected in Table 2. The perfor-
mance criteria for the model, training, testing, and validating
are utilized for the comparison purpose. The R2 values of the
proposed method are close to one. This proved that the built
predictor can well-predict the behavior of the gripper. The
results revealed that the suggested intelligent method is bet-
ter than the conventional ANN and other regressionmethods.
The linear regression is the worst predictor for the gripper. To
sum up, the proposed intelligent method is the best predictor
for the gripper because the entire indicators are very well.
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Fig. 4 Training process of the left
hand’s displacement by
TLBO-based feedforward ANN

Fig. 5 Plot of best validation performance for training the leaf hand’s
displacement

Figure 7 illustrates the comparing correlation of the
observed displacement of hand and predicted values from
the TLBO-coupled ANN. The correlation determined by the
suggested method is better than the linear regression.

Fig. 6 Demonstration of training state

In addition, the accuracy and robustness of the proposed
intelligent model is verified through numerical experimenta-
tions. To do this, a few random values of design variables are
arranged into ten numerically experimental samples. The ten
prototypes of the developed gripper with material Al 6082

123



2192 International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) 17:2185–2195

Table 2 Comparison between proposed method and other regression methods

Outcome Methods Indicator Model Training Testing Validating

Displacement of left hand (mm) Linear regression MSE 1.63e-04 1.42e-04 4.93e-32 1.97e-31

RMSE 0.01277 0.011931 2.22e-16 4.44e-16

R2 0.32890 0.3080 1 1

Full 2nd order polynomial regression MSE 9.48e-07 7.85e-07 5.13e-06 4.01e-05

RMSE 0.00097 0.00088 0.00226 0.00633

R2 0.99548 0.93265 0.88753 0.89117

ANN MSE 6.32e-06 1.07e-05 6.98e-06 2.05e-05

RMSE 0.00251 0.00327 0.00264 0.00453

R2 0.96989 0.94327 0.91856 0.89012

Proposed method MSE 6.04e-07 6.11e-07 6.50e-08 1.10e-06

RMSE 0.00077 0.00078 0.00025 0.00105

R2 0.99750 0.9970 0.9998 0.96770

are built, and then they are determined by finite element anal-
ysis (FEA) software ANSYS 2019R1. The displacement of
the left hand is measured. The results are provided in Table
3. The predicted displacement and the measured one devi-
ate lower than 3%. This shows that the devoted intelligent
method is considered as an efficient predictor for the gripper.

To sum up, when an input displacement of 0.4 mm acts to
the A point from an outer actuator (e.g., piezoelectric actu-
ator), the max output displacement is found about 1.14. It
means that the gripper can achieve a displacement ampli-
fication ratio of 2.85. In addition, the developed gripper
can provide a max gripping force of the jaw/hand is about
145.96 N.

According to Ling et al. [16], the analytical methods (e.g.,
pseudo-rigid-body model, Castigliano’s second theorem,
compliance matrix method, elastic beam theory, two-port
dynamic stiffness model, Ryu’s method, and beam constraint
model) showed a significant advance in the field. But, these
methods are still difficult to build the concise mathematic
equations for complex structures and large deflection for the
gripper. Meanwhile, the current study proposed a new intel-
ligent modeling method to solve the complex behavior of
the gripper. The current study suggested a data-driven tech-
nique in order to overcome the disadvantages in physic-based
methods. The proposed method would be interesting in pre-
dicting the kinetostatic and dynamics of others mechanisms.
It could be considered as artificial intelligence technique for
modeling, optimization and synthesis of general compliant
mechanisms.

In real word, pneumatic robot or manipulator are often
used to handle objects in industry. Unlike the existing
robotics, the advantage of the proposed gripper consisted of
lightweight, low cost, high precision, free joints and lubri-
cants. At the beginning of contacting, the proposed gripper

is flexible to handle the object based on the elastic deforma-
tions of flexure beams. This can help to avoid the breakout
the targeted object. In addition, the gripper is symmetrically
designed and a large thickness to prevent in the out-of-plane
(z-axis) to prevent the rotation.

6 Conclusions

This paper presented a new design modeling of the gripper
via using the elastic beams. To get benefit of a symmetric
structure, the jaws of gripper can manipulate the objects with
a stable force. The holding reaction force of the left hand is
similar to that of right hand. The displacement of left hand is
chosen to analyzed. An intelligent model is established via a
hybridization of the teaching learning optimization and feed
forward neural network. The proposed intelligent method is
employed to predict the displacement. The achieved results
were summarized as follows.

– The results found that the MSE values of the entire model,
the training, the testing, and validating are 6.04e-07, 6.11e-
07, 6.50e-08, and 1.10e-06, respectively. Furthermore,
the RMSE values are 0.000778, 0.000782, 0.000255, and
0.001051 for the entire model, the training, the testing, and
validating, respectively.

– The R2 value of the model, the training, the testing, and
validating are 0.9975, 0.9970, 0.9998, and 0.9677, accord-
ingly.

– Besides, the proposed intelligent predictor is superior to
other regression methods (linear regression, full 2nd order
polynomial regression, and traditional ANN).

– Moreover, the deviation errors among the estimated from
the proposed intelligent method and the FEA results are
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Fig. 7 Relations between the
predicted and observed values

Table 3 Validation of robustness
of proposed intelligent method No Design variables (mm) Displacement (mm) Error (%)

T1 T2 T3 Predicted value FEA value

1 0.82 0.50 0.72 1.1426 1.1253 1.53

2 0.83 0.51 0.72 1.1401 1.1221 1.60

3 0.83 0.52 0.72 1.1386 1.1261 1.11

4 0.84 0.53 0.73 1.1374 1.2030 1.52

5 0.83 0.54 0.73 1.1335 1.1175 1.43

6 0.85 0.55 0.74 1.1336 1.1189 1.31

7 0.86 0.55 0.74 1.1350 1.0480 2.73

8 0.86 0.56 0.76 1.1316 1.2030 1.00

9 0.87 0.57 0.77 1.1292 1.1150 1.27

10 0.88 0.58 0.78 1.1259 1.1048 1.90

very small. It revealed that the proposed intelligent model
is well-suitable predictor for modeling the behaviors of
gripper.

– Finally, the designed gripper can provide a max displace-
ment amplification ratio of 2.85 and a max grasping force
of 145.96 N.

Although the proposed intelligent approach is effective for
modeling the gripper but it still has some drawbacks. Partic-
ularly, the computation becomes more complicated when the
number of hidden layers is increased. It needs a large com-
putational effort of computer and human work. Therefore,
the computing modeling process should increase the speed

the computation with a less time as well as achieve a higher
precise predictor. These works can be done by enhancing
the TLBO algorithm and feed forward ANN. In future work,
the prototype of gripper is manufactured via wire electrical
dischargedmachining, and the experimental verifications are
performed. Then, the gripper has a largely potential for many
practical applications such as robotics and manipulators in
agricultural engineering and electrics.
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