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Abstract
Part orientation and support structures are crucial to the quality of metal parts by laser powder bed fusion. Computer-aided
solutions for part orientation can be used to support users during the process preparation. In this study, an original computer-
aided approach to prepare parts for laser powder bed fusion was formulated and implemented. The proposed method consists
of multi-objective optimisation of part orientation and a novel strategy for the simultaneous design of support structures.
The automated part orientation optimisation considers both global and local objectives defined by the user. For this purpose,
penalty functions measuring the building time, support volume, part distortion, surface roughness and supports contact points
are adopted. Unlike in existing methods, the user has the opportunity to define the importance of these aspects in different
regions of the part. Such functions are then optimised through a genetic algorithm. The proposed approachwas applied to a real
product imposing three different sets of objectives. The tested case studies were solved in less than 10min, providing solutions
that satisfied the imposed aims and constraints. Specifically, the results demonstrated that the orientation optimisation can
reduce the building time by 68.1% or the material consumption by 66.8%, depending on user requirements. It was also shown
how the proposed method can be used to minimise the surface and dimensional error of manufactured parts. The proposed
approach allows to manually define the specific design requirements and translate them in terms of manufacturing decisions.
This contributes to establishing a fruitful interaction between the user and the developed software during the process design.

Keywords Additive manufacturing · Support structures · Part orientation · Laser powder bed fusion

1 Introduction

Additive manufacturing (AM) comprises several innovative
technologies, which are rapidly transforming the industrial
scenario [1–3]. Among these processes, metal AM plays a
crucial role due to the enormous importance of metallic parts
in most mechanical applications [4].

Laser powder-bed fusion (LPBF) is far the most popu-
lar technology for the AM of metallic parts starting from
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powders [5,6]. This process allows the manufacturing of
a wide range of materials to obtain parts characterised
by high density and mechanical resistance [7,8]. In recent
years, industrial apparatuses for LPBF have tremendously
improved [9,10]. Also, numerous studies have focused on
the determination of optimal process parameters for the
achievement of high-performance products [11,12]. In fact,
it has been demonstrated that the laser parameters and scan-
ning strategies play a fundamental role to determine the
microstructure and properties of the manufactured parts
[13–16].

The arrangement of parts within the building chamber is
also fundamental to ensuremanufacturability andpart quality
[17,18]. In greater detail, the orientation of parts and the
design of support structures are crucial to the surface quality
of parts, building time and process cost [19–21].

As a consequence, numerous studies have focused on
automated part orientation [22] and the design of support
structures [23]. Most of the approaches in the body of the
literature separately manage part orientation and support
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design, although they are deeply interdependent. Moreover,
the objective functions are frequently defined on the entire
part geometry, thus failing to address the local product
requirements. These aspects are discussed in greater detail
in Sect. 2, which provides an overview of the body of
literature.

This study introduces a new interactive method for the
simultaneous optimisation of part orientation and support
design. The method adopts the building time, material vol-
ume and surface quality as objectives of the optimisation.
Also, the user is given the opportunity to define local con-
straints and aims, in order to adjust the objective function
based on the specific product requirements. Genetic Algo-
rithms (GA) are finally used to determine the optimal solution
based on the defined aims.

The proposed method is detailed in Section 3 and applied
to a case study in Sect. 4 in order to prove its effectiveness.

2 State of the art

2.1 Build time estimation

The building time duration is one of the main cost drivers in
AM [24,25]. For this reason, several methods for its estima-
tion have been proposed in the body of literature.

All the studies in this field have highlighted that the num-
ber of layers NL , and therefore the height along Z direction
hmax , is the most influential factor on the process duration
[26,27]. In laser-based processes, this is also affected by the
length of the scanned path. To consider this aspect, several
models include the area of each layer in the computation of
the build time [27–29].

Rickenbacher et al. [30] proposed an interpolation includ-
ing, besides hmax , the part volume and the surface of parts and
supports. Di Angelo et al. [31] elaborated such parameters
through a neural network in order to reach a more accurate
estimation of the building time.

In the present study, build time is evaluated only for the
comparison of alternative solutions and then normalised to
compose the final fitness function. Therefore, a simplified
estimation based on the maximum height hmax is imple-
mented.Details of the calculation are presented in Sect. 3.2.2.

2.2 Surface roughness

One of the main limitations to the industrial applications of
parts manufactured via LPBF is the surface quality [32,33].
This is known to be mainly influenced by the surface orienta-
tion to the building direction [21,34]. The body of research
demonstrates that the optimal surface roughness on upward
surfaces is achieved for 0◦ angles, i.e. regions with nor-
mal versor oriented along Z-axis. In the case of non-null

inclinations, the roughness decreases while the angle
increases in the range ]0◦; 90◦] [35]. The sameconsiderations
can be applied to downward surfaces, where the roughness
decreases moving from flat to vertical surfaces. The down-
ward surfaces quality is worse than the one of upward ones
as the molten material tends to drop down under the effect of
gravity [36,37].

The actual value of surface roughness is also deeply influ-
enced by scanning strategy and laser parameters, especially
in downward surfaces [38]. Recently, Rott et al. [39] demon-
strated the interdependency of surface orientation and laser
incidence using a nickel–chromium-based superalloy.

An exact prediction on the surface roughness must thus
consider the set of process parameters and the material fea-
tures. Such an accurate result is out of the scope of the present
work, where a comparative analysis of different solutions is
required. In this study, a normalisedmodel reflecting the con-
sideration presented above is developed for comparison. Its
equation is introduced in Sect. 3.2.5.

2.3 Automated part orientation and support design

Several methods for the automated determination of the
optimal build orientation were proposed in the body of the
research since the end of the 20th century. The early methods
scanned a finite number of possible orientations and ranked
them based on the objective function [24,40,41]. A similar
approach was recently revised by Leutenecker-Twelsiek et
al. [42]. Such methods select the best orientation within an
initial batch of orientations, which may not correspond to the
optimal solution. Masood et al. proposed a technique to gen-
erate candidate solutions through the incremental variation of
orientation angles [43].More recently, several iterativemeth-
ods for part orienting have been presented in order to increase
the probability to reach the absolute optimum [44,45].

Since the build orientation is chosen considering a num-
ber of different requirements, it can be represented as a
Multi-Objective Optimisation (MOO) problem the solution
ofwhich is a Pareto front of non-dominated solutions [46,47].
Nonetheless, only one orientation can be used for part pro-
duction. Therefore, the downside with this approach is that
the solution must be selected among non-dominated ones by
the user [48] or through another selection algorithm [49–52].
To surpass this limitation, the objectives of the optimisation
are frequently combined in a single weighted function in
order to assign relative importance to each objective and out-
put a single optimal solution [53–55]. This approach gives the
user the possibility to adapt the objective function himself to
the requirements of the manufactured product and according
to his level of knowledge. Since the quality of the proposed
solution depends on the manually defined weights given
to requirements, the method proposed in this paper adopts
an interactive approach. The user can refine these values
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iteratively until a satisfactory solution is met. This iterative
process also contributes to an increase in the user’s know-
how about the process. This interactive approach allows for
a combination of software capabilities and human expertise
[22,56].

The single function optimisation problem has been solved
by several authors through GA [57,58]. This approach
allows the inclusion of different objective functions and does
not require assumptions on the initial orientation of parts
[59–61].

The objectives of the optimisation algorithms proposed
for LPBF usually comprise the reduction of support volumes
and building time, which are the main drivers of process cost
[62–64]. These methods assume an orientation-independent
design of support structures.

By contrast, this study includes a novel approach to the
design of the support structures based on the part orientation.
Themain advantage of this approach is to ensure efficient use
of the support material while rotating the part.

The orientation of parts has also been proven to be cru-
cial to the part distortions induced by the process [65,66].
In fact, the internal stresses inducing the part deformation
mainly derive from the temperature distribution, which in
turn depends on part orientation and laser strategies [67].
The part orientation also affects the mechanical properties of
manufactured products both in terms of static [68–71] and
fatigue resistance [72,73]. The optimisation of these proper-
ties should take into account the stress distribution inside the
part during usage, for example by means of Finite Element
Analysis (FEA). This kind of analysis is not included in the
present work and is left as an area for further research.

In the optimisation methods mentioned above, the rele-
vance of each objective is defined on the entire model. This
may determine a limitation to practical applications, where
the requirements of each region depend on the function of the
manufactured part. In order to surpass this limit, Ga et al. [54]
proposed a method where the user can select the part which
must meet the best surface quality. Other authors predefined
a set of features (e.g. holes or joints) in which the max-
imum surface quality must be achieved [74,75]. Recently,
automated methods to cluster triangular elements of orien-
tation have been proposed in the literature [76,77]. The full
automation of these methods reduces the efforts of the user
but limits the opportunity to customise the objectives of the
optimisation. To surpass this limitation, this study allows
the user to manually assign the importance of each require-
ment in different part regions. This non-uniform definition
of features is presented in Sect. 3.2.5. The main advantage of
the proposed approach is to establish an interaction between
the user and software to achieve full customisation of the
optimisation function. This allows the user to bring spe-
cific know-how within the optimisation. For example, it is
possible to specify which regions should be preserved by

support structures under the light of the available equipment
for support removal. This is not possible in existing fully-
automated methods, which consider a single predetermined
post-processing strategy [78,79].

2.4 Design of support structures

Thermal stresses occurring during LPBF tend to warp the
solidified material out of the plane of the layer. If the dis-
tortion of the layer is not tackled, the warped part might
become an obstacle for the powder recoater, causing the fail-
ure of the entire process. For this reason, it is necessary to
build support structures anchoring overhang geometries to
the building platform. These offer a mechanical resistance
to thermal distortions and dissipate the heat to the building
platform [80].

Several support geometries have been proposed [81]. One
of the most popular design solutions presented in literature
consists of lattice lightweight structures reducing the amount
of wasted support material [82–87]. It is also possible to
design solid supports in order to reach higher mechanical
resistance and thermal conductivity. On the other hand, this
solution complicates the support removal phase following
the process [88–90].

In order to combine thermal conductivity, resistance and
ease of removal, support structures are frequently shaped as
a grid of vertical thin walls [87,91,92]. These can consist
of different 2D patterns according to the desired mechanical
and thermic performances [93].

The present paper adopts thinwalls to support the part dur-
ing the construction. The designmethod details are presented
in Sect. 3.1.

3 Method

The proposed method consists of three main phases, namely
the definition of objectives (Sect. 3.2), the build orientation
optimisation (Sect. 3.3) and the design of support structures
(Sect. 3.1.2).

The first phase is delegated to the user in order to include
the specific product requirements within the objective func-
tion. On the contrary, the last two phases are automatically
carried out by the software.

Figure 1 summarises the steps of the method, which are
detailed in the next sections.

The build orientation optimisation includes an estimation
of the support structureswhich are necessary to part building.
For this reason, the support design strategy is firstly presented
in Sect. 3.1.2. Then, Sect. 3.2 introduces the objective func-
tions optimised through the automated orientation algorithm.
Finally, details of the GA-based optimisation are presented
in Sect. 3.3.
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Fig. 1 Framework of the
proposed method

Fig. 2 Planar grid of the part bounding box in XY

3.1 Support design

3.1.1 Determination of supported regions

Defining as αlim the minimum angle of a surface to the hori-
zontal plane which allows the self-supporting of thematerial,
the binary value Si expressing the need for supports for the
generic ith triangle can be calculated as in Eq. 1:

Si = 1 − �nz,i + cos(αlim)� (1)

where nz,i is the Z component of the ith triangle normal
versor.

The supporting structures are designed through a region-
based approach. The dimensions of the bounding box enclos-
ing the part, BBx , BBy and BBz , are firstly calculated.

The XY projection of the bounding box is divided in a
grid whose side step is sg , as shown in Fig. 2.

Vertical rays are cast from the centre of each grid element
(highlighted with a dot in Fig. 2). The central coordinates

Fig. 3 Intersections of ray casting with the mesh

(xi , y j ) of the generic grid element (i,j) can be calculated as
in Eqs. 2 and 3:

xi =

⎧
⎪⎨

⎪⎩

1
2 (BBx − sg� BBx

sg
�) i f i = 1;

BBx − x1, j i f i = � BBx
sg

�;
x1, j + (i − 1)sg elsewhere;

(2)

y j =

⎧
⎪⎨

⎪⎩

1
2 (BBy − sg� BBy

sg
�) i f j = 1;

BBy − y1, j i f j = � BBy
sg

�;
y1, j + (i − 1)sg elsewhere.

(3)

A vector di,j with origin (xi , y j , zmin) and direction
(0,0,1) is defined for each element (i,j) of the grid, being
zmin the minimum z coordinate of the bounding box. A ray-
casting algorithm [94] is used to check the intersection points
Pi, j,k of di,j with the part, as shown in Fig. 3.

As the part must satisfy the manifold condition, the inter-
section point Pi, j,k lays on a triangle with negative nz if k is
odd and with positive nz if k is even. The manifold condition
also implies that the total number of intersections Pi, j,k is
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Fig. 4 View of a supporting line and rib in the XY plane

even for every pair (i,j). The maximum number of intersec-
tions found on the grid (i.e. the higher value reached by index
k) will be indicated as Nmax,int .

It is then possible to define two three-dimensionalmatrices
with dimensions [� BBx

sg
�, � BBy

sg
�, Nmax,int ] that were named

Hs and Ts , whose generic elements are defined as in Eqs. 4
and 5, respectively.

Hs(i, j, k) =
{ Pi, j,2k−1 − Pi, j,2(k−1) i f ∃Pi, j,2k;

0 i f �Pi, j,2k; (4)

Ts(i, j, k) =
{ Pi, j,2k − Pi, j,2k−1 i f ∃Pi, j,2k;

0 i f �Pi, j,2k .
(5)

It is important to highlight that the size and values ofmatri-
ces Hs and Ts vary according to the part orientation.

3.1.2 Design of support structures

As mentioned in Sect. 2.4, thin vertical lines are used as
support structures.A transversal rib is added to prevent lateral
bending during construction. Figure 4 shows a projection of
this structure on the XY plane.

As one single scan line is used for support construction,
the actual thickness of the vertical wall depends on a number
of parameters, including the scanning speed, the laser power,
the reflectivity and the grain size of the powder [95,96].

For each element of a grid in Fig. 2, the necessity of sup-
port structures can be determined by means of Eq. 1. The
orientation of each wall is chosen in order to minimise the
distortion of the part, as described in the following consid-
erations. Indicating as Tr(Pi, j,k) the triangle on which the
intersection point Pi, j,k lays, it is possible to define thematrix

Hcp of dimensions [� BBx
sg

�, � BBy
sg

�, Nmax,int ]. The generic
element Hcp(i, j, k) is then calculated as in Eq. 6:

Hcp(i, j, k) = Sb(Tr(Pi, j,2k−1))

×
k∑

l=1

[Ts(i, j, l) + Hs(i, j, l)] (6)

According to Eq. 6, Hcp elements are equal to zero if the
region does not require supports and are equal to the height

Fig. 5 Example of pivot determination for a given intersection level k∗

of the intersection point from the bottom plane otherwise.
Therefore, given a value k∗, referred to in the following as
intersection level, the two-dimensional matrix Hcp(i, j, k∗)
is as shown in Fig. 5. In thematrix Hcp(i, j, k∗), it is possible
to distinguish the cluster of supported elements, coloured
in blue in Fig. 5. For each cluster, the minimum values of
Hcp(i, j, k∗) (highlighted in yellow in Fig. 5) are identified.
The corresponding centres of the grid, represented as red
dots in Fig. 5, are named pivotal points and indicated as
[vk∗,h,1, vk∗,h,2, . . .].

For each element (i,j) of the grid, the supporting wall is
oriented as the vector connecting the centre of the element
(xi ,y j ) with the projection on the XY-plane of the nearest
pivotal point vk∗,h,m = (xv∗, yv∗, zv∗). The direction vector
d̂i, j,k can thus be calculated as in Eq. 7:

d̂i, j,k = (
xv∗ − xi

√
(xv∗ − xi )2 + (yv∗ − yi )2

,

yv∗ − yi
√

(xv∗ − xi )2 + (yv∗ − yi )2
, 0)

(7)

The support design penetrates the point of coordinates
(xi ,y j ) and remains inside the grid element, as shown in
Fig. 5. The length of the support structure Ls shown in Fig. 4
can be thus calculated as in Eq. 8:

LS(i, j, k) = max(
sg

|d̂i, j,k .X̂ | ,
sg

|d̂i, j,k .Ŷ | ) (8)

where X̂ = {1, 0, 0} and Ŷ = {0, 1, 0}.
The length of the line is reduced in correspondence to the

connection between supports and the part in order to ease
the removal of the structures at the end of the process. The
transitions between supports and the part are named teeth and
present the typical shape shown in Fig. 6. The height of the
support tooth hst and the aspect ratio αls between the length
of the line Ls and the final length of the tooth Lse are used
to define the geometry of the teeth.

123



602 International Journal on Interactive Design and Manufacturing (IJIDeM) (2022) 16:597–611

Fig. 6 Schematisation of support wall and connection teeth

The height of the support along the Z direction can be
obtained by the matrix Hs calculated in Eq. 4. It is worth
mentioning that the actual coordinates of the connection to
the part may vary according to the slope of the surface: the
ray-casting approach exposed above can be extended to cal-
culate such positions.

The length of support penetration within the part is equal
to hsl . This has to be compared to the thickness values in the
matrix Ts , Eq. 5, in order to prevent part piercing.

A difference between the top and bottom design of teeth
may be operated at different levels; as an example, the bot-
tom teeth of the first level (i.e. the connection of the part to
the build platform) is often avoided (i.e. αls = 1) in order
to improve the resistance, as this region does not affect the
surface quality of the part.

3.2 Definition of the objectives

3.2.1 Fitness function

The build orientation optimisation consists in finding the
optimal Eulerian angles αx , αy and αz between the coordi-
nate system of the part and the machine one. To achieve this
aim, the fitness function Ff (αx , αy, αz) presented in Eq. 9
must be minimised:

Ff (αx , αy, αz) = pt × wt + pv × wv+pd × wd

+ pr + ps (9)

The notation in Eq. 9 is the following:

– pb : penalty value of the building time;
– wt : weight assigned to the building time;
– pv : penalty value of the support volume;

– wv : weight the support volume;
– pd : penalty value of the average distortion;
– wd : weight assigned to the average distortion;
– pr = 1

Nt
× ∑Nt

i=1 pr ,i × wr ,i

– Nt : number of triangles in the mesh;
– pr ,i : penalty value of the roughness of the ith triangle;
– wr ,i : weight of the roughness of the ith triangle;
– ps = 1

Nt
× ∑Nt

i=1 Si × ws,i

– Si : presence of supports on the ith triangle;
– ws,i : weight of the presence of supports on the ith

triangle;

As mentioned, the weights have to be assigned by the
user according to the functional requirements of the product.
It is important to underline that the weight of the building
time, support volume and average distortion are defined on
the entire product, whereas ws,i and wr ,i are assigned to
each triangle so as to better fit the local needs. To simplify
the assignment procedure, it is possible to define clusters of
elements having the same functional requirements, as shown
in the case study of Sect. 4.

Penalty factors pt , pv and pr are real values in the range
[0; 1]. The calculation of these coefficients is presented in
the next sections.

3.2.2 Building time penalty function

As mentioned in Sect. 2.1, the penalty value associated with
the building time is estimated based on the maximum height
hmax along the Z-axis. Obviously, the maximum height
depends on the part orientation, i.e. hmax is a function of
Eulerian angles (αx , αy, αz).

To normalise the value of pt in the range ]0; 1], the max-
imum height is divided by the diagonal of the bounding box
in its original orientation, as shown in Eq. 10:

pt = hmax
√
BB2

0x + BB2
0y + BB2

0z

(10)

where BB0x , BB0y and BB0z are, respectively, the x, y and
z dimensions of the bounding box enclosing the part in its
original orientation.

3.2.3 Support volume penalty function

In order to estimate the support mass, the volume of the sup-
ported area defined in Sect. 3.1.1 is used. In greater detail,
the supported region is calculated by multiplying the area of
grid elements in Fig. 2 by the height of the supported region
shown in Fig. 6. This approach does not consider the volume
variation occurring due to the different orientation of support
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Fig. 7 Schematisation of support wall and connection teeth

structures, as this is supposed to be negligible for the purpose
of the comparison.

The volume calculated through thismethod is then divided
by the one of the bounding box enclosing the part in its
original orientation, so as to have pv ∈ [0; 1[. The penalty
function of support volume is thus calculated as in Eq. 11:

pv =
∑� BBx

sg
�

i=1

∑� BBy
sg

�
j=1

∑Nmax,int
k=1 Hs(i, j, k) s2g

BB0x BB0y BB0z
(11)

3.2.4 Distortion penalty function

The penalty function for accuracy loss is calculated through
an estimation of the part distortions induced by the print-
ing process. The estimation is made through a regression of
experimental results already published. Unlike FEA simula-
tion [97–99], this approach allows for a fast calculation of
the penalty function.

As presented in [100], experimental tests reveal a good
correlation between these distortions and the main dimen-
sions of overhangs. In greater detail, the vertical displace-
ment of the overhang ez depends on the overhang thickness
(toh), inclination (αoh) and length (Loh), as shown in Fig. 7.

Using the definitions given in Sect. 3.1.2, let [xp, yp, z p]
be the cartesian coordinates of the generic intersection point
Pi, j,k and [xv∗, yv∗, zv∗] the ones of the corresponding piv-
otal point. The equivalent overhang length Loh(Pi, j,k) and
αoh(Pi, j,k) for the intersection point Pi, j,k can thus be cal-
culated as in Eqs. 12 and 13, respectively:

Loh(Pi, j,k) =
√

(xp − xv∗)2 + (yp − yv∗)2 + (z p − zv∗)2

(12)

αoh(Pi, j,k) = Arctan(
z p − zv∗

√

(xp − xv∗)2 + (yp − yv∗)2
) (13)

The results in [100] also highlight a pivotal role of the dis-
tance dsl between support lines. For the scope of this study,
this value is set equal to the cell size, i.e. dsl = sg . There-
fore, in the case of austenitic stainless steel, it is possible to
estimate the vertical displacement eZ by means of Eq. 14
[100]:

eZ (Pi, j,k) = −1.89 × 10−1 + 9.9 × 10−4 Loh

+7.31 × 10−2 toh + 8.56 × 10−4 αoh

−2.345 × 10−1 d + −9.5 × 10−5 Loh

+ αoh − 3.935 × 10−3 toh αoh

+5.97 × 10−2 toh dsl (14)

As discussed in [100], Eq. 14 fits experimental resultswith
an adjusted determination coefficient R2

ad j = 90.02%,which
is considered sufficient for the scope of this comparison. The
relative error ε(Pi, j,k) for the generic contact point is then
obtained dividing the displacement calculated as in Eq. 14 by
the height of the overhang along the Z-axis, i.e. as in Eq. 15:

ε(Pi, j,k) = eZ (Pi, j,k)

Loh × Sin(αoh)
(15)

Finally, the distortion penalty function is obtained by aver-
aging the values of ε(Pi, j,k) of all the intersection points, as
shown in Eq. 16:

pd =
∑� BBx

sg
�

i=1

∑� BBy
sg

�
j=1

∑Nmax,int
k=1 ε(Pi, j,k)

� BBx
sg

� � BBy
sg

� Nmax,int

(16)

3.2.5 Roughness penalty function

As mentioned in Sect. 2.2, an estimation of PBF part
roughness is adopted. This is obtained through the normal
component along the Z-axis Nz,i of each ith facet.

Particularly, the following considerations are reflected:

– The minimum roughness is achieved for upward-facing
elements;

– The roughness decreases with the absolute value of Nz ;
– The roughness is higher on downward-facing elements.

Accordingly, the penalty of roughness for the generic ith
triangle is calculated as in Eq. 17:

pr ,i = (1 − �1 + Ni,z

2
	)(k1 e|Ni,z | + k2�1 − sign(Ni,z)

2
	)
(17)

The coefficients k1 and k2 in Eq. 17 are set equal to 0.15
and 0.3, respectively. Figure 8 shows the graph of pr ,i as a
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Fig. 8 Roughness penalty pr ,i versus z component of normal versor of
the ith triangle

function on Ni,z . As it can be noticed, the trend of rough-
ness reflects the experimental results of the body of research
presented in Sect. 2.2.

3.3 Build orientation optimisation

The build orientation optimisation aims at the minimisation
of the fitness function in Eq. 9. The G chromosome encodes
the Eulerian angles αx , αy and αz as integers values. The
minimum rotation is thus equal to 1◦. To represent an integer
in the range [0◦; 360◦] as a binary 9 digits are necessary. As
a consequence, the chromosome comprises 27 genes.

The crossover operator generates the offspring through
a two-point strategy. The splitting points of the crossover
correspond to the end of Eulerian angles, i.e. between the
9th and 10th chromosomes and between the 18th and 19th
chromosomes.

In order to prevent deadlock in local minima, a flip-bit
mutation strategy is included, i.e. each chromosome has a
given probability to switch from 0 to 1 and vice versa.

An elitist strategy is applied to select the best chromo-
somes of each generation, which are the parents of the
offspring.

The algorithm is terminated through a stagnation strat-
egy, i.e. when the best value of the fitness function does not
decrease after a predetermined number of generations.

The best individual of the last generation is the optimal
orientation under the set of requirements defined by the user.

4 Case study

4.1 Model and parameters

A digital model of bottle opener made available on Thin-
giverse [101] was used for benchmarking the application.
The model comprised 16844 triangles with a total volume of
4672 mm3.

Two clusters of elements were defined, namely the handle
and the opener regions, shown in Fig. 9a, b, respectively.

The coefficients wr ,i and ws,i of the elements belonging
to cluster 1, namely the handle, were set to 10. Therefore, the
objective of the orientation was to avoid support structures
and reduce the roughness of this region, so as to ease the
following machining operations. In order to limit as much
as possible support structures in the opener region, the val-
ues ws,i of elements in cluster 2 were equal to 10. As the
roughness in this region was assumed not to be relevant,wr ,i

coefficients were set to 0. wr ,i and ws,i of all the elements
out of the clusters were also equal to 0.

Three scenarioswere tested assigning a different relevance
to each aim of the optimisation. Specifically, in the first case,
the priority was given to building time, while support volume
and accuracy are considered negligible. Then, in the second
scenario, the support volume was the priority. Finally, the
third case aimed at the minimisation of the part distortion
followed by overall roughness. Based on these priorities,
the weights of the optimisation were set as summarised in
Table 1.

At each iteration of the GA, the number of chromosomes
in the population was between 20 and 30. The mutation coef-
ficient of each gene was set equal to 0.3, i.e. each bit had the
30% of probability to switch from 0 to 1 and vice versa after
crossover. The GA was terminated when the fitness of the
best chromosome did not decrease after 25 iterations.

The part was placed at 5mm from the base of the platform.
The grid side sg and the limit self-supporting angle were
equal to 2 mm and 50◦, respectively.

The method was implemented through the C# program-
ming language. GeneticSharp library was used for the
implementation of GA functions. Calculations were run on
a 32 GB Intel Core i9 - 7920X 2.9 GHz processing unit.

Fig. 9 a Cluster of elements
number 1: handle, 2384 facets. b
Cluster of elements number 2:
Opener, 163 facets
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Table 1 Weights used for the different case studies

Case wt wv wd wr ,i (out of clusters)

1 0.8 0.1 0.1 0.0

2 0.1 0.8 0.1 0.0

3 0.1 0.1 0.8 0.5

Table 2 Iterations with improvements of the fitness function for Case 1

Iter. Ff ps pr pd pt pv

1 1.562 0.091 0.716 0.177 0.891 0.245

13 1.498 0.024 0.699 0.258 0.905 0.251

14 1.483 0.283 0.949 0.495 0.203 0.393

19 1.482 0.287 0.949 0.669 0.179 0.357

23 1.476 0.282 0.948 0.328 0.216 0.408

24 1.473 0.278 0.949 0.468 0.200 0.388

Fig. 10 Fitness and penalty functions over iterations for Case 1

Autodesk NetFabb ®post processor for SLM 280 HL
®LPBF machine was used to estimate the building time of
the solutions. In order to calculate the support structures vol-
ume, the width of the single line scan was assumed to be
0.3 mm.

4.2 Results

4.2.1 Case 1

The optimisation lasted 7 min and 1 s. The optimal solution
was reached after 48 iterations. The values of fitness and
penalty functions for significant iterations (namely the ones
where an improvement in Ff is observed) are summarised
in Table 2 and graphically shown in Fig. 10.

The Eulerian angles corresponding to the optimal solu-
tions were αx = 0◦, αy = 184◦ and αz = 138◦. The final
orientation corresponding to these angles is shown in Fig. 11.

Fig. 11 Optimal orientation found for Case 1

Fig. 12 Fitness and penalty functions over iterations for Case 2

The estimated building time of this solution is 2 h 26min and
38 s. The volume of support structures is equal to 737.8mm3.

4.2.2 Case 2

The optimisation lasted 9 min and 27 s. The optimal solution
was reached after 65 iterations. The most relevant iterations
are reported in Table 2 and Fig. 12.

The Eulerian angles corresponding to the optimal solu-
tions were αx = 20◦, αy = 252◦ and αz = 219◦. Such
orientation is shown in Fig. 12.

The estimated building time of this solution is 7 h 34 min
and 48 s, while the volume of support structures is equal to
246.4 mm3 (Fig. 13, Table 3).

4.2.3 Case 3

The optimisation lasted 7 min and 7 s. The optimal solution
was reached after 48 iterations. The most relevant iterations
are reported in Table 4 and Fig. 14.
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Fig. 13 Optimal orientation found for Case 2

Table 3 Iterations with improvements of the fitness function for Case 2

Iter. Ff ps pr pd pt pv

1 1.044 0.020 0.708 0.235 0.900 0.252

10 1.029 0.030 0.695 0.254 0.899 0.236

15 1.044 0.020 0.708 0.235 0.900 0.252

17 1.041 0.026 0.686 0.250 0.923 0.265

39 1.038 0.027 0.681 0.344 0.927 0.253

41 1.017 0.031 0.669 0.258 0.934 0.246

Table 4 Iterations with improvements of the fitness function for Case 3

Iter. Ff ps pr pd pt pv

1 1.267 0.167 0.898 0.108 0.931 0.223

3 1.260 0.139 0.911 0.120 0.924 0.220

6 1.246 0.091 0.942 0.126 0.879 0.240

11 1.225 0.168 0.879 0.078 0.931 0.223

16 1.205 0.142 0.885 0.080 0.926 0.215

24 1.203 0.161 0.859 0.081 0.947 0.235

The Eulerian angles corresponding to the optimal solu-
tions were αx = 355◦, αy = 102◦ and αz = 203◦. Such
orientation is shown in Fig. 15.

The estimated building time of this solution is 7 h 40 min
and 8 s, while the volume of support structures is equal to
339.5 mm3.

Fig. 14 Fitness and penalty functions over iterations for Case 3

Fig. 15 Optimal orientation found for Case 3

4.3 Discussion

The results presented in the previous section show that the
algorithm converged to a minimum in all the analysed case
studies. The total number of iterations and the computation
time demonstrated the rapidity of the proposed approach
when applied to the benchmark geometry. Nonetheless, an
increase in computational cost is expected in the case ofmore
complex meshes, i.e. increasing the number of facets.

It is worth remarking that different trends are observed for
penalty functions depending on the assigned weights while
the global fitness function Ff decrease through iterations.
For example, Fig. 10 and Table 2 show that in Case 1 a sharp
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increase in support volume, part distortion and accuracy is
observed at the 14th iteration. This increase is considered
acceptable by the algorithm due to the concomitant reduction
of the building time, which is the major aim of this scenario.

Similarly, in the second scenario both pt and pd increase
moving from the first to the last iteration in favour of a reduc-
tion in pv . This is coherent with the values of wt , wd and wv

set for this case.
It is possible to observe that the accuracy penalty func-

tion of Case 1 is far higher than the one of Case 2. In fact,
the solution proposed for Case 1 is expected to suffer from
severe curling and distortion. This is also confirmed by the
fact that the optimal solution found in Case 3, where maxi-
mum priority is given to the accuracy, looks more similar to
the one proposed for Case 2 (see and compare Figs. 13 and
15). Also, in Case 3 a reduction of roughness penalty func-
tion pr between the first and the last iterations is observed.
This demonstrates the ability of the proposedmethod tomeet
also the second priority of this case scenario.

As can be seen, all the solutions admitted some support
structures on elements belonging to cluster 1. It is worth
underlining that, due to the geometry of the part, it is not pos-
sible to completely avoid supports in this region. In the last
two scenarios, a small number of supports was also placed
in the opener region, i.e. cluster 2. Therefore the algorithm
proposed a compromise solution balancing local and global
requirements.

In a real application, the usermight evaluate the features of
the proposed solution and eventually modify the definition of
requirements. This gives the opportunity to iteratively refine
the solution through a man-machine interaction.

5 Conclusions

The part build orientation and the design of support structures
are crucial steps to the success of the LPBF process. A new
method to aid these steps through software was presented in
this study. Unlike in previous methods, simultaneous optimi-
sation of part orientation and support design is carried out.

The proposed approach starts froma set of local and global
objectives defined by the user. To optimise these aims, com-
parative functions assessing the build time, support volume,
roughness and position of support structures were defined.
These functions describe the effects of part orientation while
preserving a low computational cost. It was shown how the
proposed formulation allows for manual customisation of
the objective function based on specific design requirements,
thus enhancing the interaction between human and software
capabilities.

The application of the proposed approach to a real prod-
uct reached pseudo optimal solutions in a small number of
iterations and within less than 10 min. Also, these solutions

efficiently interpreted the objectives imposed by the user to
part orientation. In greater detail, solution 1 allowed for sav-
ing 5 h and 13 min with respect to solution 2, i.e 68.1% of
the entire building time. On the other hand, the volume of
support structures was reduced by 491.4 mm3 through the
adoption of solutions 2. Solution 3 was used to demonstrate
the effectiveness of the proposed method in minimising sur-
face roughness and part distortion.

The proposed solution interprets some basic user require-
ments concerning the building time, support structures and
surface roughness, and outputs the oriented part and supports.
Therefore, this system is an intuitive and efficient aid to the
LPBF process preparation.
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