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Abstract
In this paper, authors used the integrated approach of grey-adpative neuro fuzzy inference method to optimize the multi-
performance characteristics of tungsten carbide alloy abrasive-mixed EDM. To conduct experiment, 4-input parameters;
(1) pulse duration, (2) pulse-off time, (3) current, (4) abrasive were considered to investigate the enhancement of multi-
performance attributes. The proposed approach uses Taguchi’s L27 orthogonal array design with main component analysis,
gray and gray-adpative neuro fuzzy inference method approach to obtain optimal solution, as well as handling the uncertainty
factor associated with multi-input and discrete data. In all 27 tests, values of gray conceptual grades and gray adaptive
grades of the neuro-fuzzy inference system are obtained. Comparison of gray and gray-ANFIS grades was made using a
fair system comparison (sum of differences in ranking) methodology. In addition, variance analysis is performed on gray
relational grades and gray adaptive inferencemethod grades of neuro-fuzzy to classify themajor contributing input parameters
that may affect the multi-performance characteristics. Finally, theoretical prediction is made to check that the performance
characteristics obtained by proposed methods are improved. Finally, the results are confirmed by performing, respectively,
validation experiments with optimal factor combination. The results of this research have shown that pulse-on time and
abrasive have the most important effect on the rate of material removal and tool wear for tungsten carbide alloy abrasive-
mixed electrical discharge machining. Use by scanning electron microscope and X-ray diffraction is carried out to investigate
the effects of the WC-Co graphite powder-mixed EDM.
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Abbreviations

PM-EDM Powder mixed electrical discharge machining
TWR Tool wear rate
MRR Material removal rate
GRA Grey relational analysis
GRG Grey relational grade
NN Neural networks
G-ANFISG Grey adaptive neuro-fuzzy inference system

grade
C Graphite
Al2O3 Aluminum oxide
ANOVA Analysis of variance
MPCs Multi-performance characteristics
MCDM Multi-criteria decision making
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ro,i (k) Grey relational coefficient
γ Grey relational grade
α Grey adaptive neuro-fuzzy inference system

grade
DOF Degree of freedom
SSj Sum of square
MSj Mean of square

1 Introduction

Tungsten carbide (WC) and its alloys, gain their application
in the manufacturing industry for making different kind of
tools and dies. The reason for that is its anti-erosion prop-
erty at high temperatures with high compressive strength [1].
Owing to these properties, microstructure of WC is consists
of very hard phases, which do not permit machining with
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conventional machining methods. Its machining is possible
only with non-convention machining methods. Advanced
machining technology such as electro-chemical machining
or electrical discharge machining can only machine a hard
microstructure of this type. EDM is considered as the best
method to machine WC. EDM can machine WC and its
alloywith comparatively highprecision thanothermachining
methods [2–4]. However, the main limitations of the EDM
process concerned with difficult-to-machine (DTM) mate-
rials are (a) material removal rate (MRR) is slow, (b) high
machining cost, (c) surface finish is poor, (d) surface cracking
occurs upon the surface of some materials as their affin-
ity to become brittle at room temperature, especially when
high energy pulse is used. In literature, various authors have
worked upon these limitations and suggested the number of
ways to handle these problems.

For instance,Mahdavinejad andMahdavinejad [3] in their
study analyzed EDM variability in machining WC-Co and
also introduced themeasures to manage it. Kanagarajan et al.
[5] studied the machining characteristics ofWC-Co by using
EDM and analyzed that EDM is effective to machine the
WC-Co, due to its good electrical conductivity, besides it also
have some noticeable effects on surface of workpiece during
machining which further needs investigation. Lin et al. [1]
and Amorim et al. [6] analyzed the response characteristics
for the EDM of WC-Co, whereas as Lin et al. [1], observed
surface cracks on WC ceramic specimen when level of elec-
trical discharge energy was set to a high level. Lajis et al.
[7] studied the connection between WC ceramic and EDM
with graphite electrode. The study revealed that, while the
peak current affects TWR and surface roughness (SR) signif-
icantly, the pulse duration mainly affects MRR. Assarzadeh
and Ghoreshi [8] and Kung et al. [9] conducted statistical
modeling and process parameter optimization for WC-Co’s
EDM. While EDM can shape the WC, according to Peurtas
et al. [10] EDM’s efficiency for WC machining is currently
unfit for modern industrial applications. During the EDM of
WC, instability and crack formation upon the EDM surface
is observed [3, 11]. To eliminate these limitations, authors
Kumar et al. [12], Tzeng and Lee [13] and Kansal et al. [14]
used abrasive mixed EDM process. The addition of abrasive
found advantages in increasing workpiece MRR, better sur-
face roughness with less cracks and a surface with increased
wear and corrosion resistance [14, 15]. Kung et al. [9] used
Al abrasive into the dielectric fluid to improve the stability of
process and concluded that conductive Al powder effectively
disperses the discharging energy, resulting in improvement
of MRR.

It is still used in industry at a very slow pace, given the
good results of the PM-EDM process, according to Kumar
et al. [12], and therefore needs further investigations for the
machining of super-alloys. Sharma and Singh [16] presented
a thorough analysis on “Effect of Powder Mixed Electri-

cal Discharge Machining (PM-EDM) on Difficult Machine
Materials-a Systematic Literature Analysis.” From the study
it is noted that different researchers from the last few decades
are trying to develop the EDM process, its method aimed at
making the process more robust and efficient for the machin-
ing of WC alloys and various materials that are difficult
to machine. However, as is evident from the Mahdavinejad
and Mahdavinejad literature [3], by inserting powders into
the dielectric fluid, the process stability and performance of
EDM can be improved. To this end, authors in the present
work have analyzed the output characteristics of WC’s PM-
EDMusing powders C and Al2O3. Assarzadeh and Ghoreshi
[8] performedWC’s pureEDMand showed the pulse-on time
and has amajor impact on response characteristics at present.

The relationship between WC alloys and PM-EDM pro-
cess parameters is very complex as is evident from the
literature survey. Most of the optimization approaches have
issues with correlatedMPCs in order optimization. However,
in recent times the researchers [17, 18] are using main com-
ponent analysis (PCA) to solve the problem of correlation.
Furthermore, researchers used variousmethods, such asGrey
Relational Analysis (GRA) [19], Fuzzy Logic [20], Neural-
Network (NN) [21], Analytic Hierarchy Method (AHP)
[22], Genetic Algorithm (GA) [23], to tackle multi-criterion
decision-making problems (MCDM) related to optimum fac-
tor selection in EDMmodels. Some of the authors have used
NN-based models to predict process performance character-
istics among soft computing methods [21, 23–26]. Although
in modeling the manufacturing process NN is superior to
the statistical models available in literature, the accuracy
depends on broad data sets. In the case of industrial pro-
cesses with complex behavior, neural network often cannot
predict process characteristics. Therefore, fuzzy logic has
to be necessarily applied for modeling the complex process
behavior [26]. For this reason, a soft computing approach
called the adaptive neuro-fuzzy inference system (ANFIS)
is used to model a complex process [27, 28], as it is dif-
ficult to construct the base of fuzzy rules and membership
function design where expert elicitation is required. ANFIS
also finds its application to help decision-making including
modeling of tool wear during turning process [29], thermal
errors in machine tools [30]. This inspired authors to use
ANFIS approach [30] for modelling and predicting tungsten
carbide alloy powder-mixed EDM process primarily, since it
uses artificial neural network numeric properties to balance
rule-based fuzzy logics.

Thus, the study deduced following research objectives:

1. To develop a computational system to conduct parametric
optimization of multi-performance.

2. Application of unknown, multiple input and discrete data
sets to apply gray and Gray-ANFIS method.
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3. Find the optimal process factor settings for abrasive
mixed-EDM of WC alloy which helps to offer under-
standing into manufacturing based applications and
research held in academics.

4. Compare both the optimization techniques using a novel
method called sum of ranking differences to analyze
which optimization method is more capable to handle
this multi-objective optimization problem.

5. To create and analyze the consistency of the data obtained
through suggested approach by regression modeling.

6. Analyze theoretical predictions and perform confirma-
tion of experiments for validation.

This research paper is structured as follow: Sect. 1 pro-
vides a basic introduction related to the subject, Sect. 2
elaborates the framework information. The organization of
this paper as follows: Sect. 1 introduces the subject, Sect. 2
contains the framework information. Implementation of the
new system is discussed in Sect. 4. Section 5 describes theo-
retical prediction experiments and confirmation experiments.
Section 6 contains result information and discussion; finally
Sect. 7 presents’ research conclusions.

2 Basic framework for PM-EDM
and optimization of WC alloy process
parameters

The proposed structure, as illustrated in Fig. 1 and discussed
below, consists of three sections:

2.1 Part-1 [problem identification]
1. The first section demonstrates the applicability of EDM

(from traditional EDM to abrasive-mixed EDM) when
machining materials that are difficult to process. As indi-
cated by previous studies, abrasive can improve process
efficiency and stability [15, 16], this study usedPM-EDM
method for WC alloy machining.

2.2 Part-2 [parameter selection
and experimentation]

1. Input parameters and rates to be used for the present study
are selected based on the pilot experiments.

2. Taguchi L27 orthogonal array is used for experimental
design.

3. MRR and TWR are calculated using Eq. (7) for all the
27 experiments.

2.3 Part-3 [data analysis and optimization]

1. The association between the output characteristics is
measured by a coefficient of computational association.

2. Optimization of multi-performance features is applied
using a black and gray adaptive approach to the neu

3. Comparison of both grey and Grey-ANFIS approach
using sum of ranking differences method

4. ANOVA is performed on GRG and G-ANFISG data to
determine the most relevant factors that may affect the
MPCs. Additionally, regression models are developed to
determine model fitness.

5. The results of both GRG and G-ANFISG are compared
and optimal combination of parameters for PM-EDM
from WC alloy is obtained.

6. To verify the results, experiments are performed with
theoretical prediction and confirmation.

7. Performing PCA based grey relational analysis
8. First experiments are performed as per the Taguchi L27

OA experimental design and desired number of multiple
output responses i.e. MRR and TWR are obtained.

Normalization of the data is performed by using Eqs. (1)
and (2) and multiple performance characteristics i.e. MRR
and TWR are correlated with each other by performing a
correlation test by using Eq. (3).

• Lower-the- better (LTB)

x∗
i (k) � max x0i (k) − x0i (k)

max x0i (k) − min x0i (k)
(1)

• Higher-the-better (HTB)

x∗
i (k) � x∗

i (k) − min x0i (k)

max x0i (k) − min x0i (k)
(2)

Where xi*(k) indicates the value after grey relational gener-
ation, max xi0 (k) and min xi0 (k) shows largest and smallest
value of xi0 (k) respectively and x0 indicates the desired
value.

Test correlation between the MPCs

ρ jk � Cov
(
Q j,Qk

)

σQ j × σQk

(3)

where ρjk s the correlation coefficient between MPCs and
Cov

(
Qj, Qk

)
s the covariance of MPCs.

(a) If correlation exists between the MPCs, then calculate
the principal component score following a procedure
detailed in Su and Tong [31], as shown in Eq. (4)
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Fig. 1 Flowchart for evaluation of tungsten carbide alloy for PM-EDM

Yi (k) �
n∑

j�1

X∗
i ( j)βk j , i � 0; 1; ...;m; k � 1; 2; ...; n

(4)

where the key component score of the kth element in the ith
series is the normalized value of the jth element in the ith
sequence and is the proper vector’s jth element.
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(b) If no correlation exists between the investigated MPCs,
calculate the grey relational coefficient by using Eq. (5).

r0,i(k) � �min(k) + ζ.�max

�0,i(k) + ζ.�max
(5)

Where r0,i(k) s the Grey relational coefficient

�0,i (k) �
{ ∣

∣X∗
0(k) − X∗

i (k)
∣
∣, no significant correlation between quality characteristics

|Y0(k) − Yi (k)|, there is significant correlation between quality characteristics

�max �
⎧
⎨

⎩

max
i

max
k

∣∣X∗
0(k) − X∗

i (k)
∣∣, no significant correlation between quality characteristics

max
i

max
k

|Y0(k) − Yi (k)|, there is significant correlation between quality characteristics

�min �
⎧
⎨

⎩

max
i

max
k

∣
∣X∗

0(k) − X∗
i (k)

∣
∣, no significant correlation between quality characteristics

max
i

max
k

|Y0(k) − Yi (k)|, there is significant correlation between quality characteristics

where r0,i(k) s the relative difference of kth element
between sequence X i and the comparative sequence X0

(also called as grey relational grade), and �0,i(k) s the
absolute value of difference between X0(k) and X i(k),
Note ζ is a distinguishing coefficient, and its value is
between 0 and 1. In general, it is set to 0.5 [18].

After calculating the GRC, the GRG is determined by Eq.
(6).

γj � 1

m

m∑

i = 1

ξi(k) (6)

γi is the GRG for the ith experiment and ‘m’ is the number
of responses.

Performing prediction with grey adaptive neuro-fuzzy
inference system.

1. Construction of ANFIS model.
2. This includes selection of input variables, selection of

input membership number/type functions (MFs), and
generation of fuzzy rules, premise and conclusion of
fuzzy rules, selection of initial MF parameters.

3. Testing of the training and data patterns to construct an
ANFIS model. These data patterns consist of ANFIS
model inputs and expected output (grade Gray-ANFIS).

3 Briefing of PM-EDM process
and experimental details

3.1 Powder-mixed EDM process details

The experimental setup for PM-EDM process is shown in
the schematic diagram in Fig. 2. As the powder should not
reach into the oil tank, a separate container was used for

mixing of abrasive into the dielectric fluid. A stirrer is used
to mix the abrasive continuously in the working tank. In this
work, RC type of generator has been used in the electrical
dischargemachine.Avoltage of 80–320V is applied between
the device and theworkpiece in abrasivemixed EDMmethod
to produce an electric field of 105 to 107 V/m.

Under the influence of such a highpotential intensity, abra-
sive particles mixed into dielectric fluid become charged,
get accelerated, form a zigzag chain between the tool and
workpiece, due to the chain formation, bridging effect is
there between both the electrodes and as a result, the dielec-
tric fluid’s gap voltage and insulating strength decreases
and the “series discharge” begins under the electrode field.
Increase in frequency of discharging, causes the faster ero-
sion from the work surface. Further adding abrasive modifies
the plasma channel; resulting in uniform discharge, which
causes the uniform erosion from the workpiece surface [12].

3.2 Experimental details

Tungsten carbide alloy with dimensions of
90 mm/60 mm/10 mm is the workpiece material used
in this analysis. The workpiece composition is W � 65.50,
Cu � 3.66, Nb � 4.69, Co � 10.07, Ti � 15.47. With
the introduction of two separate abrasives i.e. graphite and
alumina in the EDM liquid, the Electrolytic Copper method
with dimensions f � 17 mm is used for the machining of
work parts. To stop introducing the abrasive into the filtering
system, a tank with a capacity of 10 liters on which a stirrer
is installed to constantly shake the abrasive in the box with
a heavy duty regulator regulating the rpm.

3.2.1 Machining performance measurement

TheMRRandTWRaremeasured after each run to determine
the efficiency of the PM-EDMmachining by determining the
difference betweenboth the initialweight and thefinalweight
of the sample, after processed by PM-EDM under a given set
of conditions as shown in the Eq. (7):

MRRor TWR � Wi − W f

ρ × t
× 1000mm3/min (7)
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Fig. 2 Schematic diagram of powder mixed electrical discharge machining process setup

Wi � Current weight of sample in g, Wf � Final weight
of sample in g, t � Time period of trials in min, ρ � Density
of the sample in g /cm3.

MRR and TWR are measured using a weighing machine
with least count as 0.001 g.

3.2.2 Process parameters settings and their levels

In this experimental work, 4-input parameters i.e. pulse-on
time, pulse-off time, current and abrasives at three levels are
used to study the 2-output responses i.e. MRR and TWR as
shown in Table 1. The selection of parameters is based on
findings from literature [1, 3, 6–11] that are commonly used
in EDM research. The descriptions of certain constant input
parameters used in experimental research are also given in
Table 1.

As the degree of freedom is given by K-1 for each factor,
then the total degree of freedom is 9, 8 due to 4-input parame-
ters with 3-levels and 1 for the overall mean; then, according
to Ross [32], L27 orthogonal array used to handle all these
variables. The experiments are conducted based on the L27
OA experimental design and the MRR and TWR values are
determined using the Eqs. (7) and (8). The results are shown
in Table 2.

4 Implementation of proposed framework

After research, further method will be to optimize the multi-
response attributes of WC alloy PM-EDM. To optimize the
MPCs with a gray and grey-ANFIS method, continue with

the normalization ofMRR andTWRdata as shown in Table 2
and the response correlation has been checked as to whether
or not the MPCs are correlated. The association between the
MRR and TWR was found to correlate negatively with a
value of − 0.210. This indicates that variable responses are
not associated with one another. But, if positive correlation
exists between them, then in order to eliminate the response
correlation, principal component analysis (PCA) has to be
implemented to check the independent quality indexes called
scores. Therefore, evaluating the principal component score
(PCS) is not mandatory here. Further step is to implement the
grey relational analysis and then ANFIS prediction approach
directly by neglecting the steps for principal component anal-
ysis. The steps for this approach are depicted in Sect. 2 and
are described as follows.

4.1 Grey relational analysis

The original values of response characteristics i.e. MRR &
TWR are getting normalized using Eqs. (1) and (2) respec-
tively. In addition, Eq. (5) is used to achieve a coefficient
of gray relationship for both the responses and Eq. (6) is
used to obtain the gray relational grade (GRG) determined by
summing the gray relationship coefficient value of MRR and
TWR; further divide the total output number (GRC average).
The GRCs and GRG information for all 27 are provided in
Table 3. Experiment No. 24 indicates amaximum benefit, i.e.
GRG 0.7637, meaning experiment No. 24 provides an opti-
mum combination of all parameters, i.e. pulse-off (50 μs),
pulse-on (100 μs), abrasive (C) and current (9 A), to achieve
higher MRR and minimum TWR. Table 4a shows the gray
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Table 1 Variant and fixed settings/level variables

Sl. no Machining parameters Units Symbol Levels Reason for selection

Level-1 Level-2 Level-3

Varying input parameters

1 Pulse-off time μs A 10 50 75 Range available in the EDM literature
i.e. Lin et al. [1] (p-on time,
3–500 μs; current, 1–9 A; tool, cu),
Assarzadeh and Ghoreshi [8] (p-on
time, 25–125 μs; current, 1–5 A),
Kung et al. [9] (P-on time,
100–200 μs; abrasive conc.,
10–20 g/l)

Based upon the initial trial test
performed before final
experimentation and capability of
machine

2 Pulse duration μs B 15 50 100

3 abrasives A C graphite alumina Simple oil (−)

4 Current – D 3 6 9

Fixed input parameters

1 Open circuit voltage V 135±5%

2 Polarity (+/−) Positive

3 Tool – Copper

4 Machining time Min 10

5 Powder concentration g/l 15

relational response grade values; the arrowvalue (*) indicates
the best or optimum amount for each variable. It means that if
the process parameters maintain pulse-off time at level-2 i.e.
0.5813, the pulse-on time will be maintained at level-3 i.e.
0.6643, the powder will be maintained at level-1 i.e. 0.6287
and the current will be maintained at level-3 i.e. 0.6315 when
maximum output is produced. In Table 4a, max–min column
indicate that pulse-on is the most significant factor among
4-input variables.

4.2 Adaptive neuro-fuzzy inference system

The 5 layered modeling of the PM-EDM is developed with
ANFIS model. The nodes in each layer are having its node
function. The nodes of the previous layer act as input of the
next layer. The model procedure is illustrated by considering
the, two inputs and one output i.e. (x, y) and (fi) respectively
[33]. The rule proposed by Takagi–Sugeno containing fuzzy
if-then is used for the present modeling.

In each layer the node functions as shown in the Fig. 3 Is
illustrated below.

1. Adaptive nodes, meaning by squares, define the param-
eter sets that can be modified in those nodes.

2. Specified nodes, denoted by circles, represent the set of
defined parameters within the scheme.

Steps used in “grey-adaptive neuro fuzzy inference sys-
tem” study are as follows:

• Formodeling this process, first fuzzy logicmodel has been
derived.

• The data received after the normalization process of grey
relation analysis has been used for modeling process.

• Further, the modeling process needs to select input vari-
ables and various membership functions (MFs) to these
input variables.

• This work used for different membership functions for
testing, the values of root mean square error for various
MFs are trapezoidal function (0.3348), gaussian function
(0.3838), triangular function (0.4245) and generalized bell
function (0.2099).

• From these different membership functions, the general-
ized bell function is used in this study (as it has minimum
value).

Below Fig. 4a shows the flowchart for the information
regarding the various steps involved in ANFIS modeling
method. Further, Fig. 4b elaborates the functioning of vari-
ous 5 layers used inside the ANFIS model for the processing
of data. At last the details used for ANFI method is provided
in Table 5 respectively.

Total 100 epochs are used formodeling and for training the
data set used to train for ANFIS data. Whereas the effective-
ness and accuracy of data set was checked during the testing
of data set. Initially, differentMFs have beenmade byANFIS
technique during training session for both the output response
characteristics. In sequence, by using error correction train-
ingmethod, themembership functions are getting turned.The
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Table 2 L27 orthogonal array experimental design and experimental results

Sl. no Pulse-off time,
μs

Pulse duration,
μs

Abrasive Current, A MRR value,
mm3/min

TWR value,
mm3/min

MRR,
normalized
value

TWR,
normalized
value

1 10 15 Graphite 3 1.569 0.674 0.038 0.805

2 10 15 Alumina 6 2.463 0.712 0.117 0.778

3 10 15 – 9 1.672 0.878 0.048 0.662

4 50 15 – 3 2.015 0.984 0.066 0.588

5 50 15 Graphite 6 2.321 0.692 0.105 0.792

6 50 15 Alumina 9 4.202 0.789 0.270 0.724

7 75 15 Alumina 3 1.224 1.153 0.008 0.469

8 75 15 – 6 1.126 1.422 0.000 0.282

9 75 15 Graphite 9 5.542 0.528 0.388 0.907

10 10 50 Alumina 3 1.138 0.395 0.001 1.000

11 10 50 – 6 2.457 1.248 0.117 0.403

12 10 50 Graphite 9 6.889 0.485 0.507 0.937

13 50 50 Graphite 3 9.955 1.826 0.776 0.000

14 50 50 Alumina 6 7.421 1.112 0.544 0.498

15 50 50 – 9 9.542 1.041 0.740 0.548

16 75 50 – 3 3.145 0.648 0.177 0.823

17 75 50 Graphite 6 8.231 0.688 0.625 0.795

18 75 50 Alumina 9 6.102 0.861 0.437 0.674

19 10 100 – 3 7.884 0.791 0.594 0.723

20 10 100 Graphite 6 11.246 0.861 0.890 0.674

21 10 100 Alumina 9 11.112 1.109 0.878 0.501

22 50 100 Alumina 3 6.664 0.622 0.487 0.841

23 50 100 – 6 11.426 0.861 0.906 0.674

24 50 100 Graphite 9 12.491 1.036 1.000 0.552

25 75 100 Graphite 3 6.102 0.528 0.437 0.907

26 75 100 Alumina 6 9.744 1.1248 0.758 0.490

27 75 100 – 9 10.782 0.944 0.849 0.616

mean square error value is 0.0134 and 0.1368 respectively
for both preparation and evaluation stages. The experimental
and the ANFIS model predicted values are given in Table 3.

The experimental values and the ANFIS model values are
given in Table 3. Out of the twenty seven different experi-
mental efforts, twenty fourth shows the rank 1 on the basis
of different grade calculations and the predicted value by
G-ANFISG is 0.773. Also the pulse duration and pulse-off
time of the same experiment is 100 μs and 50 μs, abra-
sive is graphite and current is 9A is optimal respectively.
From GRG and G-ANFISG Response Tables i.e. Table 4a,
b demonstrate that if pulse-off is maintained at level-2 i.e.
50 μs (0.5992), the pulse duration is maintained at level-3
i.e. 100μs (0.6735), the abrasive is maintained at level-1 i.e.,
the abrasive graphite(0.6541) and the current is maintained
at level-3 i.e. 9A (0.6261).

4.3 Comparison and validation of optimization
techniques

To compare the calculated grey relation grade and Grey-
ANFIS grade authors implement a very noble method sum of
ranking differences (SRD) invented by Heberger [34]. This
is a fair method comparison technique which helps to com-
pare the difference between the rankings obtained through
two methods. According to Heberger and Kollar-Hunek [35]
the proximity of the SRD values indicates similarity to the
models, but broad variance would indicate dissimilarity. The
data used for comparison is shown in Table 6, where aver-
age of both GRG and G-ANFISG has been calculated. These
values are further used to show the difference between both
the grade values. The sum of difference value (SRD) for this
work shows that both GRG and G-ANFISG values are simi-
lar to each other (as shown in Table 7). There is no difference
between these two values and both the methods are found
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Table 3 Gray relational coefficient values, gray relational rating and expected performance values with ranks for Grey-ANFIS

Sl. no MRR, Grey relational
coefficient, r0, i (k)

TWR, Grey relational
coefficient,r0, i (k)

Grey relational grade,
γi

Rank, GRG Predicted G-ANFIS
grade, α

Rank, G-ANFISG

1 0.342 0.719 0.530 18 0.541 19

2 0.368 0.692 0.515 20 0.540 20

3 0.344 0.596 0.470 24 0.483 24

4 0.348 0.548 0.448 25 0.461 25

5 0.358 0.706 0.532 17 0.542 18

6 0.406 0.644 0.525 19 0.535 22

7 0.335 0.485 0.490 23 0.510 23

8 0.333 0.412 0.372 27 0.422 27

9 0.449 0.843 0.646 9 0.648 10

10 0.333 1.000 0.666 5 0.676 6

11 0.361 0.456 0.408 26 0.428 26

12 0.503 0.888 0.665 6 0.693 4

13 0.691 0.333 0.512 21 0.569 15

14 0.523 0.499 0.511 22 0.536 21

15 0.658 0.525 0.591 13 0.601 12

16 0.378 0.738 0.558 15 0.566 16

17 0.571 0.709 0.640 10 0.658 9

18 0.470 0.605 0.538 16 0.546 17

19 0.552 0.643 0.597 12 0.600 13

20 0.820 0.605 0.712 3 0.738 2

21 0.804 0.652 0.652 8 0.686 5

22 0.493 0.759 0.626 11 0.638 11

23 0.842 0.605 0.720 2 0.734 3

24 1.000 0.527 0.763 1 0.773 1

25 0.470 0.843 0.657 7 0.667 8

26 0.674 0.495 0.584 14 0.590 14

27 0.768 0.565 0.667 4 0.670 7

Table 4 (a) Response table for
GRG values, (b) Response table
for the grade values of
Grey-ANFIS

Levels Input parameters

pulse-off time, μs Pulse duration, μs Abrasives Current, A

(a)

Level 1 0.580 0.503 0.628* 0.565

Level 2 0.581* 0.565 0.567 0.555

Level 3 0.572 0.664* 0.538 0.632*

Max–min 0.009 0.161* 0.091 0.058

Overall mean of GRG � 0.578, star (*) defines the optimal levels

(b)

Level 1 0.598 0.520 0.654* 0.585

Level 2 0.599* 0.650 0.584 0.573

Level 3 0.586 0.673* 0.548 0.626*

Max–min 0.013 0.153* 0.106 0.053

Overall mean of GRG � 0.594, star
(*) defines the optimal levels
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Fig. 3 Architecture of adaptive-neuro fuzzy inference system

Table 5 Details of ANFIS used in the study

Sl. no. Detail Implemented

1 Type Takagi–Sugeno

2 Fuzzy logic operator decision form
used (AND-intersection)

Product

3 Decision process applied to OR-union
logic operators

Probabilistic

4 Defuzzification process Weighted average

5 Membership functions used for input
#1

4

6 Membership functions used for input
#2

4

7 Forms of membership features Generalized bell

8 Rules used for ANFIS 16

9 Output type function Linear

10 Number of training epochs 100

significant and capable to find the optimal solution for this
problem with equal accuracy in this case.

4.4 Analysis of variance (ANOVA)

Table 8a, b demonstrate ANOVA findings for both gray
relational grade and G-ANFIS grade thus obtained. The sig-
nificant parameters of the study F-test were filtered at a 95
percent confidence interval, whereas the selected F-critical
value is 3.55 with PJ Ross [32]. In the case of gray relational

grade, pulse-on time is found to be the most significant factor
affecting performance by 47.79%, followed by abrasive by
15.82%, current by 7.05% and pulse-off time by 0.15% and
predicted grade of gray-ANFIS; pulse-on time by 47.90%,
followed by abrasive by 22.06%, current by 8.19%, respec-
tively.

4.5 Regression analysis for GRG and G-ANFIS

To model and analyze the data collected through suggested
methods, regression analysis is performed. Eqs. (8) and (9)
presents the regression equation for GRG and predicted G-
ANFISG.

Grey relational grade, γ � 0.522+0.00190×pulse on time

− 0.000100 × pulse off time

+ 0.00803 × current

− 0.0459 × abrasive

(8)

Grey - ANFIS grade, α � 0.564 + 0.00180 × pulse

− on time + 0.00691

× current − 0.0513 × abrasive

(9)

Table 9a, b shows the coefficients of parameters and effect
of parameters on regressionmodel for GRG andG-ANFISG.
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Table 6 Input matrix with 2
objects and 27 variables Experiment no. Grey relational grade, γi Predicted Grey-ANFIS grade, α Average Rank

1 0.520 0.541 0.536 19

2 0.516 0.540 0.528 20

3 0.471 0.483 0.477 24

4 0.449 0.461 0.455 25

5 0.533 0.542 0.537 18

6 0.526 0.535 0.530 21

7 0.490 0.510 0.500 23

8 0.373 0.422 0.397 27

9 0.646 0.648 0.647 10

10 0.667 0.676 0.671 5

11 0.409 0.428 0.418 26

12 0.666 0.693 0.679 4

13 0.512 0.569 0.541 17

14 0.511 0.536 0.524 22

15 0.592 0.601 0.596 13

16 0.558 0.566 0.562 15

17 0.64 0.658 0.649 9

18 0.538 0.546 0.542 16

19 0.598 0.600 0.599 12

20 0.713 0.738 0.725 3

21 0.653 0.686 0.669 6

22 0.626 0.638 0.632 11

23 0.720 0.734 0.727 2

24 0.764 0.773 0.768 1

25 0.657 0.667 0.662 8

26 0.585 0.590 0.587 14

27 0.667 0.670 0.669 7

Both values R2 (79.38) & R2adj. (75.40) for GRG and R2

(88.91%) & R2adj. (82.31%) for G-ANFISG which shows
that data fits well in the model. Figure 5a, b represent the nor-
mal probability plot of the GRG and G-ANFISG residuals.
From the figure, residuals fall on a straight line which shows
that the errors are normally distributed. Further to test for
lack of fit, ANOVA is performed for both the GRG and G-
ANFISG and is given in Table 10a, b, respectively. Thus for
both output responses i.e., the model evaluated by the regres-
sion analysis is acceptable at α level 0.05. GRG-G-ANFISG.
Even as Durbin J shows, the Durbin-Watson statistics index
for GRG is 2.2635 and for G-ANFISG is 2.3553, which is in
the range of 1.50–2.50 And G.S. Watson [36].

5 Theoretical hypotheses and observation
confirmations

To improve the output characteristics, the optimum level of
the machining parameters calculated using the theoretical

and experimentalmethod is applied.Theoptimummachining
parameter level, calculated using following Eq. (10).

α̂ � αm +
q∑

j = 1

(αj − αm) (10)

whereαm �Average of grey-ANFISgrade values,αj �Mean
of the grey-ANFIS grade at the optimum level, q � Number
of influential parameters which affect MPCs significantly.

The theoretical prediction (as shown in Table 11) indi-
cates the experimental and expected value associated with
MRR, TWR, GRG and Grey-ANFISG for optimummachin-
ing parameter combination (A2 B3 C1 D3). It can be noticed
that the predicted combination values are greater than initial
experimental values.

However, there is a strong agreement in the values between
the theoretically expected and real experimental value for the
grades gray and Gray-ANFIS. From the test, the G-ANFISG
value was found to be higher than the optimal experimental
GRG value. This shows that the G-ANFISG is ideal for opti-
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Table 7 Calculation of ranks,
differences between the absolute
values

Experiment no. Average Rank V1 Rank1 Diff1 V2 Rank2 Diff2

8 0.397 1 0.4 2 1 0.4 1 0

11 0.418 2 0.4 3 1 0.4 2 0

4 0.455 3 0.4 1 2 0.5 6 3

3 0.477 4 0.5 6 2 0.5 5 1

7 0.500 5 0.5 9 4 0.5 9 4

14 0.524 6 0.5 11 5 0.5 10 4

6 0.530 7 0.5 8 1 0.5 8 1

2 0.528 8 0.5 5 3 0.5 4 4

1 0.536 9 0.5 4 5 0.5 3 6

5 0.537 10 0.5 7 3 0.5 7 3

13 0.541 11 0.5 10 1 0.6 13 2

18 0.542 12 0.5 12 0 0.5 11 1

16 0.562 13 0.6 15 2 0.6 15 2

26 0.587 14 0.6 19 5 0.6 18 4

15 0.596 15 0.6 14 1 0.6 14 1

19 0.599 16 0.6 17 1 0.6 16 0

22 0.632 17 0.6 18 1 0.6 17 0

9 0.647 18 0.6 13 5 0.6 12 6

17 0.649 19 0.6 16 3 0.7 21 2

25 0.662 20 0.7 25 5 0.7 25 5

27 0.669 21 0.7 26 5 0.7 26 5

21 0.669 22 0.7 23 1 0.7 23 1

10 0.671 23 0.7 20 3 0.7 19 4

12 0.679 24 0.7 21 3 0.7 20 4

20 0.725 25 0.7 22 3 0.7 22 3

23 0.727 26 0.7 24 2 0.7 24 2

24 0.768 27 0.8 27 0 0.8 27 0

Total 68 68

Table 8 (a) ANOVA for grey
relational grade, (b) ANOVA for
the level of grey-adaptive neuro
fuzzy inference method

Factors DOF SSj MSj F (Calculated) Percentage
contribution

Significant/in-
significant

(a)

Pulse-off time, A 2 0.00 0.00 0.05 0.15 ×
Pulse-duration, B 2 0.11 0.05 14.73 47.79

√
Abrasive, C 2 0.03 0.01 4.88 15.82

√
Current, D 2 0.01 0.00 2.16 7.05 ×
Residual Error 18 0.07 0.00 29.20

Total 26 0.24 100

(b)

Pulse-off time, A 2 0.00 0.00 0.16 0.40 ×
Pulse-duration, B 2 0.10 0.05 18.55 47.90

√
Powder, C 2 0.04 0.02 8.55 22.06

√
Abrasive, D 2 0.01 0.00 3.82 8.19

√
Residual Error 18 0.05 0.00 23.23

Total 26 0.22 100

3.55isselected as *F-critical,
√
shows the significant and× shows the insignificant values.

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2022) 16:1533–1549 1545

Table 9 (a) Regression model
for grey relational grade, (b)
Regression model for
Grey-ANFIS grade

Predictor Constant Pulse-off time, A Pulse-duration, B Abrasive, C Current, D

(a)

Coefficient 0.52 − 0.00 0.00 − 0.04 0.00

SE coefficient 0.05 0.00 0.00 0.01 0.00

T 10.43 − 0.23 5.67 − 3.20 1.68

P 0.00 0.82 0.00 0.00 0.10

(b)

Coefficient 0.56 − 0.00 0.00 − 0.05 0.00

SE coefficient 0.04 0.00 0.00 0.01 0.00

T 13.12 − 0.42 6.23 − 4.17 2.26

P 0.00 0.67 0.00 0.00 0.12

S � 0.0607132, R-Sq � 79.38%, R-Sq (adj) � 75.40%
S � 0.0522253, R-Sq � 88.91%, R-Sq (adj) � 82.31%

Fig. 4 a Flow chart for the flow of information in ANFIS, b Description of different 5 layers used in ANFIS system

mizing the MPCs, because the error value obtained for the
G-ANFISG is very lower than other values.

In addition to the above studies, three more experiment
replications were carried out, using the optimal set of param-
eters from the Grade Grey-ANFIS i.e. A2 B3 D1 C3. With
the Grey-ANFIS method, the findings were confirmed. The
result showed near agreement of the findings for the optimal
parameter selection.

6 Results and discussion

The use ofMCDM techniques such as (TOPSIS, AHP, GRA,
etc.) is important to investigate the existence of stochas-
tic and complex interrelationships between EDM response
properties and input parameters [26, 27]. To this end an
integrated approach was developed based on the grey and
grey-ANFIS approach. First, series of experiments for the
WC alloy PM-EDM are performed using Taguchi L27 OA
method. Additionally, the gray and grey-ANFIS approach
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Table 10 (a) ANOVA table for
the regression modeling of grey
relation grade, (b) ANOVA table
for the regression modeling of
Grey-ANFIS grade

Values Degree of
freedom

Sum of squares Mean square F-value P-value Durbin-
Watson
statistic

(a)

Regression 4 0.16 0.04 11.33 0.00 2.26

Residual error 22 0.08 0.00

Total 26 0.24

(b)

Regression 4 0.16 0.04 14.81 0.00 2.35

Residual error 22 0.06 0.00

Total 26 0.22

Table 11 Details of the initial
and optimum machining output Sl. No Process parameters Initial machining Optimal machining parameters

A3 B1 C3D2 Prediction Experiment Error
A2 B3 C1D3 A2 B3 C1D3 (%)

1 MRR, mm3/min 1.126 13.03 12.49 − 4.14

2 TWR, mm3/min 1.422 1.135 1.036 − 8.73

3 GRG, γi 0.372 0.771 0.763 − 1.04

4 Grey-ANFIS grade, α 0.467 0.769 0.773 0.52

was used to optimize the MPCs i.e. MRR, TWR. As can be
seen from the results provided in the GRG response table,
the optimal combination of parameters for effective WC
alloy abrasive-mixed EDM is A2 (pulse-off time, 50 μs), B3
(pulse-on time, 100μs), C1 (abrasive, graphite), D3 (current,
9 A) respectively. From the response tables of gray rela-
tion grade and projected grade of gray-ANFIS, it is observed
from the max–min values that pulse length is the most effec-
tive and optimal parameter affecting the current and abrasive
MPCs. Results are in line with some previous studies [15],
which also say that graphite abrasive is found to be effec-
tive in improving the characteristics of machining. Results
of ANOVA for both GRG and G-ANFISG also shows that
the major contributing factors affecting the MPCs are (1)
pulse duration followed by (2) abrasive, and (3) current.

Results depict the significant impact of input discharge
energies upon the response characteristics, i.e. by increasing
the current from 3 to 9A, MRR raises significantly. It happen
same for the pulse-on time, as the pulse-on time increases,
the MRR increases. It is expected that when the value of cur-
rent and pulse-on time increases the spark energy increases,
which further causes high rise in temperature between the
electrodes. This causes the high removal of material out from
the workpiece but tominimize the tool wear rate graphite and
alumina abrasive has been added, which helps to stabilize the
process even at high temperatures. Graphite abrasive comes
out to be more optimal as compared to alumina abrasive to
improve the machining characteristics. To compare both the
grey relational grades andGrey-ANFIS grades, a fair method
comparison have been done by using sum of ranking differ-

ences. This method shows that there is no difference between
the grades obtained by the optimization techniques. As per
SRD method, both the methods are equally responsive for
MOO of abrasive-mixed EDM of WC alloy.

Further, regression models have been developed for both
the GRG and G-ANFISG at 95% confidence level for the
optimized parametric combination A2 B3 C1D3. The results
of regression as presented in normal probability plots in
Fig. 5a, b, shows that models so obtained fits the experimen-
tal data well. During the theoretical prediction of outcomes
(Table 11), the percentage of error between the optimum
experimental value and the optimal predicted value is con-
sidered to be very small for both GRG i.e. (− 1.04%) and
G-ANFISG i.e. (0.52%) indicating the precision of the tests.
Eventually, the results of the validation experiments given
in Table 12 indicate a successful reproduction of the exper-
imental values with an optimal combination of the A2 B3
C1D3 parameters. This shows that the machining efficiency
improves when graphite abrasive is applied in dielectric oil
for EDM of Tungsten alloy. In fact, GRG aims to get the
correct combination of parameters and G-ANFISG assumes
that the GRG tests will be checked successfully.

7 Micro-structure analysis

The microstructure analysis i.e. scanning electron
microscopy (SEM) and X-ray diffraction (XRD) anal-
ysis was performed to test the effect of various input
parameter settings on the WC alloy authors’ PM-EDM.

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2022) 16:1533–1549 1547

Table 12 Confirmation experimentation of optimum parameter selection

Experiment No parameters Multi-performance characteristics

A B C D Repetition 1 Repetition 2 Repetition 3 Average Grades

MRR1 TWR1 MRR2 TWR2 MRR3 TWR3 MRRavg TWRavg GRGG-ANFISG

Optimal
parameters

2 3 1 3 12.560 0.994 12.555 1.036 12.538 1.054 12.551 1.028 0.7602 0.7793
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Fig. 5 Normal probability plot of residuals for a grey relation grade and b Grey-ANFIS grade data
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Fig. 6 a Sample-1 indicates the Rank-1 SEM analysis (Exp. no. 24), b Sample-2 indicated the Rank-27 SEM analysis (Exp. no.8)

Scanning electron microscopy (SEM) is performed on
QUANTA-450 FEG, FEI made in the Netherlands; while
XRD analysis is performed on the XPERT-PRO system in
the Netherlands and range 2 between 20 and 79 respectively
was performed at a scanning speed of 2 per minute for the
2-selected samples. The selection of samples on the basis of:

1. Sample-1; optimal parameter selection i.e. rank-1 (exper-
iment no. 24).

2. Sample-2; the least effective parameter in the study i.e.
rank-27 (experiment no. 8).

Figure 6a shows the SEM analysis for the optimal fac-
tor selection, it is observed that some voids and coagulation
upon the surface because machining occurs at very high tem-
perature i.e. more than 2800 °C followed by the cooling with
dielectric fluid. But, no crack formation is observed upon the
surface, this implies that uniform machining happens upon
the surface. On the machined surface, graphite powder layer
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Fig.7 Sample-2 shows the XRD analysis for Rank-1 (Experiment no.
24)

is observed which helps to improve the machining mech-
anism as well as the surface properties of the workpiece.
Figure 6b demonstrates the sample-2 SEM analysis, which
is the least successful combination of the variables. There
are numerous cracks and large craters are observed on the
sample-2 machine surface, which indicates that enormous
amounts of material are being extracted from the workpiece
surface during theEDMdue to high pulse length, high current
producing high volume of aerosol concentration; as dielec-
tric fluid is also strong. As the energies of the discharge are
high (pulse-on time and current), white layer formation is
observed that is not desirable. Figure 7 shows the XRD anal-
ysis for the optimal parameter selection and graphite powder
peaks are identified upon the surface of workpiece, which
also validates the SEM results for the sample-1 (Fig. 6a).

8 Conclusions

This paper discusses the discreteness that occurs in the
experimental values obtained from tungsten carbide alloy
PM-EDM.To deal with this ambiguity and discrepancy in the
data, authors used grey andGrey-ANFIS integrated approach
to address this multi-objective optimization problem. This
works conclusion is shown as follows:

1. Grades were created from grey relational analysis for all
the experiments performed. 24 experimental no. gives us
the highest grade of gray relation to achieve a high rate
of material removal and a low tool wear rate. Alterna-
tively, it provides optimum parameter settings i.e. from
the GRG response table and optimal rank experiment
number. A2B3C1D3 [pulse-off time, 50 μs; pulse-on
time, 100 μs; abrasive, graphite, and current, 9A], these
results are in line with the Assarzadeh and Ghoreshi [8]
studies.

2. For all 27 experiments, gray-adaptive grades of the neuro
fuzzy inference method were obtained and experiment
number 24 gives us themaximumG-ANFISG value. Pre-

dicted results of the gray-adaptive neuro fuzzy inference
method successfully support the findings obtained by the
gray relational grade values.

3. The comparison of gray relational analysis and adaptive-
neuro fuzzy inference system technique is carried out
using summarymethod of ranking differences [35]which
shows that both optimization techniques are equally
capable of capturing the uncertainty and discreteness
present in the data.

4. ANOVA results for both the grey and predicted grey-
ANFISG approach shows that the major controllable
parameters which significantly affecting the MPCs are
pulse-on time followed by abrasive then current. High
discharge energies helps to increase the MRR by gen-
erating high melting temperatures and further graphite
helps to stabilize the machining process.

5. The results of regression analysis show that the models
so obtained, fits the experimental data well for both GRG
and G-ANFISG values.

6. Theoretical prediction of results proves that both the
methods have very negligible error i.e. − 1.04% of
grey relational grade and 0.52% of G-ANFISG values,
which clearly indicates the similarity between the results
obtained from both the optimization approaches. Grey-
ANFIS approach implementation proves to be good as
compared to grey relational results for PM-EDMof tung-
sten carbide alloy.

7. SEM and XRD analysis shows that presence of graphite
powder in dielectric oil during electrical discharge
machining affects the output responses with respect to
various input parameters.
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