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Abstract
Titanium alloys have huge applications in the field of aerospace. However, finding the best combination of machining
parameters is still a challenge for many researchers. The present work investigates the influence of cutting parameters on
surface roughness and material removal rate while turning Ti–6Al–4 V using TiCN coated carbide tool. The effect of input
parameters on the output responses is studied using response surface methodology (RSM) and machine learning techniques.
The Box Behnken method (L15 array) is selected to design the set of experiments. In this investigation, three different levels of
speed, feed, and depth of cut are considered as input parameters. The surface roughness andmaterial removal rate aremeasured
for each experiment, and the output factors are optimized using response surface methodology. The cutting parameters are
optimized to obtain the least surface roughness and the highestmaterial removal rate. TheANOVAanalysis confirms that speed
with 44.62% has the highest contribution for surface roughness and depth of cut with 64.43% has the highest contribution for
material removal rate. The Root means square errors (RMSEs) obtained for MRR and surface roughness using an artificial
neural network are 0.397 and 0.291, respectively, which shows significantly less error. The lower the RMSE value, the better
is the model prediction. The machine learning technique (artificial neural network) exhibited 5.04% and 10.66% errors for
surface roughness and MRR, respectively. The percentage error values resulting from the machine learning technique are less
when compared to RSM.

Keywords Ti–6Al–4 V alloy · Surface roughness · Material removal rate · Response surface methodology and machine
Learning

1 Introduction

The essential properties of titanium alloys are excellent
load-bearing ability at high temperature, high strength,
lightweight, and superior corrosion resistance. These alloys
find increased utilization in the fields of automotive, bio-
medical, marine, defense, and aerospace [1, 2]. Turning
titanium alloys is challenging because of their high hard-
ness, low thermal conductivity, and high chemical reactivity,
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reducing the tool life and surface roughness [3, 4]. Turn-
ing Ti-6Al-4 V alloys can be performed better by choosing
the latest cutting tool materials and advanced coated tools
[5, 6]. Surface integrity is one of the most reliable factors
to judge the quality of the machined components. The pri-
mary concern of current industries is to increase productivity,
which hugely depends on the material removal rate (MRR)
[7, 8]. The selection of optimal cutting parameters is cru-
cial to enhance the quality of the industry’s product and
economy. Response surface methodology (RSM), Artificial
neural networks (ANN), Analysis of variance (ANOVA),
Taguchi method, Fuzzy rule, and TLBO are among various
optimization techniques applied to find the optimal cutting
parameters for better results [9–13]. Khalid H. Hashmi et al.
conducted a high-speed milling operation on Ti-6Al-4 V
alloy with coated inserts, ZPMT 09T208 R with ISO JC5015
grade. They developed amodel to study the influence of depth
of cut, speed, and feed on the surface roughness. The depth
of cut (DOC) has the maximum effect on the surface rough-
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ness, followed by cutting speed and feed [14]. Abhineet Saini
et al. concentrated on producing mathematical relationships
among input and output parameters viz., surface roughness,
tool wear, and tool vibration. The optimum cutting parame-
ters are validated, which exhibited a decent agreement with
the predicted results. The feed and the cutting speed are
recognized as the most significant parameters affecting sur-
face roughness, tool vibration, and tool wear, respectively
[15]. Raghavendra M J et al. investigated the effect of opti-
mum machining parameters while turning Titanium grade-5
alloy with PVD coated tools. The ANOVA analysis con-
cluded that speed has 88.92% influence on surface roughness,
and DOC has 48.1% influence on the cutting force [16].
Djordje Cica et al. focused on predicting machining param-
eters using different machine learning techniques, namely
polynomial regression, support vector regression, Gaussian
process regression, and artificial neural networks and also
performed a comparative study. The experimental results are
in good agreement with the predicted results for all machine
learning techniques. TheANNmodel-based indicated results
had shown high accuracy [17]. Ajit Kumar Pattanaik et al.
investigated wear characteristics of different metals using a
lightning search algorithm-simplex method (LSA-SM), and
prediction is made using the ANN method and support vec-
tor machine. The ANN method exhibited better efficiency in
prediction [18]. Lila Imani et al. conducted milling exper-
iments on Inconel 738 and examined the effect of speed,
feed, axial DOC, and coolant on cutting force and surface
roughness. The optimum parameters were predicted using
the ANN model [19].

From the studied literature, it can be concluded that
most researchers applied analytical methods for obtaining
optimum parameters. Though machine learning can derive
nonlinear models straight from estimated input/output data,
very few researchers applied machine learning techniques
that showed excellent accuracy in predicting the optimum
parameters. It is observed that there is no literature available
on the influence of choosing CNC machine for comparing
the predicted machining parameters. The goal of this work
is to compare the predictions of analyitical method (RSM)
with that ofANN in achieving the optimized set ofmachining
parameters.

This research work discusses the methodology of Box-
Behnkenmethod for carrying out experiments and the results
are compared with the predicted results of artificial neural
network model. In this work, titanium alloy (Ti-6Al-4 V) is
machined using a coated carbide tool on a programmable
CNC lathe machine. The cutting parameters are optimized
using RSM and the machine learning techniques are used for
predicting the surface roughness andmaterial removal rate. A
high-level application programming interface (Keras) is used
in Python to build ANN models, which are very flexible to
iterate the state of the art ideas. This method enables faster

Fig. 1 Programmable CNC machine

computation and "go from idea to result" as fast as possible.
It is concluded that in comparison with RSM, the percentage
error in ANN is less.

2 Methodology

2.1 Experimentation

The turning experiments are performed on Ti-6Al-4 V
workpieces of diameter 30 mm and length 200 mm using
CNMG120408MS WS25PT TiCN coated carbide tool on
ACE Micromatic programmable CNC lathe machine as
shown in Fig. 1. TableS 1 and 2 show the chemical com-
position, physical and mechanical properties of Ti-6Al-4 V.
Figure 2 shows the microstructure of the Ti-6Al-4 V tita-
nium alloy. The light area is predominant of the phase α rich
in aluminum and the dark area is predominant of the phase
β rich in vanadium. Using RSM’s Box-Behnken method,
the total number of experiments designed is L15. The cut-
ting parameters selected for the current investigation: speed,
feed, and DOC at three different levels are shown in Table
3. The output parameters considered in this investigation are
surface roughness (SR) and material removal rate (MRR).
Talysurf instrument is used to measure the surface roughness
of the specimens after each experiment [20]. Each specimen’s
weight is measured before and after the completion of each
experiment to calculate the MRR. Table 4 shows the mea-
sured and predicted SRandMRR results. TheRSMandANN
methods are applied to find the optimum cutting parameters
for minimum SR and maximum MRR.

2.2 Response surfacemethodology

After completion of the total number of experiments, depend-
ing on the requirement, some output factors need to be
minimized and some to be maximized with selected input
factors. RSM is one of the best techniques to obtain optimum
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Table 1 Chemical composition
of Ti-6Al-4 V Titanium (Ti) Aluminum (Al) Vanadium (V) Iron (Fe) Oxygen(O)

90% 6% 4% 0.25% 0.2%

Table 2 Physical and mechanical characteristics of Ti-6Al-4 V

Density 4.50 g/cc

Melting point 1650–1670 °C

Tensile strength 895 MPa

Modulus of elasticity 116 GPa

Shear modulus 43 GPa

Hardness, Brinell 70

Elongation at break 54%

Poisson ratio 0.34

Fig. 2 Ti-6Al-4 V microstructure

input factors for the desired output. RSM uses a combined
mathematical and statistical approach for modeling and ana-
lyzing the problems. It alsomeasures the correlation between
the input cutting factors and the obtained output response.
The central composite andBox-Behnkendesigns are themost
effective for fitting second-order polynomials to response
surfaces. They apply a relatively small number of obser-
vations to estimate the parameters. The Central Composite
Design (CCD) and the Box-Behnken design are preferred for
three levels and three factors in experimental techniques. Box
-Behnken projected three-level designs for fitting response
surfaces, which are developed by combining 2 k factorials
with incomplete block designs [21]. Usually, a second-order
model (Eq. 1) is generally employed to find a correct approx-
imation for the functional connection between the input and
output factors.

Z � βo +
k∑

i�1

βi Xi +
k∑

i�1

βi i X
2
i +

∑

i

∑

j

βi j Xi X j + ε (1)

where Z is the output factor, βo is the fixed term; βi ,βi i ,βi j

are the coefficients of linear, quadratic, and cross product
terms, respectively, and Xi is the input factor [21].

Table 3 Selected cutting parameters

Parameters Level-1 Level-2 Level-3

Speed (rpm) 900 1200 1500

Feed (mm/rev) 0.15 0.25 0.35

DOC (mm) 0.5 0.75 1.0

Fig. 3 ANN model

Analysis of variance (ANOVA) goes hand in hand with
RSM. Using ANOVA the interaction between the input fac-
tors and the resulting response factors are determined. It also
helps in assessing the statistical significance of each param-
eter.

2.3 Machine learning

In recent times, machine learning techniques, particu-
larly artificial neural networks (ANN), have grabbed many
researcher’s interests in all engineering fields [22]. The infor-
mation processing ability of the human brain has inspired
ANNto achieve human-like performance [23].ANN is useful
for modeling the machining processes to predict interrelated
parameters. Using data preprocessing, the numpy, the pan-
das and thematplotlib libraries are imported to build anANN
model.

The data is imported and defines dependent and indepen-
dent variables. The pair-plot generated is shown in Fig. 3,
which represents the matrix of relationships among the vari-
ables. While building ANN models, Keras library files are
imported in python,where TensorFlow (free and open-source
software library for machine learning) is used in the back-
hand. Two modules were imported from Keras, in which
Sequential is the first for initializing the model, and then
the second module, Dense, is used to add different layers in
the ANN model. The parameters included in the input and

123



456 International Journal on Interactive Design and Manufacturing (IJIDeM) (2021) 15:453–462

Table 4 Measured and predicted
output factors S. No Speed Feed DOC SR (μm) MRR (g/sec) Pred SR(μm) Pred MRR(g/sec)

1 900 0.25 0.5 1.503 0.38 1.525 0.44

2 900 0.25 1 1.716 0.63 1.650 0.56

3 1500 0.25 0.5 1.942 0.33 1.488 0.40

4 1500 0.25 1 2.585 1.48 2.513 1.42

5 900 0.15 0.75 0.747 0.98 2.049 0.96

6 900 0.35 0.75 0.839 0.9 2.022 0.93

7 1500 0.15 0.75 1.521 1.28 2.337 1.25

8 1500 0.35 0.75 1.862 1.45 2.559 1.47

9 1200 0.15 0.5 0.754 0.48 1.533 0.44

10 1200 0.35 0.5 1.691 0.47 1.470 0.38

11 1200 0.15 1 1.319 0.77 1.948 0.86

12 1200 0.35 1 2.385 1.08 2.205 1.12

13 1200 0.25 0.75 2.021 1.38 1.801 0.85

14 1200 0.25 0.75 1.487 0.42 1.801 0.85

15 1200 0.25 0.75 1.477 0.75 1.801 0.85

first hidden layer are the numbers of neurons � 25, input
dimensions � 3, and activation function � relu. In the sec-
ond hidden layer, neurons � 25, activation function � tanh,
and in the output layer, output dimensions � 1 and linear
function are used because the output response is a continu-
ous variable.

After initializing the model, the next step is compiling the
model. The optimizer Adam is used to get optimal weights
and the other parameter used is the mean squared error loss
function (since the output response is a continuous variable).
The data is then fitted usingX_train, Y_trainmodel by taking
25 percent out of total experiments for validation followed
by the parameter epoch. In this work, its value is considered
500.

3 Results and discussion

RSM is employed to examine the impact of cutting parame-
ters on output results while turning Ti-6Al-4 V using a TiCN
coated carbide tool on a CNC programmable lathe machine.
Figure 4a–b shows the standard probability plots for SR and
MRR, which provide information about the distribution of
residual data points. From Fig. 4a–b, it is understood that
there is no deviation among the data points, which represents
an inclined-line formdesignating that the errors are dispersed
equally. Figure 5a–b displays the connection between the
actual and predicted SR and MRR. From the data points pat-
tern, as shown in Fig. 5a–b, it is understood that the generated
model and the calculated results are in decent agreement. The
coexistence of data points with the fitted line authenticates
that the model is valid with the smallest errors.

(a) (b)

Fig. 4 Normal Probability of a surface roughness and bMRR
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(a) (b)

Fig. 5 Actual vs Predicted data of a surface roughness and bMRR

Table 5 ANOVA results for SR
Source DF Adj SS Adj MS F-Value % Contribution

Speed 1 1.20490 1.20490 10.53 44.62

Feed 1 0.76632 0.76632 6.70 28.39

DOC 1 0.58034 0.58034 5.07 21.48

Error 5 0.57223 0.11445

Lack of Fit 3 0.37850 0.12617 1.30 5.85

Pure Error 2 0.19373 0.09687

Total 14 4.18279 100

Model Summery S R-sq R-sq (adj) R-sq (pred)

0.338300 86.32% 61.99% 0.00%

Table 6 ANOVA results for
MRR Source DF Adj SS Adj MS F-Value % Contribution

Speed 1 0.34031 0.34031 3.32 33.16

Feed 1 0.01901 0.01901 0.19 1.89

DOC 1 0.66125 0.66125 6.45 64.43

Error 5 0.51287 0.10257

Lack of Fit 3 0.03707 0.01236

Pure Error 2 0.47580 0.23790 0.05 0.49

Total 14 2.31734 100

Model Summery S R-sq R-sq (adj) R-sq (pred)

0.338300 77.87% 38.03% 28.20%

The ANOVA technique is applied to find each input
parameter’s contribution to output responses viz material
removal rate and surface roughness, which confirms the
impact of individual parameters, squares, and interactions
on the output factors [23–25]. The F-values exhibit the sig-
nificance of each input parameter on the model. The multiple
regression investigations of the above second-order polyno-
mials and their validation is carried out using ANOVA for
the corresponding machining responses are shown in Table 5
and 6. The generated R2 value confirms the predictive capa-
bility of the model. The models developed for SR and MRR

are found significant at a 95% confidence level. The obtained
regression equations for SR and MRR are shown in Eqs. (2)
and (3).

3.1 Analysis of surface roughness

In this investigation, the output response surface roughness
(SR) is assigned smaller, the better criterion. From Table
5, it is clear that speed has the highest impact on SR, fol-
lowed by feed andDOC. Speed, feed, andDOChave 44.62%,
28.39%, and 21.48% influence on SR. A slight variation in
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speed and considerable variation in DOC has the most and
least impact on SR, respectively. Figure 6a–c shows the col-
lective effect of cutting parameters at different hold values:
DOC (0.75 mm), speed (1200 rpm) and feed (0.25 mm/rev)
for SR. It is observed that with the decrease in cutting speed
from 1500 to 900 rpm, the SR decreases, and with a decrease
in DOC from 1 to 0.75 mm, the SR decreases and further
decreases in DOC to 0.5 mm, the SR increases slightly. It is
also understood that to achieve the best surface roughness,
the optimum combination of cutting parameters are the speed
at level-1 (900 rpm), feed at level-1 (0.15 mm/rev), and DOC
at level-2 (0.75 mm). It is well-known from the fundamen-
tals of metal cutting that the feed influences the pitch of the
machined surface profile (SR � f2/8r), where f � feed and r
� nose radius. Hence, surface roughness increases with the
increase in feed. This is because, at higher cutting speeds
and feeds, the tool traverses the workpiece too fast, resulting
in deteriorated surface quality, and also the combination of
high speed and high feed increases the chatter and vibrations
in machines, which leads to more elevated surface roughness
[26].

3.2 Analysis of material removal rate

In this investigation, the output response viz., material
removal rate (MRR) is assigned larger, the better criterion.
From Table 6, it is clear that the DOC has the most signifi-
cant impact on the MRR, followed by speed and feed. DOC
has 64.43% influence on MRR, followed by the speed with
33.16%, and feed with 1.89%. A slight variation in DOC and
a considerable variation in feed have the most and least sig-
nificant deviation in MRR, respectively. Figure 7a–c shows
the collective effect of variation of cutting parameters at
hold values: DOC (0.75 mm), speed (1200 rpm), and feed
(0.25 mm/rev) for MRR. With an increase in DOC from 0.5
to 1mmand speed from900 to 1500 rpm, theMRR increases.
To attain the highest MRR, the optimum combination of cut-
ting parameters is the speed at level-3 (1500 rpm), feed at
level-3 (0.35 mm/rev), and DOC at level-3 (1.00 mm). As
the depth of cut and feed increases, MRR also increases.
This is mainly due to more volume of chips generated during
machining [27, 28].

Fig. 6 a Combined effect of speed and feed on surface roughness(SR),
b Combined effect of feed and DOC on surface roughness(SR), c Com-
bined effect of speed and DOC on surface roughness(SR)
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Fig. 7 a Combined effect of speed and feed on Material removal rate,
b Combined effect of feed and DOC on Material removal rate, c Com-
bined effect of speed and DOC on Material removal rate

3.3 Regression equations for Surface roughness
andMaterial removal rate

Surface roughness � 0.46 − 0.00017speed + 20.7feed

−7.59DOC −0.000000speed∗ speed
− 41.4feed ∗ feed + 4.48DOC

∗ DOC + 0.00208speed ∗ feed

+ 0.00143speed ∗ DOC

+ 0.89feed ∗ DOC

(2)

Material removal rate � 1298 + 29.3speed + 20349feed

− 60193DOC − 0.0114speed

∗ speed

− 132089feed ∗ feed + 34810DOC

∗ DOC + 12.5speed ∗ feed

+ 4.0speed ∗ DOC

+ 51283feed ∗ DOC

(3)

3.4 ANN analysis

In the ANN model, a back-propagation algorithm is used
to predict the machining responses. The number of hidden
layers and the fair number of neurons in each hidden layer
is based on the targets, such as the function’s complexity,
generalization capabilities, the computation time required
for training, and the risk of over-fitting. The network opti-
mization was performed by adjusting the number of hidden
layers and the number of nodes in these layers through a trial
and error method to change the converged error [17]. After
examining different neural network architectures, the results
show that the network structure is accurate with two hidden
layers and 25 neurons and is reliable in the present investiga-
tion. TheADAMoptimization algorithmwas selected among
different trainingmethods because it is relatively easy to con-
figure (the default configuration parameters do well on most
problems). The hyperbolic tangent and relu transfer func-
tions have been used between the input and hidden layers.
A linear transfer function has been used between the hid-
den and output layers as the output is a continuous value.
The model’s evaluation is done for SR and MRR based on
loss propagation, and it achieved stable performancewith not
much difference in training and validation sets as shown in
Fig. 8a and b. The Root mean squared error (RMSE) metric
is chosen to evaluate the model performance, using Eq. (4);
the RMSE value obtained for MRR is 0.397 and for surface
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Fig. 8 a Model loss propagation during training and validation for
surface roughness, b Model loss propagation during training and vali-
dation for material removal rate

roughness is 0.291. The lower theRMSEvalue, and the better
is the model.

RMSE �
√√√√

n∑

i�0

(
y pred − yactual

)2

n
(4)

where ypred � predicted value from ANN.
yactual � experimental value.
n � number of samples.
The result analysis observed that the considered machine

learning technique is an accurate, efficient, and practical tool
for estimating SR and MRR at different cutting conditions.
Among all the machine learning techniques, ANN is one
method that produces the best outcomes with high accuracy
[17].

The results obtained by this technique have been entirely
satisfactory, but few results have variations with predicted
values. Fewer experiments might be one of the reasons for
deviations, and this can be improved by takingmore samples.

3.5 Confirmation test and comparison of RSM
and ANN error

The best combination of cutting parameters found from the
RSM and ANN for SR and MRR is validated with the exper-
iment to authenticate the model’s effectiveness. The optimal
combination for best SR andMRR is at a speed of 1200 rpm,
feed of 0.15 mm/rev, and DOC of 0.75 mm. The comparison
between the experimental result and the predicted outcome
is shown in Table 7. The percentage error using RSM for
surface roughness and MRR is 6.85 and 13.33, respectively.
Whereas for ANN, it is 5.04 and 10.66, respectively. The
percentage error values are within the acceptable range.

4 Conclusion

In the present work, the 2FI models for MRR and SR
have been developed to investigate the influences of cutting
parameters in turning of titanium (Ti-6Al-4 V) alloy. The
experimental plan is based on Box Behnken method. The
influence of cutting parameters such as cutting v, f, d have
been evaluated using RSM and ANN. The following conclu-
sions are drawn based on this study:

• ANOVA is applied to identify the influence of each cutting
parameter on both surface roughness andmaterial removal
rate. Cutting speed (44.62%) significantly impacted sur-
face roughness, followed by feed (28.39%) and depth of
cut (21.48%). The material removal rate is majorly influ-
enced by the depth of cut (64.43%), followed by the speed
(33.16%), and the feed (1.89%) has a minor influence.

• From the response surface methodology, for better surface
roughness, the optimum combination of cutting param-
eters is: the speed at level-1 (900 rpm), feed at level-1
(0.15 mm/rev), and depth of cut at level-2 (0.75 mm) and
for material removal rate: the speed at level-3 (1500 rpm),
feed at level-3 (0.35 mm/rev) and depth of cut at level-3
(1.00 mm).

• The ANN analysis concludes that the predicted values are
promising and reliable. The evaluation of the model also
shown less loss propagation between test and validation
results. The RMSE value obtained is 0.397 for MRR and
0.291 for surface roughness. The lower RSME values indi-
cate the higher accuracy of the model.

• In comparison with RSM, the percentage error in ANN is
less.
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Table 7 Confirmation test and
comparison of RSM and ANN
error

Method Responses Speed Feed DOC (Actual) (Predicted) % Error

RSM Surface roughness 1200 0.25 0.75 1.487 1.589 6.85

Material removal rate(MRR) 1200 0.25 0.75 0.75 0.85 13.33

ANN Surface roughness 1200 0.25 0.75 1.487 1.562 5.04

Material removal rate(MRR) 1200 0.25 0.75 0.75 0.83 10.66

This work is limited to the drymachining of titanium alloy
(which is hard to machine) using coated tool and optimized
using RSM and ANN techniques. This work can be extended
by carrying out wet machining as well as using different
advanced optimization tools.
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