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Abstract
One of the main limitations in subject-centred design approach is represented by getting 3D models of the region of interest.
Indeed, 3D reconstruction from imaging data (i.e., computed tomography scans) is expensive and exposes the subject to high
radiation doses. Statistical Shape Models (SSMs) are mathematical models able to describe the variability associated to a
population and allow predicting new shapes tuningmodel parameters. These parameters almost never have a physical meaning
and so they cannot be directly related to morphometric features. In this study a gender-combined SSM model of the human
mandible was setup, using Generalised Procrustes Analysis and Principal Component Analysis on a dataset of fifty mandibles.
Twelve morphometric features, able to characterise the mandibular bone and readily collectable during external examinations,
were recorded and correlated to SSM parameters by a multiple linear regression approach. Then a cross-validation procedure
was performed on a control set to determine the combination of features able to minimise the average deviation between
real and predicted shapes. Compactness of the SSM and main modes of deformations have been investigated and results
consistent with previous works involving a higher number of shapes were found. A combination of five features was proved
to characterise predicted shapes minimising the average error. As completion of the work, a male SSM was developed and
performances compared with those of the combined SSM. The features-based model here proposed could represent a useful
and easy-to-use tool for the generation of 3D customised models within a virtual interactive design environment.

Keywords Statistical shape model · PCA · Mandible · Morphometric measurements · Features selection · Subject-specific
model · Predicted shapes

1 Introduction

Statistical Shape Models (SSMs) represent a valuable math-
ematical tool to describe and understand the variability that
characterises a specific population. SSMs allow identifying
the principal modes of deformation, that are the main varia-
tions, associated to shapes within a population and, adapting
the shape parameters of the model, new realistic shapes can
be predicted. This approach is currently having a great diffu-
sion, especially in the medical [1–3], ergonomics [4–6] and
product design [7–9] fields, where researches are becom-
ing more and more subject-centred. With reference to the
medical field, the classical methodology implemented to
customise the design of patient-specific devices or surgical
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procedures is based on an interactive design approach [10]
and involves three main steps [11–13]: reverse engineering
to obtain a 3D model of the anatomical region of interest
and to setup a virtual working environment; 3D modelling
within the virtual environment where knowledges belonging
to different fields (i.e., medical, engineering, biomechanical)
participate in the definition of design parameters; simulation
within the interactive environment and, if necessary, proto-
typing with additive manufacturing techniques. A key point
for the implementation of this kind of approach, is the avail-
ability of the 3D model replicating the geometry of interest:
indeed, precise and detailed information on the investigated
anatomical region are mandatory in order to carry out design
and simulation within the virtual environment. When the
investigated structures are inner body regions (i.e., bones)
the classical approach to obtain models is the use of imag-
ing techniques, such as Computed Tomography (CT), Cone
Beam CT (CBCT) or Magnetic Resonance Imaging (MRI)
[1, 14]. The main shortcoming related to the use of these
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systems is that they are expensive and/or expose patients to
high-radiation doses; for these reasons, generating 3D mod-
els from these techniques is not always a feasible option.

Statistical shape models have been used for the mathe-
matical representation of anatomical structureswith different
applications [15], including image automatic segmentation
[16, 17], identification ofmorphological differences (i.e., dis-
crimination between healthy and pathological structures [18,
19] or sex discrimination [20, 21]), generation of predictive
models able to reproduce realistic or real geometries [22–24].

In this study an SSM for the prediction ofmandibular bone
external geometry was setup, basing the mandibular shape
prediction on few externalmorphometricmeasurements. The
approach here described is wanted to overcome difficulties
that have to be faced in reverse engineering of this bone (i.e.,
unavailability of CT scans), providing a numerical tool able
to quickly generate an accurate 3D subject-specific model
that can be easily integrable within a virtual environment for
numerical analyses and customised design purposes. Some
previous works have implemented a statistical shape model
approach for the analysis of the mandible geometry variabil-
ity related to gender (male or female) [25] or age (growing
mandible changes) [14]. Even when the SSM model was
used to predict newmandibular shapes [25–27], thesemodels
still involve imaging techniques for fitting principal modes
weights, using total/partial bone geometries or hard-tissue
landmarks to define SSM parameters.

Here a different approach is proposed, having integrated
the statistical shape analysis with a morphometric features
analysis, following a methodology used for full body statis-
tical shapemodelling [6, 9, 28, 29]. This approach is based on
identifying a correlation between the deformation modes of
the population and selected shape’s features, that are shape’s
characteristic with a physical meaning.

A total of fifty mandible’s CT scans were available: forty
were used as training set for statistical analyses and ten as
control set for model validation and features selection. In
order to consider as much mandibles as possible, the training
set was a gender-combined dataset, composed by both male
and female mandibles. The correspondence problem was
here solved using ameshmorphing approach based onRadial
Basis Functions (RBFs); this approach allows obtaining iso-
topological meshes with the advantage of using all the mesh
nodes as correspondence points for statistical analyses. The
Generalised Procrustes Analysis (GPA) was applied in order
tofilteredout translational, rotational and scaling effects from
the population and to estimate the average shape geometry
of the training set. Main modes of variations of the mandibu-
lar shape have been identified through Principal Component
Analysis (PCA), extrapolating Principal Components (PCs)
and so defining the variability model. Statistical shape model

performances have been evaluated using a compactness met-
ric, and main modes of deformation associated to first PCs
have been investigated and comparedwith results obtained in
previous studies, where a higher number of mandibles were
used.

The SSM model was then modified so that new predicted
shapes can be obtained linearly combining PCs on the basis
of morphometric features provided as input. In this study,
features are represented by mandibular relevant measure-
ments that can be recorded during external examinationswith
classical instruments (i.e., calliper, goniometer). A detailed
literature research was performed in order to identify com-
monly used facial measurements related to the mandible
shape and a set of twelve features was selected. A cross-
validation approach was used on the control set to establish
the combination of these features that, if provided as input to
the SSM, is able to predict the specific mandible geometry
of a subject with the minimum deviation from the real one.

The prediction ability of the feature-based SSM model
was assessed comparing predicted and real geometries (that
are geometries reconstructed from CT scans) in terms of
average deviations between shapes. As completion of this
study, also a gender-based SSM was created repeating the
same statistical analyses and feature selection procedure on a
reduced dataset containing only male mandibles, and its per-
formanceswere comparedwith those of the combinedmodel.
Finally, the combined SSM was also tested for its ability to
predict missing or unhealthy bone’s regions in mandibles
with a peculiar geometry.

In this work a limited number of mandibles were avail-
able and for this reason this research was aimed to provide
preliminary results on the statistical shape modelling of the
mandibular bone.

2 Materials andmethods

The final aim of the approach presented in this study was
to generate a ready-to-use virtual tool that requires as input
a set of few external morphometric measurements, recorded
by the final user on a specific subject, and provides as out-
put the 3D model of the mandibular geometry. The whole
process for the statistical shape model generation is sum-
marised in Fig. 1, highlighting main steps described below
in this section. Moreover, the integration of this tool within
the design process is also shown.

All the analyses presented in the following have been per-
formed in MATLAB (v. 17, The MathWorks, Inc., Natick,
MA, USA) through codes written by the author.
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Fig. 1 Statistical shape model generation workflow and its integration within the subject-specific design process

2.1 Mandible samples

A total of fifty Computed Tomography (CT) scans of
adult skulls have been collected from the hospital ‘Azienda
Ospedaliero Universitario Policlinico G. Rodolico-San
Marco’ (Catania, Italy); they were obtained during different
medical examinations using a Revolution HD scanner (GE
Healthcare S.r.l., 0.5 mm slice thickness, 0.43 × 0.43 pixel
spacing, 512× 512pixels, voltageKVP120kVand exposure
time 500 ms), and made available for this study after getting
approval from patients. All the mandibular bones did not
undergo surgical treatments (absence of prosthetic devices

or mandibular plates was assessed) and were not affected
by pathological features (i.e., bone resorption, partial bone
geometries, mandibular asymmetry). Demographics associ-
ated to the sample set are reported in Table 1.

Three-dimensional models of the mandible external
geometry have been reconstructed fromCT scans following a
common procedure for segmentation and post-processing [3,
25, 26, 30–32]. 3Dmodel reconstructionwas performedwith
Mimics and3-Matic softwares (Materialise Inc., Belgium) by
an expert operator: this, along with the high resolution of CT
scan data, ensured a good level of reconstruction accuracy
(sub-voxel mesh accuracy) transforming 2D CT scans into

123



1678 International Journal on Interactive Design and Manufacturing (IJIDeM) (2022) 16:1675–1693

Table 1 Demographics of the mandibular dataset

Gender Number of
Mandibles

Mean Age ±
Standard Deviation
[years]

Age Range
[years]

Male 34 59.1 ± 19.8 20–96

Female 16 47.9 ± 24.9 21–89

realistic 3D models of exact geometry, as reported in works
that have dealt with this topic [33–36].

Main steps of this procedure are here summarised and
corresponding results are shown in Fig. 2:

a. Automatic segmentation based on thresholding Soft and
hard tissues are separated setting the Hounsfield (HU)
window for bone between 570:3070 HU [37, 38]; a
collection of the pixels of interest (that is a mask) corre-
sponding to hard tissues was identified by the software
using a marching square algorithm to threshold and seg-
ment the regions of interest [36, 39, 40]. As a result, the
whole skull was obtained (Fig. 2a)

b. Semi-automatic segmentation Bone regions correspond-
ing only to the skull, mandibular bone and teeth can be
clearly identified and a ‘mask split’ tool (Mimics) was
used to separate them. Portions of regions correspond-
ing to these parts were selected by the operator on CT
images and then the software automatically distinguishes
between different bodies and assigns each region to dif-
ferent masks. Figure 2b, c show the mandible separated
from the skull and the mandible without teeth respec-
tively. Teeth have been removed in order not to consider
respective shape’s variability in subsequent statistical
analyses

c. Automatic interpolation The software automatically
detects the high-resolution segmentation contours, that
are polylines of the mandibular mask, and fills them via
an interpolation between CT slices. This procedure was
used to remove potential cavities inside the mandibu-
lar mask and so obtain from this a manifold geometry
(Fig. 2c)

d. Post-processing operations Consisting in uniform re-
mesh and smoothing, in order to improve the external
geometry representation and remove potential artifacts
deriving from the segmentation process (Fig. 2d). As a
result, a mesh with triangular elements uniformly dis-
tributed over the geometry surface was generated, in
order to avoid regions with denser/sparser nodes dis-
tribution [41]; elements’ dimension was established as
a trade-off between limiting the average deviation from
the original geometry and the number of surface nodes.
Average deviations below 0.05 mm have been obtained
with 2 mm triangle’s edge length.

Table 2 Hard tissue and soft tissue landmarks description

Hard Tissue Landmarks

Gonion-Go
(Right GoR and Left GoL)

Right and left points located along
the rounded posterior corner of
the mandible, between the ramus
and the body

Lateral Condylion-Co
(Right CoR and Left CoL)

Right and left most prominent
lateral points on the mandibular
condyle

Anterior Infradentale-In The most anterior midline point of
the mandible alveolar process

Soft Tissue Landmarks

Soft Tissue Gonion-GoS
(Right GoS,R and Left GoS,L)

Right and left most lateral
points on the soft tissue
contour of each mandibular
angle, located at the same
level as the hard tissue
gonion landmarks (GoR,
GoL)

Soft Tissue Lateral Condylion-CoS
(Right CoS,R and Left CoS,L)

Right and left most lateral
points on the soft tissue
located at the same level as
the hard tissue lateral
condylion landmarks (CoR,
CoL)

Soft Tissue Pogonion-Po Is the most anterior midpoint
of the chin

e. Soft tissue segmentation This operation was performed
on CT scans in order to obtain the external geometry
of the face of each subject (Fig. 2e), required for the
identification of external morphometric measurements,
as described in Paragraph 2.2; soft tissues have been iden-
tified setting the Hounsfield (HU) window to -700:225
HU.

2.2 Morphometric measurements

A literature research was performed to identify land-
marks and morphometric measurements commonly used for
mandibular geometry description [25, 42–51]. Among those
available, only measurements that can be taken easily with
classical instruments, as calliper and goniometer, during an
external examination were considered in this study. As result
of this preliminary analysis, ten anatomical landmarks (hard-
tissue and soft-tissue landmarks, Table 2) were selected.
These landmarks have been identified, on all mandible and
face geometries, with 3-Matic software both automatically
(‘Extrema Analysis’ tool) and manually based on definitions
reported in Table 2 and information provided in literature
[50, 51]; from these, twelve morphometric measurements
(features) have been computed (Table 3).
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Fig. 2 Segmentation process: a whole skull segmentation; b mandible with teeth geometry; c mandible without teeth and holes filled; d post-
processing on mandible geometry; e soft tissue (face) geometry

With reference to the mandibular bone, literature reports
many different morphometric measurements defined from
hard-tissue landmarks, but far fewer soft-tissue morphomet-
ric features can be found. For this reason, some of the selected
features reported in Table 3 have been adapted from the
respective hard-tissue measurements.

Soft-tissue landmarks have been identified on the face
geometry reconstructed from CT scans (Fig. 3), since it
was not possible to directly record these measurements on
patients. This aspect, along with proved dependency of facial
landmarks on BMI (Body Mass Index) [52], might cause an
overestimation of themandible and bicondylarwidths aswell
as of the body length when dealing with over-weight sub-
jects. In these cases, the position of the gonion and lateral
condylion soft-tissue landmarks does not correspond to the
actual position which, instead, could be established during a
direct examination. For these reasons, all those features that
depend on these landmarks have been computed referring to
the corresponding hard-tissue landmarks, resulting in more
accurate feature estimation.

2.2.1 Morphometric Measurements Analysis

Morphometric measurements reported in Table 3 have been
recorded for all fifty subjects in the dataset and mean and
standarddeviationvalueswere computed formale and female

groups. These values have been compared with data reported
in literature. Differences in means between male and female
mandibles were assessed for each variable using a two-
sample t-Test with a significance level evaluated with the
Bonferroni correction (p� α/k) as p� 0.05/12� 0.004. Nor-
mality of data distributionswas assessedwith aShapiro–Wilk
test [53].

Morphometric features have also been analysed in terms
of inter-observer reliability:measurementswere evaluated on
two randomly selected mandibles (one male and one female)
by four different operators. All the observers have the same
expertise in the use of 3-Matic software and were trained
to record morphometric measurements on 3D models. The
intraclass correlation coefficient (ICC) was used to assess
reliability inmeasurements taken bydifferent final users [54].

2.3 Mandibular mesh preparation

Before starting the implementation of the statistical shape
model, mandibular meshes must be prepared in order to
establish correspondence between all the shapes in the
dataset; this operation is mandatory to enable the identifi-
cation of points of correspondence among all the mandibular
geometries, required for the subsequent analyses (GPA and
PCA).Whenworkingwith 3Dshapes, one solution is the gen-
eration of iso-topological surface meshes, which are meshes
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Fig. 3 Hard- and soft-tissue
landmarks used for
morphometric measurements
definition

characterised by the same number of nodes and with nodes
representing the same geometrical point [25, 41, 55, 56].
Working with iso-topological meshes facilitate GPA and
PCA analyses, reducing the effort of finding corresponding
points among shapes, being these all the mesh nodes.

In the present study iso-topological surface meshes have
been obtained implementing mesh morphing technique,
which consists in non-rigid transformation of geometries;
many different approaches exist to perform morphing, and
here Radial Basis Function (RBF) method was used. This
approach consists in adapting the mesh of a reference
mandible (standard mesh), belonging to the dataset, on all
the other mandible geometries (target meshes); specific con-
trol points are chosen over the standard and target surface
meshes, and the whole set of the standard mesh nodes
undergo displacements that are obtained by interpolation
based on known displacements of these control points. Dif-
ferent type of ‘piecewise smooth’ (i.e., linear, thin plate
spline) and ‘infinitely smooth’ (i.e., Gaussian, inverse multi-
quadric) basis functions exist [57, 58]; among these the RBF
able to provide the best morph for the mandibular shape was
assessed by some preliminary analyses, testing different for-
mulations (both piecewise and infinitely smooth). The ability

of the basis functions to globally morph the standard mesh
was assessed qualitatively and the linear RBF was proved
to generate the best morph accuracy also in bone regions
with the most complex geometry (condylar and coronoid
processes): indeed, using different basis functions gener-
ated a significant deformation of the morphed mesh and a
consequent deviation from the target mesh in these regions,
requiring so a higher number ofmorphing iterations to obtain
a good accuracy. A detailed description of this methodology
is provided in the previous work by Pascoletti et al. [59];
here the same procedure was followed and main steps are
reported:

a. The reference mandible is arbitrarily selected among all
the mandibles in the dataset, as a geometry with no pecu-
liar features (i.e., severe bone resorption or deformities):
its mesh becomes the standard mesh

b. A set of 27 control points have been identified both
manually and automatically (3-Matic ‘Extrema Anal-
ysis’ tool) over the surface mandible geometry; these
points have been selected as relevant anatomical land-
marks for the mandible shape. In order to improve the
morphing procedure, other 20 ‘auxiliary’ landmarks have
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Table 3 Morphometric measurements description

Mandible Width-GoRGoL Linear distance between the
right and left soft tissue
gonion

Bicondilar Width-CoRCoL Linear distance between the
right and left soft tissue
lateral condylion

Gonial Angle-GoA
(Right GoA,R and Left GoA,L)

Angle formed by the
tangential lines to the lower
border of the mandibular
body and the posterior
border of the mandibular
ramus

Ramus Height Adapted-CoGo
(Right CoGoR and Left CoGoL)

Distance between the soft
tissue lateral condylion and
the soft tissue gonion

Body Length Adapted-GoPo
(Right GoPoR and Left GoPoL)

Distance between the gonion
and the pogonion

Body Width-BW
(Right BW,R and Left BW,L)

Maximum width of the
mandibular body measured
in the region of the mental
foramen perpendicular to the
long axis of the mandibular
body

Pogonion-Infrandentale
Distance-PoIn

Perpendicular distance
between the anterior
infradentale and the
pogonion

Mandibular Corpus Posterior
Angle Adapted-GoRPoGoL

Angle formed by the lines
connecting the right and left
gonion to the pogonion

been automatically identified inMATLABusingfive seg-
mentation planes defined by anatomical landmarks: by
the intersection of these planeswith themandible geome-
try four new landmarks for each plane have been defined.
Landmarks were identified for the standard mesh and for
all the other target meshes belonging to the dataset, pro-
viding up to 47 control points for mesh morphing

c. A linear RBF was chosen and used to interpolate nodes
displacements, deforming the standard mesh based on
the shape of the target geometry

d. Aftermorphing in strict sense,morphedmesh nodeswere
perpendicularly projected to the closest triangle of the
target mesh and then a Laplacian smoothing was applied;
these operations allow improving shape reproduction of
target geometries

e. These steps have been repeated iteratively until the aver-
age andmaximumdeviations between themorphedmesh
and the original target geometry [60] were below 0.1 mm
and 2 mm respectively.

At the end of these process, the dataset was composed
by fifty mandibles with 3089 nodes and 6174 triangular ele-
ments.

2.4 Statistical shapemodel

The statistical shape model was generated on a training set
composedby40mandibles belonging to the dataset (27males
and 13 females), while the remaining 10 mandibles (7 males
and 3 females) have been used as control set for features
selection and model accuracy evaluation.

A SSM consists in the deformation of an average shape
M through a variability model �b to obtain a new predicted
shape M p:

M p � M + �b (1)

The training set is composed by Nt � 40 shapes with N
vertices and each shape can be represented by a matrix M
∈ R

N×3.
First of all, the Generalised Procrustes Analysis was

performed, filtering out location, scale and rotation effects
through an iterative process: in this way only shape’s infor-
mation are preserved in order to compute the average shape
and perform subsequent statistical variability analysis.

Shapes are reported to a common reference frame by
calculating the centre of gravity of each set of nodes and
subtracting its coordinates from shapes’ nodes coordinates,
resulting in shapes translated and centred in the origin of the
new reference frame.

The iterative process starts with a first estimation of the
average shape, arbitrarily chosen as the first mandible in the
training set. Then mandibles are scaled so that each shape
has the same norm as the average shape, and are rotated to be
aligned to the average shape through a rotation matrix com-
puted by the singular value decomposition (SVD) method.
After these operations a new estimate of the average shape is
made and the process starts again computing new scaling fac-
tors and rotation matrices. The iterative process ends when
the deviation, that is sum of squared distances, between the
new estimate of the average shape and the previous one is
smaller than 0.001 mm2. A more detailed description of all
themathematical steps of generalised Procrustes analysis can
be found in the previous work [59]. As results of this analysis
the average shape M ∈ R

N×3 of the registered training set
Mr ∈ R

N×3 was obtained.
The variability model was then calculated through prin-

cipal component analysis applied to the set of registered
meshesMr. Each shapeMr and the averagemandibleM were
rearranged stacking nodes coordinates of every i-th geometry
into column vectors mr , i ∈ R

3N×1 and m ∈ R
3N×1:

mr , i � [
x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN

]T (2)

and new mandible vectors mr,d were computed as devia-
tion between shape vectors mr,i and m:
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mrd , i � mr , i − m (3)

These Nt vectors were then assembled in a matrix Mrd ∈
R
3N×Nt :

Mr , d � [
mrd , 1, mrd , 2, . . . , mrd , Nt

]T (4)

Principal component analysis was performed computing
eigenvectors and eigen values of the covariance matrix of
Mr,d. Eigenvectors ϕ i ∈ R

3N×1 (i � 1, Nt − 1) are the
so-called Principal Components (PCs) and eigenvalues λi

associated to each of them represent the respective variance.
Variances are sorted so that λ1 > λ2 > … > λNt − 1 and cor-
responding PCs are rearranged in a matrix Φ ∈ R

3N×(Nt−1)

accordingly.
These principal components define the main modes of

deformation of the mandibular shape and a linear combina-
tion of these modes through weight vectors bi ∈ R

(Nt−1)×1

allow deforming the average shape and generating new pre-
dicted shapes Mp.

2.5 Statistical shapemodel performance

One of the most used measures for the evaluation of the qual-
ity of an SSM is the compactness parameter. Compactness C
defines the ability of the model to describe shape instances
with as few modes as possible; therefore, a compact model
is able to describe a shape from the population with a lim-
ited number of PCs. From its definition compactness is a
parameter that depends on variances λi associated to prin-
cipal components. Every PCs is able to describe a certain
amount of the total variance contained in the dataset, that is
the explained variance λexpl,i:

λexpl, i � λi
∑Nt−1

i�1 λi
(5)

From this definition the compactness can be computed as:

C(n) �
n∑

i�1

λexpl, i (6)

where n is the number of modes considered and C(n) is the
compactness using n modes.

First principal components have been further investigated
to identify the main modes of deformation of the mandibular
shape; deformation of the average shape associated to these
modes have been computed as:

PC i � M ± 3
√

λi · ϕ i (7)

and respective deviations from M were analysed considering
the Euclidean distance between corresponding nodes.

2.6 Featuremodification

The statistical shape model defined by Eq. (1) allows gener-
ating new shapes by the control of weights values, but it does
not provide a direct way to predict shapes based on intuitive
morphometric features, like those described in Paragraph 2.2.
Indeed, weights almost never have a physical meaning and
so SSM parameters have to be modified in order to provide
a direct way to explore the range of mandibular geometries.
This was here performed relating several variables by learn-
ing a linear mapping between selected control features and
PCA weights [6, 9, 28, 29].

For each mandible within the training dataset a feature
vector f i ∈ R(L+1)×1 containing L features (L � 12 in this
case) can be created:

f i � [ f1, f2, . . . , fl , 1]
T (8)

A mapping matrix K ∈ R(Nt−1)×(L+1) relating the feature
vector of a mandible to its weight vector may be defined as:

K f i � bi (9)

Feature vectors can be assembled in a feature matrix F ∈
R(L+1)×Nt and similarly a weight matrix B ∈ R

(Nt−1)×Nt can
be defined; extending Eq. (9) the mapping matrix is obtained
solving for K:

K F � B (10)

K � BF+ (11)

being F+ the pseudoinverse of F. From Eq. (1) weight
vectors bi can be easily computed through a multiple linear
regression over the shapes of training dataset and so the map-
ping matrix can be obtained; using this mapping matrix, new
weight vectors bi,new for the generation of a new shape Mp,
characterised by a feature vector f i,new, can be generated as:

bi , new � K f i , new (12)

2.7 Feature selection

Features modification allows defining physical features as
direct input parameters of the SSM. A set of twelve mea-
surements, identified as the more significant and easiest to
measure external features, has been selected (Paragraph 2.2).
Features that are most relevant for mandible shape descrip-
tion were investigated looking for the best combination of
these features, were ‘best’ means the combination that min-
imises errors when new shape are predicted.

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2022) 16:1675–1693 1683

A cross-validation analysis was performed on a control
set composed by Nc � 10 mandibles [6, 9, 28, 29]: being
L � 12 the total number of features, twelve groups lg have
been defined, where every group includes all the possible k
combinations of g features. For example, l2 contains all the
possible combinations of two features, for a total of 66 fea-
ture vectors; l6 is composed by 924 feature vectors that are all
the combinations of six features among the twelve available,
and so on. Therefore, for every mandible belonging to the
control set, predicted shapes have been computed consider-
ing all these combinations: being g the number of features
considered, for each combination of g features belonging to
the training set, matrices Fcomb, g ∈ R

(g+1)×Nt , were created
and Eq. (11) was used to compute in turn mapping matri-
ces K comb, g ∈ R

(Nt−1)×(g+1). Weight vectors can then be
evaluated as:

bcombi , g � K comb, g f combi , g (13)

being fcomb i,g the feature vector of the i-th control
mandible containing the combination of g features.

Every predicted mandible was compared to the corre-
sponding mandible obtained from the CT scan data; more
precisely, predicted shapes have been compared to mandible
geometries aftermesh preparation, being so the predicted and
original meshes iso-topological.

Deviation between shapes was evaluated considering the
Euclidean distance between corresponding nodes, being
smaller distances associated to smaller deviations. Consider-
ing a control mandible i the deviation for the j-th node was:

d ji �
√(

xp, j i − x ji
)2 +

(
yp, j i − y ji

)2 +
(
z p, j i − z ji

)2

(14)

where (xp,ji, yp,ji, zp,ji) and (xji, yji, zji) are respectively node’s
coordinates of the predicted and real shapes.

For every feature combination k, an error distribution vec-
tor εk ∈ R

N×1 has been evaluated over all the mandibles of
the control set, being its elements:

εk, j �
Nc∑

i�1

d ji (15)

The 90-th percentile value εk,90 was retrieved and for every
group lg the combination with the minimum value of this
parameter was retained; moreover, the mean and standard
deviation of corresponding vectors εk over all nodes have
been computed:

μεk � 1

N

N∑

j�1

εk, j (16)

σεk �
√√√√ 1

N − 1

N∑

j�1

(
εk, j − μεk

)2 (17)

and the minimum of the mean value was considered for
identifying the best combination of features kopt.

As result of the feature selection process, the SSM
becomes:

M p � M + �K opt f opt (18)

where fopt and Kopt are the feature vector and the mapping
matrix corresponding to the optimumcombination identified.

The variability model in Eq. (18) can also be read as a
linear combination of original PCs by weights represented
by the element of the feature vector:

Φ∗ � �K opt (19)

being �*∈ R
3N×kopt * the new eigenvectors matrix.

3 Results

3.1 Morphometric measurements analysis

Mean and standard deviation values have been computed for
all the twelve features for male and female mandibles and
results are shown in Fig. 4, where length measurements are
in millimetres and angular measurements in degrees. A good
agreement was found between these results and data reported
in literature [25, 42, 44, 48], confirming also some general
trends (i.e., female gonial angles values greater than male).
Moreover, from this analysis it can be seen that bilateral mea-
surements are consistent within a group.

Statistical differences between male and female features
have been assessed and significant differences were found
for mandible width (mean difference 7.1 mm), right and left
ramus height (mean difference 6.3 mm and 6.5 mm respec-
tively), right and left body length (mean difference 7.3 mm
and7.9mmrespectively),withp<0.001 for all these features.
Moreover, for the bicondylar width (mean difference 5 mm)
a p � 0.0046 was found, which is very close to the imposed
significance level (0.004). These results are in accordance
with those reported in [25], where the same feature have
been identified as significantly different among gender.

The ICC between different operators has shown a good
reliability for the left body width and for the pogonion-
infradentale distance (ICC equal to 0.808 and 0.878 respec-
tively), while for all the other measurements an excellent
inter-observer reliability was assessed, with ICCs > 0.933.
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Fig. 4 Mean and standard
deviation values for male and
female features. ** identify
features with p < 0.001. Length
measurements are in millimetres
and angular measurements in
degrees

Fig. 5 Compactness curve as function of the number of PCs. Blue and red dashed lines represent C(4) and C(29) respectively (colour figure online)

3.2 Statistical shapemodel performance

The compactness parameter is shown in Fig. 5 as function of
the number of principal components. This analysis pointed
out that the first principal component explained the 30% of
the total variance and from C(4) on (blue dashed line in
Fig. 5), which is equal to 57%, the gradient’s changes become
less significant. If the 98% of the total variance is wanted to
be captured, 29 PCs are required (red dashed line in Fig. 5).

Shapes representing the first four principal components
have been calculated with Eq. (7), analysing deviations from
the average shape of± 3

√
λi . These shape modes have been

superimposed to the average shape geometry and deviations
between deformed and average geometries have been com-
puted and reported with a colormap on the average shape

(Fig. 6); major deviations are represented by red and yellow
areas. This analysis allowed identifying which are the main
deformations explained by first four modes. It was pointed
out that the first PC is associated to a uniform change of size
of all the mandible distributed over the condylar process, the
coronoid process and the internal part of themental protuber-
ance and alveolar process. Second, third and fourth modes
generatemore localised deformations: PC2 mainly affects the
coronoid process as well as the ramus and gonial regions,
resulting in a uniform stretch/shortening in the superior-
inferior direction, without changes in the opening angles;
PC3 produces effects on the central part of the mandibular
bone (mental protuberance and the alveolar process) and on
the gonial region, where deformations in the anterior–pos-
terior and superior-inferior directions can be seen; a more
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Fig. 6 First Principal Components shapes for ± 3
√

λi and respective deviations from the average shape: a First PC; b Second PC; c Third PC;
d Fourth PC. Colormaps are represented on the average shape and red/blue regions represent maximum/minimum deviations respectively (colour
figure online)
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evident widening/narrowing of the mandible shape is asso-
ciated to PC4 and deformations in the mylohyoid line and
sublingual fossa can be observed.

3.3 Feature Selection

Having considered twelve features, a total of 4095 combi-
nations and the corresponding predicted shapes have been
generated for each control mandible following Eq. (18); the
eigenvector matrix was limited to the first 29 PCs, in order
to reduce the model dimensionality covering the 98% of the
variance.

The εk,90 parameter has been investigated for all these
combinations and Fig. 7 shows the prediction error distribu-
tion for the best features combination within a group lg, that
is the one with the minimum 90-th percentile value.

Boxplot upper and lower limits represent the 10-th and 90-
th percentile values respectively,while the grey line inside the
box is the median; whiskers extrema indicate the minimum
and maximum deviation. For every group lg, the correspond-
ing best combination was retrieved and the corresponding
mean and standard deviations have been computed; Table
4 summarises these results showing that the minimum εk,90
value is associated to the l4 combination (3.46 mm). Figure 8
shows colormaps representing the average error distribution
εk, over the control set, for all the features group in corre-
spondence of the best combinations reported in Table 4.

Analysing means values μεk it can be seen that the min-
imum is reached for the l5 combination (2.79 ± 0.57 mm),
while from this combination on this parameter increases
again, indicating an overfitting trend. This analysis outlined
that the most relevant measurements for shape prediction are
represented by left body length, mandible and bicondylar
widths, right gonial angle and right ramus height; more-
over, from l6 on also the mandibular corpus posterior angle
becomes an important feature.

Considering the best features combination (l5) the aver-
age prediction error for every mandible of the control set
was retrieved. Results are reported in Fig. 9, where control
mandibles M2, M3 and M9 are female. The prediction error
appears to be consistent among all the shapes in the control
set, with the exception of mandible M2, which exhibits the
highest deviation (5.6 ± 1.97 mm).

If the geometry of this control mandible is observed in
detail, it can be seen that it is characterised by a peculiar
morphology of the internal region of the mandibular body at
the level of the mylohyoid line, resulting in a small distance
between the left and right side. The real and predicted shapes
for this mandible are shown in Fig. 10a: as can be seen the
predicted shape is not able to reproduce the opening angles of
the ramus and coronoid process, resulting in high errors (up to
10 mm), as shown by the deviation colormap in Fig. 10a. On
the other side, if the mandible with the minimum deviation

Table 4 Best features combinations for every group lg and correspond-
ing error vector parameters (90-th percentile and mean ± standard
deviation)

Group Features Combination εk,90
[mm]

μεk ± σεk
[mm]

l1 GoPoL 3.85 2.92 ± 0.64

l2 CoGoR + GoPoL 3.65 2.91 ± 0.56

l3 GoRGoL + CoGoR + GoPoL 3.57 2.82 ± 0.54

l4 GoRGoL + CoRCoL + CoGoL
+ GoPoL

3.46 2.82 ± 0.51

l5 GoRGoL + CoRCoL + GoA,R +
CoGoL + GoPoL

3.50 2.79 ± 0.57

l6 GoRGoL + CoRCoL + CoGoR
+ GoA,R + CoGoL + GoPoL

3.52 2.86 ± 0.51

l7 GoRGoL + CoRCoL + GoA,R +
CoGoR + GoA,R + CoGoL +
GoPoL

3.56 2.91 ± 0.53

l8 GoRGoL + CoRCoL + GoA,R +
CoGoR + GoA,R + GoPoR +
CoGoL + GoPoL

3.62 2.95 ± 0.53

l9 GoRGoL + CoRCoL + GoA,R +
GoA,L + CoGoL + GoPoR +
GoPoL + PoIn + GoRPoGoL

3.68 2.92 ± 0.61

l10 GoRGoL + CoRCoL + GoA,R +
GoA,L + CoGoL + GoPoR +
GoPoL + BW,L + PoIn +
GoRPoGoL

3.74 2.97 ± 0.64

l11 GoRGoL + CoRCoL + GoA,R +
GoA,L + CoGoR + CoGoL +
GoPoR + GoPoL + BW,L +
PoIn + GoRPoGoL

3.86 3.07 ± 0.59

l12 GoRGoL + CoRCoL + GoA,R +
GoA,L + CoGoR + CoGoL +
GoPoR + GoPoL + BW,R +
BW,L + PoIn + GoRPoGoL

3.94 3.08 ± 0.61

(M3, 1.8 ± 0.81 mm) is considered, the colormap reported
in Fig. 10b is obtained.

Two examples of predicted shapes obtained with the l5
features combination are reported in Fig. 11a, comparing real
(grey mandible) and predicted geometries (red mandible).
The prediction of the SSM for one of the mandibles of
the control set (M5) is represented in Fig. 11a, while a
mandible with a peculiar morphology (sever bone resorp-
tion/asportation on the left side of the mandibular body) was
considered in Fig. 11b. This latter shape was out of both
training a control set and was here used as benchmark for
evaluating model’s prediction performances when only a
partial mandibular geometry is available, proving the ability
of the model to reproduce also missing or unhealthy bone’s
regions.
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Fig. 7 Average error distribution
for the best combination of
features for every group lg

Fig. 8 Error colormaps represented on the average shape surface for best features combinations of every group lg

4 Discussion

In this study a statistical shape model was developed, with
the main aim of providing a useful and easy-to-use tool to
predict mandible geometry based on external measurements
readily collectable during classical examinations (i.e., dental
visiting procedure).

Twelve external morphometric measurements have been
selected to this end; the main aspects that were considered
for the selection of these features are the ability to provide
information on the mandible morphology, and the fact that

they are easy to record by the final user of the tool (i.e.,
dentist, designer). In order to validate the latter point, the ICC
parameter was used to quantify the inter-observer reliability
and results have shown that all the selected features exhibit
an ICC greater than 0.933, with the exception of two, which
shown nevertheless a good reliability.

A mesh morphing technique based on RBF was here
implemented to generate iso-topological meshes, guaran-
teeing so the nodes correspondence among shapes. The
reference mesh adapted to all the other target meshes was
arbitrarily chosen among those available in the dataset, with
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Fig. 9 Average errors for all the
mandibles of the control set
resulting from the deviation
between the real geometry and
the shape predicted with the l5

Fig. 10 Deviation analysis for the control mandibles with the a maximum (M2) and b minimum (M3) deviation. Real (grey) and predicted (red)
geometries comparison on the left; deviation colormap represented on the real geometry on the right (colour figure online)
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Fig. 11 Comparison between real and predicted shapes using the l5 features combination: a mandible belonging to the control dataset (M5);
b mandible with a peculiar morphology

the requirement that it should not have any morphological
peculiarities. The potential influence of the choice of the
standard mesh on the morphing results was evaluated repeat-
ing the morphing procedure with a different target mesh: ten
randomly selected mandibles were used for this analysis and
deviations between the morphed and the target geometries
were assessed. This analysis has pointed out that deviations
associated to the first and the second standard mesh were
comparable, with maximum deviations below 1.5 mm and
average deviations not exceeding 0.15 mm, proving that the
morphing procedure was not affected by the choice of the
reference mandible. Mesh morphing may be influenced by
the ability and sensibility of the operator at some extent, but it
should be considered that this procedure was performed once
to prepare the dataset and so its accuracy does not depend on
the final user of the tool: in this study the morphing error
obtained for all the mandibles of the dataset is comparable or
lower than deviations obtained in other works [55, 60] where
the same approach was implemented.

As described in the first part of the work, the 3Dmandibu-
larmodelswere all preparedwith a uniformmesh. The choice
of remeshing the mandibular geometries with a uniformly
distributed mesh was twofold: firstly, it allows limiting dis-
tortions during themorphing procedure of the templatemesh,
being itself uniform (Paragraph 2.3); second, no effects on
the shape variance captured by a specific principal compo-
nent (Paragraph 2.4) are introduced, considering that bone
regions with a high density of nodes would have a greater
weight than regions with a low density in PCs computation.
The use of a uniformmesh avoids these issues and guarantees
the meaningfulness of statistical analysis results [41].

Another aspect that has been investigated in relation to
the mesh morphing, was the selection of anatomical land-
marks used as control points. Repeatability of landmarks
selection on different mandibles was assessed through
an intra-observer reliability analysis: the ICC has been

computed for five different mandibles, randomly selected
from the dataset, for which the twenty-seven anatomical
landmarks have been recorded three times by the same
operator at four-day intervals. 3D coordinates of these points
have been analysed and for all of them excellent reliability
(ICCs > 0.9) was assessed.

The main modes of deformation of the mandibular bone
have been assessed as result of the principal component anal-
ysis performed over a combined training dataset of forty
mandibles, obtained from CT scan 3D reconstruction. This
analysis has shown that the first four principal components
are able to capture the 57%of the total variance of the dataset,
while 29 PCs are required if the 98% of the explained vari-
ance is sought. First PCs account for the most of the variation
of the mandibular shape, and the main modes of deforma-
tion associated to the first four principal components have
been investigated varying from − 3 to + 3 standard devia-
tions (

√
λi ). A direct comparison between the average shape

and the deformed shape based on each principal eigenvec-
tors as well as corresponding colormaps have been generated
(Fig. 6): a uniform change of size of all the mandible geom-
etry is associated to the first PC, while more localised varia-
tions can be identified for PC2, PC3 and PC4. A physiological
asymmetry of the mandibular bone has been proved to char-
acterise also the morphology of healthy bones, as a result, for
example, of the masticatory muscles size and action [61–64],
and this aspect seems tobe capturedby the third and the fourth
modes, that exhibited a slight asymmetry in shape’s defor-
mations between left and right side of the mandibular body.

Results obtained from the analysis of principal modes
have been comparedwith results found in similar studies [25,
26], where a higher number of mandibles was available for
the statistical analysis (65 and 60 mandibles respectively).
Modes of variation identified in the present study, using a
combined dataset, are in agreement with those highlighted
by the male SSM analysed in [25], where both combined and
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gender based SSM were generated, revealing that the model
here proposed is able to better capture and represent varia-
tions related to male mandibles. This result was expected,
considering that a predominance of male shapes was used
for the statistical analyses (27 male mandibles in the training
set). Following these outcomes, as completion of this work a
second SSM was built limiting the training and control sets
to the male mandibles available in the datasets (27 and 7
geometries respectively). Analysing the first four principal
components, the same main modes of deformation as in the
combinedmodel were found, with the exception of the fourth
PC which appeared to be much more related to stretch and
shortening of the coronoid process in the superior-inferior
direction. Furthermore, the male SSM model is more com-
pact than the original one: four PCs describe the 61% of the
total variance and 20 PCs account for the 98% of the shape
variability, in accordance with results obtained by [25].

From the feature selection analysis an optimal combi-
nation of five measurements has been identified (left body
length, mandible and bicondylar widths, right gonial angle
and right ramus height), with an associated average error of
2.79 ± 0.57 mm. A more detailed analysis of the average
error distributions (Fig. 8) showed that the coronoid process
is the most critical area to reproduce whenever is the num-
ber and the combination of features considered; this result
stems from the fact that no external features directly related
to the coronoid process have been considered, due to the fact
that no facial measurements are able to provide useful infor-
mation on the geometry of this region. If a more detailed
prediction of this area is required, the use of X-Ray imaging
techniques shouldbe considered in order to obtain hard-tissue
landmarks (i.e., the most superior point of the coronoid pro-
cess, mandibular notch) and measurements able to describe
the coronoid process area.

Beyond this, it can be observed that different fea-
tures combinations generate better predictions in different
mandible regions. Groups of features between l1 and l4
provide a worst estimation of the condylar and gonial angle
regions, while from l6 on, the coronoid process and the ramus
regions are affected by the highest errors. This is the reason
why the average errors associated to l12 are comparable to
those of the first two combinations: maximum errors on the
coronoid process generates higher average errors, even if
the deviation between the actual and the predicted shapes in
the central area is low and comparable to those provided by
other combinations. From this follows that if some specific
mandibular regions are of most interest a different feature
combination than l5 might be more appropriate to obtain
a more refined prediction. As general rule, the first six
combinations provide a better estimation of the condylion
and coronoid processes and ramus posterior region, while
the last six allow better estimating the gonial angle region
and the frontal part of the mandibular body.

If the sameanalysis is repeated for themaleSSM, again the
combination l5 resulted in the minimum average error (2.45
± 0.57 mm), with an improvement in the shape estimation
of about 12%; moreover, this configuration is characterised
by a minimum local deviation of 1.04 mm and a maximum
local deviation of 4.72 mm, improving the corresponding
parameters of the combined SSM of 33.8% and 2.3% respec-
tively. The same general trends in shape prediction as for
the combined SSM are confirmed, with the difference that
combinations from l4 to l8 are able to provide a much better
estimation of themost of themandibular body, ramus regions
and condylar processes, while combination with a higher
number of features provideworst approximations of the coro-
noid process, withmaximum average errors up to 6mm (l12).
Overall, this allows reducing the estimation error between
the original combined and the male SSMs when the same
control mandible is considered (male control mandible); this
improvement can be appreciated by consulting the figures
provided in the Supplementary Material (Online Resource
1), where average error distributions for the different lg com-
binations is reported.

A combined training set with both male and female
mandibles has been used in this work in order to maximise
the number of shapes available for statistical analyses.
Despite its combined nature, the features-based SSM model
was proved to be able to capture main modes of deformation
of the mandibular shape, as emerged from the comparison
with previous studies, and to generate new predicted shapes
with average errors around 2.8 mm, comparable to those
obtained from SSM based on higher number of mandibles
(1.5 mm [25]); moreover, the model was able to provide the
same level of prediction for both male and female mandibles
within the control set (Fig. 9). Results shown in Fig. 9 have
also pointed out that one of the mandibles of the control
set (female mandible M2) is characterised by the highest
deviation between the real and predicted geometry (average
error 5.5 mm) and this was due to the peculiar morphology
of this mandible (Fig. 10a). If this mandible is excluded from
the control set and the average error distribution analysis is
repeated, the same optimal combination of five features is
identified but lower average errors are found: with reference
to the best combination l5, the μεk parameter becomes
2.48 ± 0.52 mm and it is comparable to the male SSM
corresponding value.

Even if the gender-based SSM (male SSM) certainly
allows to further reduce the prediction error, the com-
bined SSM here developed could represent a useful tool for
mandibular shape prediction, also when a geometry recon-
struction of partial bones is required (Fig. 11b).

One of the main critical points when working with sta-
tistical shape models is the availability of a high number of
shapes; this aspect is much more critical when the objec-
tive is to analyse bones geometries, due to difficulties related
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to retrieving medical data (i.e., CT scans). The greater the
number of shapes the more the results obtained from the
statistical analysis can be generalised. Despite results here
presented may be considered preliminary, due to the lim-
ited number of mandible available, this study has allowed
setting up a full procedure for the prediction of new bone
geometries and relating main shape’s variations to external
morphometric features, highlighting potential and criticisms
of this geometrical modelling approach.

The assessment of the SSM proposed in this work was
based on geometric considerations in terms of accuracy of
predicted shapes, that is the deviation between the predicted
geometry and themandible 3Dmodel reconstructed fromCT
scans. As result of this analysis, it was possible to assess how
the use of different combinations of input features affects
the shape’s prediction in terms of overall and region-specific
geometric accuracy. This validation approach was here con-
sidered in view of different possible applications of the 3D
models predicted by feature-based SSM.Among these, those
of greatest interest are represented by customised design of
prostheses or medical devices based on the patient-specific
bone geometry; finite elements analyses for evaluating the
interaction between medical devices (i.e., mandibular plates,
dental implants) and the bone; multibody analyses for the
assessment of the mandible functionality (i.e., kinematic
analyses for range of motions evaluation). Each of these
applications deserve a specific validation analysis, beyond
the geometry accuracy assessment; indeed, it is clear that
parameters chosen for the model’s assessment depends also
on the final purpose of the model itself. In this work the
geometrical analysis was chosen in order to provide a general
assessment of the proposed methodology. From the results
here presented, it is possible to establish the most suitable
combination of features to obtain an accurate prediction of
the whole mandible or of specific bone regions and these
information can be used to guide the creation of the predicted
geometry based on its final use; these outcomes will be
investigated with different validation analysis for more
specific applications in future development of the model.

From the inter-observer reliability analysis performed on
the morphometric measurements, it can be stated that the
results obtained in this work can be considered as indepen-
dent of the final user collecting the morphometric features.
In order to completely generalise the SSM model for rou-
tine clinical use, future activities will involve recording the
investigated features directly on real subjects.

5 Conclusions

A comprehensive tool for the prediction of subject-specific
3D models of the human mandible was generated, trying
to take one step forward in statistical shape models of the

mandibular bone, thanks to the correlation between the sta-
tistical variations of the mandible’s shape andmorphological
external measurements directly used as input to the model.
The advantages of this statistical shape approach are twofold:
first of all, it allows generating 3D subject-specific geome-
tries without having to resort to expensive and not always
available imaging techniques, but only requiring a limited set
of morphometric features; in addition to this, the resolution
of the mesh correspondence problem with the mesh morph-
ing method makes it possible to generalize patient-specific
procedures, thanks to the straightforward identification of the
same anatomical points among different geometries.

A gender-combined SSM was developed and results
here obtained were promising: predicted mandibles have
been found to have low deviations from the original ones,
with no relevant differences due to gender. Moreover, this
tool could represent a support when pathological or partial
mandibular bones are considered, being the model able to
predict the whole mandible geometry by providing a statis-
tically reliable estimation of missing parts. This modelling
approach can represent an aid for pre-operative planning or
for design of prosthetic devices for large bone portions. In
this research the attention was focused on the definition of
a methodology for the creation of subject-specific models,
relating shape variations to morphometric features. In the
future activities, this approach will be integrated into a wider
interactive design framework, with the aim of replacing 3D
model generation from imaging techniques. Moreover, the
number of mandibles involved in the statistical analyses will
be increased collecting new CT scans for both male and
female bones and focusing on the creation of more refined
gender-based models.
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