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Abstract
This study aims at finding a set of optimum solutions of cutting conditions for the machining responses of cutting temperature
and surface roughness in hard turning of 42CrMo4 alloy steel at high-pressure coolant (HPC) condition. Comparative experi-
mental investigations between dry and HPC cutting environments were performed to evaluate the stated responses concerning
the factors of cutting speed, feed, and work-piece hardness. The full factorial method was employed for the experimental
design. The measured value of cutting temperature and surface roughness was found in a reduced amount for HPC condition
compared to dry cut for all of the machining runs. Empirical models were developed by response surface methodology for the
responses of HPC-assisted machining. The ANOVA result indicated that cutting speed and hardness has the greatest effect
on cutting temperature and surface roughness, respectively. Design of experiment (DoE) based optimization was carried out
that results in the best optimum settings of 147 m/min cutting speed, 0.12 mm/rev feed rate and 42HRC work-piece hardness.
Genetic algorithm based multi-objective optimization was then performed that simultaneously minimizes both of the response
models. Within the constraints of experimental design, the optimal set resulted at the range of 86–165 m/min cutting speed,
0.12–0.13 mm/rev feed rate and HRC 42–44 work-piece hardness.

Keywords Hard turning · High-pressure coolant · RSM · MOGA · Cutting temperature · Surface roughness

1 Introduction

Machining of hardened material with hardness generally
between 40 to 60HRC by a single-point cutting tool is called
the hard turning process [1, 2]. This process is considered as
the replacement of grinding operations due to its benefits of
cost reduction and higher productivity [3]. Despite this, hard
turning possesses some machining complexity in achieving
a superior surface quality than grinding operation. It is rec-
ognized that an insert with a negative rake angle is required
for hard turning to avoid tool breakage [4]. However, the
incorporation of a large negative rake angle produces more
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compressive force. This leads to a significant amount of heat
generation which contributes adversely to machining perfor-
mance in terms of poor part quality [5].Again, themartensitic
layer can be generated in the part due to rapid cooling and
heating, causing compressive residual stress [6]. If the mate-
rial under compressive stress exceeds the yield strength, the
tensile residual stress occurs after cooling [7] and may cause
premature failure of the machined part [8, 9]. These neg-
ative consequences of hard turning are associated with the
metallurgical effect depending on the cooling rate as well as
cutting temperature [10]. So that, during hard turning, it is
essential to provide an effective coolant application method
that can eventually lessen the cutting temperature and give a
better surface finish.

Considering the cutting environment, the conventional
fluid applicationdoes not always extensively assist in limiting
the temperature, especially for high speed and hard machin-
ing [11]. At this point, the high-pressure coolant (HPC)
application technique gives a better solution. Coolant injec-
tion at high pressure functionally infiltrates into the cutting
zone and eradicates heat before its accumulation [12]. This
integrity of HPC over conventional fluid applications was
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thoroughly examined across the years by several researchers.
The studies support that, machining under HPC provides
better chip control, superior component quality, enhanced
tool life and higher cutting parameters to choose [13–18].
Besides, the HPC injection technique also decreases the con-
sumption of cutting fluid by two to four times [11, 19].

To get a useful insight into the mechanics of cutting effect
on responses, various empirical modeling approach was
adopted. Besides the effective investigation of different input
parameters, various single or multi-objective approaches
were also implemented by many authors to confirm that
these parameters yield the desired responses. Taguchi L27
was applied by Rao et al. [20] for the turning trials of AISI
1050 steel for cutting force and surface roughness evalua-
tion. Singla and Singh [21] studied the effects of various
machining parameters on the surface roughness and material
removal rate (MRR) in the hard turning of vanadium steel.
They utilized Taguchi L9 orthogonal array for the design of
the experiment. S/N ratio andANOVAwere used to study the
outcomes. Ozel et al. [22] developed a model using regres-
sion analysis and Artificial Neural Network (ANN) for the
prediction of surface finish and flank wear in finish turning
of AISI D2 steels (60HRC). Suresh and Basavarajappa [23]
used response surface methodology (RSM) to study the con-
sequence of various cutting parameters in hard turning of
AISI H13 steel with PVD coated TiCN ceramic tool. They
developed models for tool wear and surface roughness. RSM
was also used for a force prediction model in hard turning of
AISI 52,100 steel (60HRC) using the CBN tool [24]. Cutting
forces generated from turning of AISI 1045 with tungsten
carbide tool was investigated by RSM coupled with facto-
rial design [25]. RSM and ANN were employed by Mia and
Dhar [26] to predict the average tool-work-piece interface
temperature in hard turning of AISI 1060. Zahia et al. [27]
applied RSM to determine optimum cutting conditions with
the goal of lower surface roughness and cutting force. They
studied AISI 4140 alloy steel (56HRC) that was machined
with PVD coated ceramic insert.

RSM or Taguchi, such type of multi-objective optimiza-
tion base techniques mostly are priori base which eventually
makes the problem single objective [28]. However, the
success of optimization in the complex nature of machin-
ing is inherent in considering several objectives ensuing
a non-dominated solution set. In the hard turning process,
the application of multi-objective optimization coming with
the non-dominated optimal solution is targeted to apply
in this study. To optimize the machining parameters with
multi-goals, different techniques such as statistical, finite ele-
ment method, artificial intelligence (AI) method, etc. were
employed by many researchers [29–32]. AI methods for
multi-goals that are finding their way to the machining pro-
cess optimization field include Genetic algorithms (GA)
[33], ANN [34], Particle Swarm Optimization [35], Bees

Algorithm [36], Artificial Bee Colony [37] and Differential
Evolution [38]. Among these, GA is known as a popular
meta-heuristic algorithm that is mostly compatible with the
multifaceted problem like machining [33]. Further, GAs are
customized to promote solution diversity; i.e. it holds the
property of not getting stuck in local optima. Over that, in
the perspective ofmulti-objective optimization, the resolving
technique ofmulti-objective genetic algorithm (MOGA)uses
a controlled elitist GA. This contributes in diversity cre-
ation of the population even holding a lower fitness value
and offers Pareto optimal set [39]. Researchers applied this
MOGA approach at several machining processes for several
process parameter optimization [40–43].

RSM is a popular method for modeling purposes and GA
is considered an effective technique for multi-objective opti-
mization to build a non-dominated solution set. To the best
of the author’s knowledge, optimization of cutting tempera-
ture and surface roughness simultaneously with the MOGA
approach was not applied for hard machining of 42CrMo4
alloy steel with coated carbide insert. On the other hand,most
of the studied hard turning based researches were performed
under dry or near-dry environment and the study on the opti-
mization through the MOGA approach for the hard turning
of the stated tool-work pair under HPC was not found. It
can also be inferred that the responses of hard turning opera-
tion were typically studied for different ranges of machining
parameters for the material with the same hardness. Hence,
another target of this study is to differ the work-piece hard-
ness along with cutting speed and feed variation. Therefore,
the purpose of the current study is a hard turning of 42CrMo4
alloy steel by coated carbide insert under HPC and then
optimizing the responses—cutting temperature and surface
roughness in terms of the variables—cutting speed, feed rate,
and material hardness. Experimental studies include the per-
formance evaluation of HPC machining compared to dry cut
in terms of these responses and the effective investigation
of the variables while machining with HPC jet. The experi-
mental results at the HPC condition are used to develop the
response predictive models based on RSM. Finally, the mod-
els have been used as minimization objective functions for
multi-objective optimization.

2 Experimental methodology

2.1 Work-piece and cutting tool

Machining experiments were carried out on alloy steel
42CrMo4 in the form of a 98 mm diameter shaft with
a cut length of 200 mm. Three shafts of this dimension
were machined while material hardness was varied at three
levels. The cutting insert with a general specification of
SNMM 120,408 (WIDIA) was used as a cutting tool that
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Table 1 Control parameters with their levels

Parameters Unit Levels

Cutting speed (V ) m/min 54 82 118 165

Feed rate (f ) mm/rev 0.12 0.14 0.16 –

Workpiece hardness (H) HRC 42 48 56 –

Depth of cut (d) mm 1.5 – – –

Environment – Dry HPC – –

was mounted on a tool holder of designation PSBNR 2525
M12 (Sandvik). The insert was coated with TiCN, WC and
Co with a tool geometry of -6°, -6°, 6°, 6°, 15°, 75°, 0.8 mm.

2.2 Experimental design

The experimental plan was associated with the straight turn-
ing of hardened steel of different hardness (42, 48 and
56HRC) under dry and high-pressure coolant environments.
The ranges of cutting speed, V (54, 82, 118 and 165 m/min)
and feed rate, f (0.12, 0.14 and 0.16 mm/rev) were selected
based on the toolmanufacturer’s recommendation and indus-
trial practices. The depth of cut (d) was kept fixed. The
recommended range of depth of cut is 0.3 mm to 2 mm
(WidiaTM Value) for the finishing operation of the stud-
ied tool-work-piece combination. Nevertheless, d should be
greater than the nose radius of the insert. So, considering the
entire facts d value was set to 1.5 mm which is greater than
the nose radius of 0.8 mm and the approximate average value
of the suggested range. The employed levels of input param-
eters along with their levels are summarized in Table 1. A
mixed-level full factorial experimental design was applied
for the selected levels of input variables. Thus, 36 (3ˆ2, 4ˆ1)
experimental series were formed for each of the cutting envi-
ronments. Table 2 shows the resulting experimental design
with corresponding measured responses.

2.3 Experimental set-up and responsemeasurement

The straight turning operations were performed on a rela-
tively rigid and powered center lathe (spindle power 7.5 kW,
China). The coolant delivery system was utilized for con-
tinuous supplying of VG-68 (ISO grade) oil at high pressure
from the coolant tank and aimed at the cutting region through
the nozzle. Getting the positioning of the nozzle just right to
the cutting zone is one of the keys to the effectiveness of
this coolant delivery technology. A specially designed noz-
zle system developed by Khan [44] was incorporated into
this coolant delivery arrangement. This nozzle tool consists
of two outlet channels to impinge the pressurized coolant at
a time at the rake and flank face of the cutting tool, respec-
tively. Every channel diameter was 0.5 mm. The coolant flow

Table 2 Experimental design and results

Exp. no Control parameters Measured responses

V
(m/min)

F (mm) H
(HRC)

T (°C) Ra (μm)

Dry HPC Dry HPC

1 54 0.12 42 328 107 1.52 0.98

2 82 0.12 42 361 116 1.30 0.85

3 118 0.12 42 416 131 1.04 0.75

4 165 0.12 42 449 165 0.94 0.72

5 54 0.14 42 377 120 1.88 1.00

6 82 0.14 42 394 132 1.50 0.90

7 118 0.14 42 437 147 1.20 0.78

8 165 0.14 42 514 174 1.14 0.74

9 54 0.16 42 405 138 2.08 1.02

10 82 0.16 42 449 154 1.80 0.98

11 118 0.16 42 487 176 1.50 0.84

12 165 0.16 42 568 230 1.32 0.78

13 54 0.12 48 380 111 1.70 1.00

14 82 0.12 48 399 130 1.40 0.91

15 118 0.12 48 420 165 1.10 0.79

16 165 0.12 48 459 209 0.98 0.74

17 54 0.14 48 403 132 2.00 1.01

18 82 0.14 48 421 148 1.60 0.94

19 118 0.14 48 463 175 1.40 0.79

20 165 0.14 48 529 264 1.33 0.75

21 54 0.16 48 426 143 2.40 1.04

22 82 0.16 48 459 175 2.00 1.00

23 118 0.16 48 502 220 1.70 0.88

24 165 0.16 48 626 345 1.50 0.80

25 54 0.12 56 415 131 1.85 1.20

26 82 0.12 56 437 148 1.60 1.14

27 118 0.12 56 503 174 1.45 1.07

28 165 0.12 56 546 225 1.28 0.99

29 54 0.14 56 426 145 2.17 1.27

30 82 0.14 56 481 176 1.82 1.24

31 118 0.14 56 524 220 1.56 1.14

32 165 0.14 56 590 296 1.49 1.02

33 54 0.16 56 492 165 2.60 1.32

34 82 0.16 56 546 187 2.22 1.30

35 118 0.16 56 633 238 1.80 1.22

36 165 0.16 56 700 407 1.60 1.10

rate through each channel was 6 l/min at the pressure of
8MPa. The pictorial view of the experimental setup is shown
in Fig. 1.

As the machining performance; two response factors—-
cutting temperature (T ) and surface roughness (Ra) were
considered and measured by specific instruments. T was
quantified through the tool-work thermocouple technique.
The calibration for this tool-work pair was used for convert-
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Fig. 1 Photographic view of the
experimental set-up

HPC arrangement

HPC nozzle set-up

Channel pointed 
at rake face

HPC chamber

Channel pointed at 
flank face

Insert
Inlet 

nozzle

ing emf (mV) to temperature (°C) while the emf generated
by this was recorded by a digital multimeter (Rish Multi,
India). Ra measurement was performed by a contact-type
surface roughness tester named Talysurf (Surtronic 3 +) with
a 0.8 mm sampling length. This measurement was repeated
three times at several places of the workpiece, and the mean
value was incorporated in the study. The cutting tool insert
was changed every four-machining to reduce the tool wear
effect on the performance. Within consecutive three days,
all of the experiments were completed so that, weather
effect is seemed to be negligible to the responses. To ensure
the reliability of the results and to minimize the effect of
machine uncontrollable factors each of the experiments was
performed two times. After all, the average value of each
measured responsewas calculated and employed for the anal-
ysis. The average values of the responses are presented in
Table 2.

3 Mathematical model development

Response SurfaceMethodology (RSM) of theDesign-Expert
Software V7.0 was used to construct the mathematical mod-
els in this study. The mathematical model used in RSM is
typically a first or second-order polynomial model based on
regression analysis. The first-order model follows as Eq. (1),
which includes only the main effects of the variable. In this
equation, Y is the response variable of the system, and ε is
the normally distributed dependent variable.

Y � b0 +
∑k

i�1
bi xi + ε (1)

While the curvature in the true response surface is strong
enough that the interaction of variables is there, a second-
order model is likely to be required. Equation (2) indicates
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the general second-order model where, bij � 0, 1, 2…, k are
the regression coefficients.

Y � b0 +
∑k

i�1
bi xi +

∑k

i�1
bii x

2
i

+
∑

i< j

∑k

j�2
bii xi x j + ε (2)

In this study, a historical data-dependent experimental
design was employed in modeling. The models relate the
selected parameters-cutting speed, feed rate, and work-piece
hardness to each of the responses—cutting temperature and
surface roughness for HPC cutting condition. Accordingly,
various statistical validity tests were performed to check the
acceptability of the developed models.

4 Genetic algorithm (GA) based
multi-objective optimization

The optimization model formulated in the present work is
a bounded constraint multi-objective optimization problem
solved by real-valued GA named continuous GA. Compared
to binary, continuous GA is faster and requires less storage.
GA is considered as natural selection and natural genetics-
based search algorithms. The procedure is generative and
starts with a random ‘initial population’. The double vec-
tor type population was selected for the present problem as
this is the mixed-integer program. A fitness function F(x) is
first derived from the objective function f(x) and used in suc-
cessive genetic operations. The population is comprised of
a group of chromosomes that are developed through several
consecutive iterations. For the production of offspring each
of the populations is evaluated and then selected according
to the fitness value. The offspring are then inserted into the
population replacing the parents, producing a new genera-
tion. The new population is further evaluated and tested for
termination. This whole process of GA encompasses three
leading operators- selection, crossover, and mutation.

4.1 Selection

The selection operator selects the fittest candidate from the
current generation. It selects good strings in a population
and forms a mating pool with a probability proportional to
the fitness (Fi). Since, population size is usually kept fixed
in simple GA, the sum of the probability (pi ) of the strings
being selected for the mating pool must be 1. pi of selecting
the ith string is given in the following equation-

pi � Fi∑
Fj

where, i and j vary from 1 to n, n being the population size.
Amongmany of the selection mechanisms, roulette wheel

selection (RWS) and tournament selection (TS) is favorable
to many researchers. As RWS cannot handle negative fit-
ness values and a minimization problem directly [45]; TS
is chosen to apply in this study. TS can handle either mini-
mization or maximization problems and minimize the early
convergence of the algorithm [46]. TS involves running sev-
eral tournaments among a few individuals at random. If the
tournament size is larger, weak individuals have a smaller
chance to be selected. In each tournament, the individual
with the best fitness is selected for crossover.

4.2 Crossover

Parents are recombined by a crossover operator to produce
new solutions called offspring. New strings are created by
exchanging information among strings of the mating pool.
In most of the crossover operators, two strings are picked
from the mating pool at random and some portions of the
strings are exchanged between the strings. The crossover
operator is divided in many ways such as single point, two-
point, uniform, arithmetic, etc. Due to the ability to operate
on any chromosome representation, the two-point crossover
was used here. This crossover process is shown as follows:

Parent strings Offspring

Two-point cross-over
1101 0010011 011

1101 1100001 000

1101 1100001 000

1101 0010011 011
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The vertical line indicates the chosen crossover point. If
good strings are created by crossover there will be more
copies of them in the next mating pool generated by the
reproduction operator. But if good strings are not created by
crossover, they will not survive too long. Thus, the crossover
operator is not applied to all parents but it is applied with
probability which is normally set equal to 0.6 to 0.95 [42].
Here, the crossoverwas performed,with the chosen crossover
rate of 0.8.

4.3 Mutation

The mutation operator is used to maintain genetic diversity
from one generation of a population to the next. Thus, muta-
tion provides diversity in the population and enables the GA
to search a broader space. This operator randomly changes 1
to 0 and vice-versa with a small probability, normally 0.001
and 0.01 [47]. With non-binary representations, the mutation
is achieved by either perturbing the gene values or random
selection of new values within the allowed range. Here, as
the problem is constraint associated, the ‘adaptive feasible’
type of mutation was used. This function randomly generates
directions that are adaptive concerning the last successful or
unsuccessful generation. The mutation chooses a direction
and steps length that satisfies bounds and linear constraints.

These successive operators are repeated for several gen-
erations to get the best solution or solution set. But, there is
no distinct way of recognizing how large this number should
be. Here, ANOVA is performed on several GA runs while
the number of generations is varied. The highest number of
generations with no differences in means with compared one
is selected for the final GA run.

The ultimate goal of MOGA is to identify solutions in
the Pareto optimal set. The expression of a general multi-
objective design problem for minimization is following:

min F(x) � ( f1(x), f2(x), . . . , fk(x))

s.t . x ∈ S

x � (x1, x2, . . . ., xn)

where, f1(x), f2(x), . . . , f k(x) are the k objectives func-
tions, x1, x2, . . . ., xn are the n optimization parameters, and
SεRn is the solution space.

In this study, the fitness value was used to compute the
next generation from the randomly generated initial popu-
lation. To control the superiority of GA for MOGA, ‘Pareto
Fraction’ and ‘Distance Fcn’ were used. The former confines
the number of individuals on the Pareto front. While the lat-
ter maintains the diversity by favoring individuals that are
relatively far away from others holding the same rank on the
front. ‘Phenotype’ is used as the crowding-distance function
that calculates the distance and creates the diversity in func-
tion space. By default, the solver tries to limit the number of

individuals to 35% (Pareto fraction) of the population size.
The solver stops when any one of the three criteria is met.
The first criterion is the maximum number of generations.
The second one is—if the average change in the spread of the
Pareto front over the ‘Max Stall Generations’ (default is 100)
is less than the specified tolerance (default is 1e−4). The last
condition is themaximum time limit (default is infinite). Two
performance measures—average distance and spread were
used for numerical comparison of the non-dominated fronts.
These measures with smaller values are considered capable
of finding a better diverse set of non-dominated solutions.
At last, a distance-based performance index is used to detect
the best combination of parameters among Pareto front solu-
tions. This index measures the closeness of Pareto solutions
to the ideal point called mean ideal distance (MID) and is
calculated as follows:

MID �
∑m

i�1

√(
fi j− f bi
f w
i − f bi

)2

n
j � 1, 2, . . . , n (3)

where n is the number of generated non-dominated solutions
from MOGA, m is the number of the objective function, fi j
is the value of jth solution of objective function i, f bi is the
best or ideal value of objective function i and f w

i is the worst
value of objective function i subject to existing constraints.
The solution that holds the lowestMID is the best one among
Pareto front solutions.

5 Result and discussion

5.1 Performance evaluation of dry and HPC assisted
machining

The role of HPC on average chip-tool interface temperature
in turning different hardened 42CrMo4 steel at several speed-
feed combinations compared to dry cut is shown in Fig. 2.
It can be noticed that the increasing trend of cutting tem-
perature (T ) with the increase of cutting speed (V ) -feed
(f ) -work-piece hardness(H) is common for both machin-
ing environments. But, T is found extensively lower in
HPC-assisted machining compared to dry cut. In dry cut-
ting conditions, the maximum T was 700 °C for the utmost
V (165 m/min), f (0.16 mm) and H (56HRC). However, in
the case of HPC delivery at the same machining combina-
tion, the maximum T reached 407 °C, almost two-third of
dry cut. The lowest temperature (107 °C) was found in the
HPC setting is green marked in Fig. 2a. The forced double
jet of coolant made it possible to infiltrate into the whole cut-
ting region. So that, the heat was eradicated rapidly from the
zone and the chip-tool contact length and time were reduced.
These ultimately result in a lower value of temperature.
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Fig. 2 Variation of cutting temperature under different cutting conditions for turning hardened 42 CrMo4 steel with hardness of a 42 HRC b 48
HRC and c 56 HRC

As an indicator of product quality, surface roughness was
investigated to evaluate the relative role of HPC over dry cut.
The value of surface roughness (Ra) attained after machin-
ing at stated speed-feed-hardness combinations under dry
and HPC conditions are shown in Fig. 3. The surface finish
is improved with the increase of cutting speed. On the con-
trary, with the increase of feed and work-piece hardness, the
machined surface deteriorates.However, there is a substantial
reduction of surface roughness at all of the turning operations
due to HPC compared to the dry cut. The resulting maxi-
mum Ra for the dry cut was 1.6 μm while this was reduced
to 1.1 μm for HPC machining. The desired lowest value of
Ra (0.72 μm) results in the HPC condition shown in Fig. 3a
(green marked). Therefore, the HPC jet capably assisted in
lifting the chips and consequently prevent the work surface

from rubbing against the chips. This essentially drops the
surface roughness value.

The decline result of T and Ra due to HPC application
is illustrated in Fig. 4a–b. Figure 4a shows that in most of
the cases, the reduction percentage of T was falling with
the increase of V and f . For Ra, this reduction percentage
(Fig. 4b) indicates an increasing trend at lower V and f in
most of the runs. However, the H value does not show any
specific relation for both of the responses. The highest reduc-
tion of T was found at about 71% for 48HRC work-piece
machined at the lowest V and f (54 m/min–0.12 mm) con-
dition. Besides, the lowest T percentage reduction (41.86%)
was obtained at the highest V and f (165 m/min–0.16 mm)
situation in turning of 56HRC steel. Another remarkable fact
is that under the high-speed condition the reduction amount
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Fig. 3 Variation of surface roughness under different cutting conditions for turning hardened 42CrMo4 steel with hardness of a 42 HRC b 48 HRC
and c 56 HRC

becomes small than low speed. The reason is that, at high cut-
ting speed, plastic contact is increased and made the jet less
effective to enter into the interface. The reduction percent-
age of Ra was found maximum (56.67%) for the machined
surface of 48HRC work-piece at low V (54 m/min) and high
f (0.16 mm), condition, whereas, lowermost (22.66%) was
found for 56HRCwork-piece at high V (165 m/min) and low
f (0.12 mm).

5.2 Effects on responses for HPC jet machining

To investigate the pattern of parametric effects and the best
run setting for desired individual responses experimental data
are analyzed by S/N ratio, perturbation and contour plot.

The characteristic- S/N ratio is applied here to identify
the effective factors that reduce the process variability by
minimizing the effects of uncontrollable (noise) factors. At
the same time, the optimal level of the process factors with
a higher S/N ratio for a response is also detected. In turning
operation, the desired value of selected responses (T and
R) is minimum. Hence, the smaller the better S/N quality
characteristic is selected and can be calculated as follows:

S/
N � −10log

1

n

(
n∑

i�1

y2i

)

where yi is the observed data at ith experiment and n is the
number of experiments.
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Fig. 4 HPC application effects on percent reduction of a Cutting temperature b Surface roughness

Table 3 The response for S/N ratio

S/N ratio for T S/N ratio for Ra

Level Delta Rank Level Delta Rank

1 2 3 4 1 2 3 4

V − 42.37* − 43.53 − 45.09 − 47.85 5.48 1 − 0.72 − 0.16 0.87 1.53* 2.25 2

f − 43.34* − 44.64 − 46.15 -- 2.80 2 0.77* 0.45 − 0.07 -- 0.84 3

H − 43.28* − 44.88 − 45.96 -- 2.68 3 1.36* 1.10 − 1.31 -- 2.67 1

*Means the optimum level

Fig. 5 Main effect plot for S/N
ratio of T

Table 3 shows the calculated S/N ratio for T andRa at each
level of the machining parameters. Based on the data pre-
sented in this table and Figs. 5 and 6 it can be inferred that the
best combinations of parameters for minimizing temperature

and surface roughness areV1f 1H1 andV4f 1H1, respectively.
The ranking of the parameters is calculated based on the dif-
ference (delta) in the S/N ratio. The rank in Table 3 indicates
the foremost parameter that affects cutting temperature is
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Fig. 6 Main effect plot for S/N
ratio of Ra

V followed by f and H. Whereas, for surface roughness, H
ranked as the dominant parameter followed by V and f .

The perturbation plots of Fig. 7a–b depict the comparison
of the variable effects at the center point in the design space.
Here, cutting speed appeared as the most significant positive
influential factor on the temperature, whereas, for surface
roughness, a negative influence is observed. These figures
also illustrate that feed has a secondary positive effect on both
responses. In addition, work-piece hardness shows aminimal
degree of positive effect on cutting temperature (Fig. 7a).
Conversely, from Fig. 7b it is seen that hardness value has
the most substantial positive effect on surface roughness jux-
taposed to other factors. The best-run setting providing the
lowest temperature (136 °C) is seen in Fig. 5a, which cor-

responds to the lowest V (54 m/min), f (0.12 mm) and H
(42HRC). From Fig. 5b the best-finshed surface (0.82 μm)
is found at the highest V (165 m/min). Better finished sur-
face also occur at lowest f (0.12mm) and lowerH � 43HRC.
These combinations for two responses confirm the findings
of the S/N ratio.

The interaction effects of parameters can be analyzed from
the contour plot (Fig. 8a–c) based on the legend and color-
coding. Here, the 2D plots represent a particular response
for any of the two factors while the other one is constant at
its mid-value (V � 109.50 m/min, f � 0.14 mm and H �
50HRC). The contour plots indicate the fact that all combi-
nations of elevated cutting speed, higher feed, and greater
work-piece hardness result in upraised cutting temperature.

Fig. 7 Perturbation plot a Cutting temperature b Surface roughness
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Fig. 8 Contour plot for temperature a Cutting speed versus Feed b Cutting speed versus Work-piece hardness c Feed vs Work-piece hardness

That is, it is apparent that lower value (deep blue color region)
of temperature occur at lower V − f , V −H and f −H com-
bination. The least value (118 °C) comes from the lowest V
(82 m/min)−H (42HRC) at f � 0.14mm (Fig. 8b) and from
the lowest f (0.12 mm) − H (42HRC) at V � 109.50 m/min
(Fig. 8c). In the case of surface roughness desired lower value
is observed at the low f −H interaction (Fig. 9c), while, V −

f (Fig. 9a) and V −H (Fig. 9b) interaction give the opposite
result. That is, the better surface is found at low f −H; highV
and low f ; and at high V and low H. From Fig. 9b minimum
roughness (0.72 μm) is found that takes place at the highest
V (165 m/min) − lowest H (42HRC) while f � 0.14 mm.

Therefore, cutting temperature increases with the increase
of work-piece hardness level and speed-feed value. As more
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Fig. 9 Contour plot for surface roughness a Cutting speed versus Feed b Cutting speed versus Work-piece hardness c Feed vs Work-piece hardness

cutting speed-feed is engaged in machining, more material
removal rate takes place ensues high energy consumption
eventually results in the dissipation of more heat. Besides,
higher cutting force generates during machining of hardened
material which is also responsible for producing high tem-
perature.Geometrically the surface roughness caused by feed
marks only depends upon the value of the feed rate. That is,

with the increase in feed rate surface roughness increased
at a high rate. Moreover, surface roughness is considered
as a secondary level of response which mainly depends on
cutting temperature and force. Machining at a higher speed,
rapid cooling facilitates the thermal softening of thematerial,
subsequently resulting in a reduced amount of cutting force.
This leads to a lower surface roughness value. Furthermore,
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Table 4 Sequential sum
Sequential model sum of
squares for cutting temperature
and surface roughness

Source Cutting temperature Surface roughness

F Value p-value>F Remark F Value p-value>F Remark

Linear versus Mean 50.91 0.000 91.10 0.000

2FI versus Linear 14.73 0.000 0.35 0.7860

Quadratic versus 2FI 5.17 0.006 Suggested 46.65 0.000 Suggested

Cubic versus Quadratic 10.62 0.000 Aliased 11.14 <0.000 Aliased

Table 5 ANOVA for cutting temperature and surface roughness model

Source df Cutting temperature model Surface roughness model

Sum of Square Mean Square F Value p-value>F Sum of Square Mean Square F Value p-value>F

Model 9 1.44E5 15,939.47 64.32 0.00 1.07 0.12 179.50 0.00

V 1 82,986.52 82,986.52 334.86 0.00 0.30 0.30 449.22 0.00

f 1 28,446.53 28,446.53 114.78 0.00 0.057 0.057 85.60 0.00

H 1 17,221.07 17,221.07 69.49 0.00 0.69 0.69 1034.8 0.00

Vf 1 7441.45 7441.45 30.03 0.00 7.71E − 6 7.7E − 6 0.012 0.92

VH 1 7050.69 7050.69 28.45 0.00 6.19E − 4 6.2E − 4 0.93 0.34

fH 1 1185.47 1185.47 4.78 0.04 3.41E − 3 3.4E − 3 5.15 0.03

V2 1 2841.16 2841.16 11.46 0.00 4.51E − 3 4.5E − 3 6.81 0.02

f 2 1 242.00 242.00 0.98 0.33 8.68E − 4 8.7E − 4 1.31 0.26

H2 1 762.76 762.76 3.08 0.09 0.087 0.087 131.84 0.00

Residual 26 6443.50 247.83 0.017 6.6E − 4

Corr. Total 35 1.499E5 1.09

R2 Adj R2 Pred R2 Adeq Prec R2 Adj R2 Pred R2 Adeq Prec

0.96 0.94 0.90 31.96 0.98 0.98 0.97 48.30

the increase of cutting speed leads smoother chip-tool inter-
facewith aminor chance of built-up-edge formation thatmay
be attributed to a good surface finish. Particularly for harder
work-piece, this surface finish deteriorated. The accelerated
toolwear for the insert interactionwith hard particles ofmate-
rials is may be responsible for this.

5.3 RSM basedmodelling and optimization

5.3.1 Analysis of developedmodels

The experimentally measured results of cutting temperature
(T ) and surface roughness (Ra) from each run of HPC-
oriented machining were inserted into the Design-Expert
Software. At first, the selection of the not aliased highest
order polynomials was performed by fit summary analy-
sis. Additionally, other adequacymeasures—adjustedR2 and
predicted R2 with maximum values were evaluated for sta-
tistical model fitting. Consequently, the ANOVA for both
response models was made to check the regression model
and the significance of model terms.

The model fit summary output presented in Table 4
shows the recommendation of the quadratic model for the

two responses as Probability>F is less than 0.05. The
highest-order polynomial with significant additional terms
was selected and the model was not aliased. Hence, it is
apparent that the quadratic models are statistically fitted to
the measured data.

ANOVA of each response surface model is presented in
Table 5. Model terms were assessed by the F probability
value with a 95% confidence level, and the significance of
each coefficient was checked by the P values. The F and P
values are, respectively 64.32 and<0.00 for T and 179.50
and<0.00 for the R model, respectively. These values indi-
cate that the selected models are highly significant. There is
only a 0.01% chance that the F values could occur due to
noise. The P values of less than 0.05 imply the models as
statistically significant. According to this, from Table 5 it is
apparent that the main effects of cutting speed (V ), feed (f ),
hardness (H), the interactions of V − f and V −H, and the
quadratic effect −V2 are the most significant terms (P �
<0.00) for the T model. While, the interaction of f −H is
the last significant term (P � <0.04) for T . Again, for the
R model it can be inferred that, V , f , H and H2 (all P �
<0.00) followed by V2 (P � <0.02) and f −H (P � <0.03)
are significant terms. This table also shows the values of R2,
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Fig. 10 Normality Test a Cutting temperature b Surface roughness

adjusted (adj.) R2 and predicted (pred.) R2. The R2 value
is desirable, which is close to 1 for both models (0.96 and
0.98) imply the existence of a high correlation between the
model and experimental values. The adj. R2 is 94% for T ,
and 98% for Ra means that the models are well fitted with
the number of independent variables. Besides, for both mod-
els, pred. R2 (0.90 and 0.97) is not that much smaller than the
R2 value directs the models’ applicability in prediction for
new observations which are not overfitting models. Further-
more, adequate precision ratios of T (31.96) and Ra (48.30)
are well above 4 indicate adequate signals to use the models.
The developed models determined by the software are given
below:

T � 509.8971 − 6.1557V − 7456.9432 f + 9.5674H

+ 21.2001V f + 0.0588V H + 61.2753 f H + 0.0066V 2

+ 13750 f 2 − 0.2041H2 (4)

Ra � 6.3609 − 0.0048V − 9.9009 f − 0.2085H

− 0.0007V f + 0.000017V H + 0.1039 f H

+ 0.0000083V 2 + 26.0417 f 2 + 0.0022H2 (5)

5.3.2 Statistical validity test

The normal probability plots of residual values for cut-
ting temperature and surface roughness are illustrated in
Fig. 10. The experimental data points fall reasonably close
to the straight line indicates the normality of data. Figure 11

shows studentized residuals versus predicted values for the
responses where the residuals are scattered randomly about
zero ensures constant varianceof errors. It also shows that, the
data points are inside±3σ limits and there is no existence of
outliers. That confirms no points to give a misleading result.
Figure 12 displays the interactions of the actual and pre-
dicted values of the responses showing residuals are close to
the diagonal line. That is, both of the models are satisfactory
as well as the predicted results are found in good agreement
with the experimental data.

5.3.3 Result of RSM based optimization

Multi response optimization was carried out based on
the design of experiment-RSM. The optimum values of
parameters- speed (V ), feed (f ) and hardness (H) were
attained by numerical optimization applying the desirabil-
ity function with the range between 0 to 1. The goal used for
the responses cutting temperature (T ) and surface roughness
(Ra) is “minimize” and for the parameters is “within range”.
In this approach, different best solutions are obtained and the
combination with the highest desirability is preferred. A set
of five optimal results is derived for the design space, tabu-
lated in Table 6. The best optimum values for this process are
found asV � 147m/min, f � 0.12mmandH � 42HRCat the
optimal results of T � 138 °C and Ra � 0.73 μm as depicted
in Fig. 13 with the utmost overall desirability of 0.9413. The
dot on each ramp indicates the best solution within the given
boundaries. The desirability of each parameter, response and
combined values are shown in the bar graph (Fig. 14). The
optimal region values holding overall desirability of 0.9413
exhibits proximity to target response.
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Fig. 11 Standardized residual versus predicted plot a Cutting temperature b Surface roughness

Fig. 12 Predicted vs. actual plot a Cutting temperature b Surface roughness

5.4 Analysis of GA-based optimization

The optimization problem consists of two objective func-
tions and variable bounds. The goal function of the model
was to minimize the cutting temperature and surface rough-
ness. To optimize the multi-objective of Eqs. (4) and (5), the
MOGA function ‘gamultiobj’ was used from the toolbox of
MATLAB.

• Objective functions Minimize cutting temperature, f(1)
and surface roughness, f(2).

f (1) � 509.8971 − 6.1557V − 7456.9432 f + 9.5674H

+ 21.2001V f + 0.0588V H + 61.2753 f H

+ 0.0066V 2 + 13750 f 2 − 0.2041H2

f (2) � 6.3609 − 0.0048V − 9.9009 f − 0.2085H

− 0.0007V f + 0.000017V H + 0.1039 f H

+ 0.0000083V 2 + 26.0417 f 2 + 0.0022H2
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Table 6 Optimal solution from
DoE based optimization Solution no V (m/min) f (mm/rev.) H(HRC) T (°C) Ra(μm) Desirability

1 147 0.12 42 138 0.73 0.9413

2 145 0.12 42 136 0.73 0.9412

3 151 0.12 42 141 0.72 0.9411

4 141 0.12 42 133 0.74 0.9404

5 137 0.12 42 130 0.75 0.9388

Fig. 13 Ramp function graph

Fig. 14 Desirability bar graph

• Decision variables The constructed optimization model
consists of three decision variables; cutting speed (V ), feed
(f ) and work-piece hardness (H).

• Variable bounds Following variable bounds were selected
based on the experimental parametric range of decision
variables.

54 ≤ V ≤ 165

0.12 ≤ f ≤ 0.16

42 ≤ H ≤ 56

The results of performed ANOVA test to select the num-
ber of generations (ng) are shown in Table 7. The method

was planned to apply by starting with ng � 100 and testing
successively for every 100 until no more variation in means
is observed. The variations were assessed by the F probabil-
ity value with a 95% confidence level. Here, it is found and
apparent from the table that there is no existence of a signif-
icant difference between ng values of 100 and 200, since (P
>0.05). However, 100 difference of ng between two runs is
trivial for the GA algorithm. So, there might be a possibility
of some differences for a large number. Hence, a continuation
of the successive 5 test runs was carried out and up to 600
there were still no differences found for both of the responses
between the compared runs. So, it can be decided that ng �
600 is enough to obtain the best approximation of the present
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Table 7 ANOVA for cutting
temperature and surface
roughness model

Compared
generations

Objectives Source Sum of squares Mean square F P

ng � 100 versus
ng � 200

f(1) Between groups 121 121 0.29 0.59

Within groups 14,107 415 – –

f(2) Between groups 0.0004 0.0004 0.01 0.92

Within groups 0.1345 0.0040 – –

ng � 200 versus
ng � 300

f(1) Between groups 15 15 0.04 0.89

Within groups 13,409 394 – –

f(2) Between groups 0.0005 0.0005 0.14 0.71

Within groups 0.1301 0.0038 – –

ng � 300 versus
ng � 400

f(1) Between groups 42 42 0.09 0.76

Within groups 15,334 451 – –

f(2) Between groups 0.0001 0.0001 0.03 0.87

Within groups 0.1651 0.0049 – –

ng � 400 versus
ng � 500

f(1) Between groups 2 2 0.00 0.95

Within groups 34 15,677 – –

f(2) Between groups 0.0003 0.0003 0.06 0.81

Within groups 0.1399 0.0041 – –

ng � 500 versus
ng � 600

f(1) Between groups 0 0 0.00 0.98

Within groups 15,439 454 – –

f(2) Between groups 0.0006 0.0006 0.15 0.70

Within groups 0.1344 0.0040 – –

Table 8 MOGA generated optimal cutting parameters with MID

No. of
solution

V (m/min) f (mm/rev) H(HRC) f(1) f(2) MID

1 86 0.12 42 114 0.87 0.109

2 86 0.12 43 119 0.86 0.110

3 117 0.12 42 120 0.79 0.105

4 125 0.12 42 124 0.77 0.104

5 120 0.12 44 134 0.77 0.108

6 124 0.12 44 137 0.76 0.108

7 139 0.13 43 138 0.74 0.107

8 128 0.12 44 142 0.75 0.109

9 151 0.12 43 147 0.72 0.108

10 152 0.12 43 151 0.71 0.109

11 163 0.12 43 161 0.70 0.112

12 164 0.12 43 165 0.69 0.113

13 165 0.12 44 173 0.69 0.117

Pareto front solutions. Table 8 presents the Pareto front set
obtained after 186 iterations at ng � 600. The solutions are
ranked by cutting speed values from the lowest to the highest
order. Figure 15 displays the Pareto front; the obtained non-
dominated solutions, which are subjected to minimization.
Figure 16 indicates the distance measure of each individ-
ual from its neighbors is 0.0165 which is small as desired.
Similarly, Fig. 17 shows the average spread in the distance

0.65

0.7

0.75

0.8

0.85

0.9

110 120 130 140 150 160 170 180

f(2
) 

f(1) 

Fig. 15 Pareto front

measure of individuals about the preceding one. The value
was small (0.0159) as well ensures the diversity of searching
results. MID values are also included in Table 7. Followed
by Eq. (3) the values are computed where f b1 � f b2 � 0 as
the goal of the objectives is minimization. The combination
of V � 125 m/min, f � 0.12 mm, H � 42HRC (solution no.
4) outperforms others in terms of MID criterion as it retains
the least MID (0.104).

To compare the optimal solution set resulting from DoE
andGA (Tables 6 and 8) based optimization it can be inferred
that, latter procedure provides an immense range of paramet-
ric values. As it is seen, GA provides V � 86 − 165 m/min
whereas, a reduced range of 137-151m/min results fromDoE
based optimization. On the other hand, f and H is stuck to
0.12 mm and 42HRC, respectively at the solution set of DoE
based optimization. But, MOGA gives two feed values −
0.12 mm and 0.13 mm and a hardness range of 42-44HRC.
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Fig. 16 Average Pareto distance
plot

Fig. 17 Average Pareto spread
plot

Thus, more options are available to choose from here. At the
same time, compared to DoE based optimization, the lowest
values of desired responses (T � 114 °C and Ra � 0.69 μm)
are possible to get by following any of the respectiveMOGA-
based combinations.

5.4.1 Confirmation experiments

From the non-dominated solution set, three runs (solution
no. 1, 4, 13 of Table 8) were chosen randomly to verify
the prediction of response variables. These three confirma-
tory experimental runs at HPC condition and the response
measurements were carried out by maintaining the same
machining settings stated earlier. This verification revealed a
superior agreement with the predicted response values with
less than 5% error (Table 9) for both of the responses. It is
also notable that, for surface roughness, this error remains
only within 2%.

6 Conclusion

The present research work was aimed to get the opti-
mal cutting condition by satisfying the variable con-
straints of the planned experimental range of cutting speed
(54–165 m/min), feed rate (0.12–0.16 mm/rev), and work-

piece hardness (42–56HRC) while turning 42CrMo4 alloy
steel under HPC condition. The analysis was started with
the evaluation of the effects of HPC over dry condition on
the response of cutting temperature and surface roughness.
Intended for HPC-assisted machining, responses’ predictive
models were developed andMOGAwas performed concern-
ing the stated variables to minimize both of the responses.
The following points can be concluded from the study:

• At the highest speed-feed-hardness condition cutting tem-
perature is maximum for both dry and HPC environments.
However, the high-pressure coolant application facilitated
the reduction of chip-tool interface temperature up to a sig-
nificant level for all experimental runs compared to dry cut.
The temperature percentage reduction ranges from≈42 to
≈71% with an average of 62%.

• Minimum surface roughness is attainable for lower hard-
ened material machining with higher speed and lower feed
for both cutting environments.With the application ofHPC
jet, obtained surface finish is much better than the situation
of dry cut that was found almost 38% less than dry cut.

• Cutting speed and work-piece hardness is the most impor-
tant factor influencing positively the cutting temperature
and surface roughness, respectively. The only negative
effect results for surface roughness possessed by cutting
speed.
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Table 9 Confirmation test result
based on optimization Optimal parameter values Predicted responses Measured responses Error (%)

V (m/min) f (mm) H (HRC) T (°) Ra (μm) T (oC) Ra (μm) T Ra

86 0.12 42 114 0.87 111 0.86 2.70 1.16

125 0.12 42 124 0.77 128 0.78 3.13 1.28

165 0.12 44 173 0.69 181 0.70 4.42 1.43

• The mathematical modeling by RSM provides a quadratic
model for both of the responses for HPC machining. The
ANOVA table also reveals that cutting speed and hardness
has the greatest effect on cutting temperature and sur-
face roughness respectively. Again, in the role of variable
interaction, only cutting temperature shows significant
interaction with a speed-feed combination followed by
speed-hardness. Concerning the quadratic effect of vari-
ables, cutting speed exhibits a significant effect on cutting
temperature whereas, for surface roughness, work-piece
hardness shows the significance level.

• The R2 value for both of the response models is greater
than 95%. That is, the capability of the prediction of the
model is acceptable. In addition, several statistical validity
tests confirm that the predicted models are satisfactory in
describing the performance indicators.

• The Pareto-based method provides non-dominated solu-
tions to problems coupled with GA. Since none of the
solutions in the Pareto optimal set is better than any other,
any of the combinations is an acceptable solution that
can be varied depending on the manufacturer’s require-
ment. The solution set gives the results of input are in the
range of 86 m/min to 165 m/min speed, 0.12 mm/rev to
0.13 mm/rev feed rate and HRC 42 to HRC 44 work-piece
hardness. This optimal outcome set indicates that within
the experimental design under HPC condition machining
at the increased speed while maintaining the lower feed
and work-piece hardness results in lower cutting temper-
ature and surface roughness value.

Acknowledgements The authors would like to acknowledge the sup-
port of the Directorate of Advisory Extension and Research Services
(DAERS), BUET, Bangladesh for allowing laboratory facilities in the
central Machine Shop, BUET to perform the research work.

Funding This study did not receive any grant from any of the funding
agencies.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Senthil Kumar, A., Raja Durai, A., Sornakumar, T.: Machinability
of hardened steel using alumina based ceramic cutting tools. Int. J.
Refract. Metals Hard Mater. 21(3–4), 109–117 (2003). https://doi.
org/10.1016/S0263-4368(03)00004-0

2. Umbrello, D., Rizzuti, S., Outeiro, J.C., Shivpuri, R., M’Saoubi,
R.: Hardness-based flow stress for numerical simulation of
hard machining AISI H13 tool steel. J. Mater. Process. Tech-
nol. 199(1–3), 64–73 (2008). https://doi.org/10.1016/j.jmatprotec.
2007.08.018
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