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Abstract
The objective of this study is to present a numerical modeling of mixed-mode fracture in isotropic functionally graded 
materials (FGMs), under mechanical and thermal loading conditions. In this paper, a modified displacement extrapolation 
technique DET was proposed to calculate the stress intensity factor (SIFs) for isotropic FGMs. Using the Ansys Parametric 
Design Language, the continuous variations of the material properties are incorporated by specified parameters at the cen-
troid of each element. Four numerical examples are presented to evaluate the accuracy of SIFs calculated by the proposed 
method. Comparisons have been made between the SIFs predicted by the DET and the available reference solutions in the 
current literature. A good agreement is obtained between the results of the DET and the reference solutions.
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1  Introduction

Functionally graded materials (FGMs) are nonhomogene-
ous composites that possess continuous variations in the 
thermomechanical properties. Due to their potential usage 
in high temperature applications as protective coatings and 
interlayers, fracture mechanics and thermal stress analyses 
of FGMs have been considered by many researchers in the 
past. Various techniques have been developed in order to 
study the behavior of cracks in FGMs under mechanical and 
thermal loading conditions. For crack problems subjected to 
mechanical loading, Anlas et al. [1] have evaluated SIFs in 
FGMs for an edge-cracked plate under uniform mechanical 
loading, using both the strain energy release rate and the 
J-contour integral. Rao and Rahman [2] present a Galerkin-
based meshless method for calculating SIFs for a stationary 
crack in two-dimensional FGMs of arbitrary geometry. Kim 
and Paulino [3–5] extended various finite elements based 

approaches for fracture mechanics analysis of FGMs such as 
modified crack closure method, mixed-mode J-integral and 
interaction integral. Gu et al. [6] have proposed a finite ele-
ment based method for calculating SIFs of graded materials, 
using the equivalent domain integral (EDI) technique. Guo 
et al. [7] considered mode I crack problems in a finite width 
graded orthotropic strip under static loading. Shojaee and 
Daneshmand [8] applied the extended isogeometric analysis 
with orthotropic approach for numerical modeling of sta-
tionary cracks in FGM plane bodies. Martinez-Paneda and 
Gallego [9] evaluated the performance of numerical tools in 
the computational assessment of cracks in FGMs by means 
of the well-known ABAQUS FE code. This analysis is based 
on computational results of fracture parameters SIFs and 
T-stress. Benamara et al. [10] performed mixed-mode crack 
propagation in FGMs subjected to mechanical loads using 
the finite element method (FEM) and the strain energy den-
sity (SED) approach.

For crack problems in FGMs under thermal loads, many 
researchers are considered using different approaches, Yildi-
rim [11] investigated the equivalent domain integral method 
to evaluate the SIFs in FGM under steady-state and transient 
thermal loading conditions. Dag [12] developed the compu-
tational method based on the Jk-integral in order to calculate 
crack tip parameters for FGMs, subjected to mixed-mode 
thermal loading. Yildirim et al. [13] analysed the 3D surface 
crack problems in functionally graded coatings subjected 
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to mode-I mechanical and transient thermal loadings. Chen 
et al. [14] analyzed the influence of nonhomogeneity on 
the standard J-integral and defines a modified J-integral for 
cracked FGM. Amit and Kim [15] evaluated of the non-sin-
gular T-stress and mixed-mode SIFs in FGMs under steady-
state thermal loads by means of interaction integral. Ranga-
raj and Kokini [16] investigated the two-dimensional finite 
element models with a cohesive zone to study quasi-static 
crack extension in functionally graded thermal barrier coat-
ings (TBC). Jin and Paulino [17] considered an edge crack 
in a strip of a FGM to calculate the thermal stress inten-
sity factors (TSIFs) under transient thermal loading condi-
tions. Dag et al. [18] introduced a computational method 
based on the Jk-integral for mixed-mode fracture analysis of 
orthotropic FGMs subjected to thermal stresses. Yildirim 
and Erdogan [19] have used the enriched element technique 
to evaluate mixed-mode SIFs under uniform thermal load-
ing. Kosker et al. [20] investigated three dimensional FEM 
in order to evaluate the mixed-mode SIFs around the front of 
an inclined semi-elliptical crack located in an FGM coating, 
using the displacement correlation technique under the effect 
of transient thermal stresses. Dag [21] proposed a new com-
putational method based on the equivalent domain integral 
for mode-I fracture analysis in orthotropic FGMs subjected 
to thermal stresses.

Some researchers examined the crack problems in FGMs 
under thermomechanical loading conditions. In this direc-
tion, Jain et al. [22] developed quasi-static stress and dis-
placement fields for a crack in an infinite FGM medium 
under thermomechanical loading. Kidane et al. [23] devel-
oped the stress fields near the crack tip for mixed-mode 
crack propagation under thermomechanical loading in FGM. 
Nami and Eskandari [24] investigated 3D-FEM to evaluate 
the SIFS for semi-elliptical circumferential surface crack in 
FGM cylinder subjected to thermomechanical loading (the 
internal pressure and the temperature gradient). Takabi [25] 
presented an analytical and a numerical thermomechanical 
investigation of a thick-walled cylinder made of the FGMs, 
subjected to a pressure and a thermal load. Matthew et al. 
[26] developed a general domain integral method to obtain 
J-values along crack fronts in three-dimensional configu-
rations of isotropic FGMs, subjected to thermomechanical 
loading. Moghaddam et al. [27] analyzed the mixed mode 
SIFs of three-dimensional curved non-planar cracks in 
FGMs, using the interaction energy integral. The FEM is 
employed to extract the SIFs along the front of a lens shaped 
crack in a FGM. Lee et al. [28] developed analytical expres-
sions for dynamic crack-tip stress and displacement fields 
under thermo-mechanical loading in FGM. Zhang et al. [29] 
exploited the numerical manifold method (NMM) to study 
the fracture behavior of two-dimensional FGMs subjected 
to thermo-mechanical loadings. Firstly, the steady-state 

heat conduction simulation of the cracked FGMs is per-
formed, and then the computed temperatures are input into 
the thermoelastic modeling. Moghaddam and Alfano [30] 
deployed the interaction energy integral in the finite ele-
ment framework and carried out an un-coupled thermome-
chanical analysis to extract the mixed-mode SIFs for surface 
cracks in FGM hollow cylinders. Mahbadi [31] estimated 
SIFs of rotating solid disks in isotropic functionally graded 
with a radial crack subjected to a uniform tension at their 
outer surface and a uniform temperature change through the 
body. Abotula et al. [32] studied mixed-mode dynamic crack 
growth in FGMs under thermomechanical loading. Karimi 
et al. [33] has conducted numerical investigations to reduce 
stress concentration in a design with an interactive procedure 
and to identify the most important parameters of a design 
which called target variables.

The objective of this study is to present a numerical mod-
eling of mixed-mode fracture in FGMs. Using the APDL 
code [34], the displacement extrapolation technique (DET) 
is used to determine numerically the SIFs for isotropic 
FGMs subjected to mechanical and thermal loading condi-
tions. In this paper, four numerical examples including both 
mode-I and mixed-mode problems are presented to evaluate 
the SIFs calculated using proposed method. Comparisons 
have been made between the SIFs predicted by displacement 
extrapolation technique DET and available reference solu-
tions in the literature.

The paper consists of four sections. Besides this introduc-
tion, Sect. 2 presents the numerical evaluation of SIFs using 
displacement extrapolation method. In Sect. 3, we present 
several numerical examples to examine the accuracy and 
performance of the displacement extrapolation technique in 
evaluating mixed-mode SIFs for isotropic FGMs subjected 
to thermal and mechanical loading conditions. Finally, the 
major conclusions are summarized in Sect. 4.

2 � Numerical evaluation of SIFs

Among the computational methods developed to study 
fracture mechanics of FGMs, we can mention mixed-mode 
J-integral Kim and Paulino [4], modified crack closure 
method Kim and Paulino [3], interaction integral Kim and 
Paulino [5], equivalent domain integral Dag [21] and con-
tinuum shape sensitivity method Rao and Rahman [35]. In 
this work, the displacement extrapolation technique DET 
proposed for homogeneous materials is modified to calculate 
the SIFs for isotropic FGMs, as follows Benamara et al. [36]:
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where Etip and νtip are the Young’s modulus and the Pois-
son’s ratio given at the crack-tip. ktip= (3 − νtip)/(1 + νtip) for 
plane stress and ktip= (3 − 4νtip) for plane strain. L is the 
length of the singular element side. un (n = b, c, d and e) are 
the nodal displacements at nodes b, c, d and e in the x and 
y directions, respectively.

In this work, the special quarter point finite elements 
proposed by Barsoum [37] are used to obtain a better 
approximation of the field around the crack-tip (Fig. 1), 
where the mid-side node of the element connected to the 
crack-tip is moved to 1/4 of the length of this element.

3 � Numerical results and discussion

The performance of the extrapolation technique for SIFs evalu-
ation in isotropic FGMs subjected to mechanical and thermal 
loading conditions is examined by means of numerical exam-
ples. The following examples are presented:

(1)	 Three-point bending specimen with crack parallel to 
material gradation, subjected to mechanical loading.

(2)	 FGM disk with an inclined center crack, subjected to 
mechanical loading.

(3)	 An edge crack in a FGM plate, subjected to thermal 
loading.

(4)	 Crack in functionally graded thermal barrier coating.

3.1 � Example 1: Three‑point bending specimen 
with crack parallel to material gradation

In this example, three-point bend specimen are considered 
with length L = 54 units, depth 2H = 10 units, and thickness 
t = 1 unit. A crack of length (a) is assumed to initiate parallel 
to the material gradation as shown in Fig. 2.
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A concentrated load P = 1 unit was applied at the middle of 
the beam and two supports were symmetrically placed with 
respect to an edge crack of length a. The three-point bend spec-
imen consists of 2 h units deep FGM sandwiched between two 
distinct homogeneous materials, each of which has depth H–h.

The variation of Young’s modulus in the material gradient 
region is linear, is expressed by:

where

The Poisson’s ratio (ν) is assumed to be constant.
Where E1, E2 and 2h are material parameters. The fol-

lowing data were used in the present analysis:
2h = 1 unit, E1 = 1 unit, and E2∕E1 = 0.05, 0.1, 0.2, 0.5, 

1, 2, 5, 10, and 20.
For each E2∕E1 ratio, three different crack lengths with 

a∕2H  = 0.45, 0.5 and 0.55 were examined such that the 
crack tips were either at the middle of the FGM layer 
( a∕2H  = 0.5) or at the material interfaces ( a∕2H  = 0.45 
or 0.55), as shown in Fig. 3a, b.

The structure considered is meshed by quadratic ele-
ments with 8 nodes and particularly, special elements 
were used to characterize the singularity around the 
crack-tip. The number of element used in this analysis is 
841 elements with 2248 nodes (for a∕2H = 0.45).

The determination of stress intensity factors KI  for 
three crack sizes (a = 4.5, 5 and 5.5 units) is performed 
under plane stress condition.
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Fig. 1   Singular element used for present study

Fig. 2   Three-point bend specimen with crack parallel to material gra-
dation [2]
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Table 1 compare the normalized mode-I SIF 
�

KI

√

H
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�

 

obtained by present method for various combinations of 
E2∕E1 and a∕2H  , with the FEM results of Kim and 
Paulino [38] using J*-Integral method and the results 
obtained by Rao and Rahman [2] using modified interac-
tion integrals based on element-free Galerkin method 
(EFGM). The results obtained is in good agreement with 
that reported by Kim and Paulino [38] and by Rao and 
Rahman [2].

3.2 � Example 2 FGM disk with an inclined center 
crack

We consider a circular FGM disk with a center crack inclined 
by θ = 30° (Fig. 4a). The disc is meshed by quadratic and tri-
angular elements, as shown in (Fig. 4b). A special mesh is 
used to characterize the singularity around the two crack-tips 
(Fig. 4c). FGM disk was meshed by 2688 elements with 6180 
nodes.

The FGM Disk is considered under plane stress condition 
and the variation of Young’s modulus along the radial direc-
tion is given as follows:

r: (disc radius); X1 and X2: (cartesian coordinates).
A point load P = ± 100 units is applied to the top and bot-

tom of the disk, at the coordinate nodes (0, ± 10), respectively.

(6)E(r) = Ee�r

(7)r =

√

X2

1
+ X2

2

Fig. 3   FE mesh for three-point bending specimen: a global FE mesh, b detail of the mesh refinement around the crack tip for different crack 
positions

Table 1   Normalized SIF for three-Point bending specimen

E
2

E
1

Present study Rao and Rahman 
[2]

Kim and Paulino 
[38]

a

2H
= 0.45

 0.1 23.69 23.61 23.47
 0.2 17.51 17.28 17.36
 0.5 11.73 11.45 11.65
 1 8.18 7.95 8.13
 2 5.23 5.15 5.23
 5 2.50 2.51 2.54
 10 1.28 1.31 1.33
 20 0.61 0.65 0.66
a

2H
= 0.50

 0.1 24.89 23.96 23.92
 0.2 19.04 18.36 18.32
 0.5 13.08 12.30 12.57
 1 9.85 9.20 9.46
 2 7.61 7.33 7.31
 5 5.71 5.46 5.49
 10 4.77 4.61 4.58
 20 4.11 3.98 3.93
a

2H
= 0.55

 0.1 13.07 13.40 13.73
 0.2 12.48 12.16 12.79
 0.5 11.69 11.29 11.76
 1 11.14 10.85 11.15
 2 10.63 10.44 10.62
 5 9.97 9.93 9.96
 10 9.52 9.58 9.50
 20 9.13 9.27 9.12
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The displacement boundary conditions are defined as fol-
lows: (X1, X2) = (− 10, 0), (u1, u2) = (0, 0), (X1, X2) = (10, 0) 
and u2 = 0.

Figure 4 shows the applied boundary conditions used for 
this example. The determination of stress intensity factors KI is 
performed under plane stress condition, for following numeri-
cal values:

Table 2 presents FEM results for the mode-I SIF obtained 
by present approach for various values of βa, with those 
reported by other methods using M-integral method [5] and 
modified crack closure method (MCC) [3]. there is a good 
agreement between present evaluation of SIFs results and the 
other available reference in the literature.

The results obtained in examples 1 and 2 allow us to con-
clude that the displacement extrapolation technique modi-
fied for non-homogeneous materials, correctly described the 
stress–strain field around the crack-tip, for plates subjected to 
mechanical loading.

a = 1, r = 10, βa = (−0.5, −0.25, 0, 0.25, 0.5), Ē = 1, 𝜈 = 0.3.

3.3 � Example 3: An edge crack in a FGM plate

This example is selected to verify the present displacement 
extrapolation method for an edge crack FGM plate subjected 
to thermal loads. The FGM plate of dimensions H = 8 units, 
W = 1 unit and a crack of length a = 1 unit is illustrated in 
Fig. 5a.

The values of mode-I SIFs are calculated under plane strain 
and plane stress conditions, using present technique. Figure 5b 
illustrates the complete mesh configuration. The 2D mesh dis-
cretization consists of 2344 elements and 4889 nodes.

The elastic modulus and the thermal expansion coefficient 
of the FGM plate are assumed to follow an exponential grada-
tion as given by the function:

(8)E(X1) = E1e
(�X1)

(9)�(X1) = �1e
(�X1)

(10)� =
1

w
ln

(

E2

E1

)

Fig. 4   a Geometry of FGM disc 
with a central crack, b complete 
mesh configuration, c detailed 
mesh around the two crack-tips
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E1 = 1 a n d  E2 = 5 or 10  ;  �1 = 0.01 (◦C−1)  a n d 
�2 = 0.02 (◦C−1).

In this analysis, we considered a constant Poisson’s ratio 
(ν = 0.3) because it has negligible effect on fracture behavior of 
FGMs under pure mode-I conditions [39]. The thermal bound-
ary conditions are defined as follows:

Two cases were considered in this study:

•	 Case 1 the thermal conductivity coefficient (k) is constant.
•	 Case 2 we considered:

where

(11)� =
1

w
ln

(

�2

�1

)

T0 = 10 (◦C) T1 at
(

X1 = 0
)

and T2 at
(

X1 = w
)

.

(12)k(X1) = k1e
(�X1)

k1 = 1 and k2 = 10.

where the unknowns A and B are obtained from temperature 
boundary conditions.

Table 3 compares the present FEM results for normal-
ized mode-I SIF in FGMs plate under various thermal loads 
with those reported by KC and Kim [15], Walters et al. [26], 
Erdogan and Wu [40], Yildirim [11] and Yildirim et al. [13]. 
The FEM results shows a good agreement with the reference 
results.

Case 1 

Case 2 

3.4 � Example 4: Crack in functionally graded 
thermal barrier coating TBC

In the present problem, an edge crack in functionally graded 
thermal barrier coating under thermal loading has been mod-
elled and analysed using present technique (DET). Figure 6 
shows a functionally graded thermal barrier coating depos-
ited on the bond coat and the metallic substrate. The FGM 
coating consists of 100% zirconium–yttria at X1 = 0 and 100% 
nickel–chromium–aluminium–zirconium (NiCrAlY) bond 
coat at X1 = W1. The metallic substrate is made up of a nickel-
based super-alloy.

The dimensions of FGM TBC along with thermal loading 
and boundary conditions are shown in Fig. 6. Initially the sys-
tem is assumed to be at a uniform temperature (T0 = 1000 °C).

The top and bottom edges of the TBC system are assumed 
to be insulated. Application of temperature boundary condi-
tions drives the system to a steady state condition with tem-
perature T1 = 0.2T0 and T2 = 0.5T0 at left and right edges, 
respectively.

Material property variations of Young’s modulus (E), Pois-
son’s ratio (ν) and thermal expansion coefficient (α) for the 

(13)� =
1

w
ln

(

k2

k1

)

(14)�(X1) = Ae(−�X1) + B

E2∕E1 = 5, �2∕�1 = 2.

E2∕E1 = 10, �2∕�1 = 2, k2∕k1 = 10.

Table 2   Mode-I SIF for an 
inclined center crack in a 
circular FGM disk

βa MCC [3] M-Integral [5] Present study DET

KI KII KI KII KI KII

− 0.50 22.54 14.76 22.91 15.19 22.95 14.84
− 0.25 17.37 12.92 17.53 13.21 17.56 12.94
0 11.45 9.596 11.47 9.73 11.48 9.57
0.25 5.898 5.602 5.862 5.651 5.86 5.56
0.50 2.236 2.412 2.205 2.417 2.21 2.39

Fig. 5   a Geometry of cracked FGM plate, b complete mesh configu-
ration
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FGM coating are represented by power-law type functions, 
which are given as follows:

where subscript (c) denotes FGM coating and subscript (bc) 
symbolizes the bond coat. The thermomechanical properties 
of different constituents of TBC are listed in Table 4.

(15)E(X1) = Ec + (Ebc − Ec)X1
2

(16)�(X1) = �c + (�bc − �c)X1

(17)�(X1) = �c + (�bc − �c)X1

(18)k(X1) = kc + (kbc − kc)X1
2

Figure 7 shows complete mesh configuration with mesh 
detail around the crack-tip. The representative mesh discre-
tization consists of 1734 elements and 4749 nodes.

Figure 8 compares the variation of mode-I SIF for vari-
ous a/W ratios in a FGM TBC using present approach with 
reported by Garg and Pant [41] using element-free Galer-
kin method (EFGM) and by Amit and Kim [15] using 

Table 3   Normalized mode-I SIF in FGMs under thermal loads

The normalizing factor K
0
=
��

E
1
�
1
T
0

1−�
1

��

√

�a

Case Temperature Present study KC and Kim [15] Erdogan and Wu [40] Walters et al. [26] Yildirim et al. [13] Yildirim 
[11]

1 T1 = 0.5T0
T2 = 0.5T0

0.0128 0.0128 0.0125 0.0127 0.0124 0.0128

T1 = 0.05T0
T2 = 0.05T0

0.0244 0.0244 0.0245 0.0241 0.0238 –

2 T1 = 0.2T0
T2 = 0.5T0

0.0335 0.0334 0.0335 0.0335 0.0331 0.0340

T1 = 0.05T0
T2 = 0.5T0

0.0407 0.0406 0.0410 0.0409 0.0404 –

Fig. 6   A crack in a functionally 
graded thermal barrier coating

Table 4   Thermomechanical properties of TBC constituents [41]

Materials E (GPa) � � ( ◦C−1) k (W/mK)

Zirconia–Yttria 27.6 0.25 10.01*10−6 1
Bond coat (NiCrAlY) 137.9 0.27 15.16*10−6 25
Substrate(Ni) 175.8 0.25 13.91*10−6 7

Fig. 7   Complete mesh configu-
ration in a functionally graded
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interaction integral method (M-integral), excellent agree-
ment was observed between three techniques.

In Fig. 9 we have shown the temperature distribution 
in graded TBCs (for a/W = 0.4). It can be clearly seen that 
the temperature field remains unaffected by the presence of 
crack and the heat flux is parallel to the crack surface, along 
x-direction.

The temperature distribution obtained by present study 
was compared with that obtained by Garg and Pant [41]. 
A good agreement in numerical results with the EFGM 
solution.

4 � Conclusion

In this paper, the displacement extrapolation technique used 
for homogeneous materials has been modified and proposed 
to determine numerically the SIFs for isotropic FGM. The 
present method is investigated to analyze the mixed mode 
fracture problems under mechanical and steady-state thermal 
loads. In order to obtain a better approximation of the field 
near the crack tip in graded region, the special quarter point 
finite elements proposed by Barsoum is used.

This paper presents various numerical examples in 
which the accuracy of the present method is verified. A 
comparison of SIF values predicted by FEM and avail-
able reference solutions generated numerically reveals 
the applicability of present technique. This approach has 
been successfully used in evaluating SIFs in FGMs under 
mechanical loading and has also been used in the evalua-
tion of mixed-mode SIFs in FGMs under thermal loadings.

The simplicity and accuracy of this implementation 
show that it can be further extended to study and analyses 
the fracture in graded materials with multi-loading and 
complex geometry conditions.

Fig. 8   Variations of SIF KI along the graded region

Fig. 9   Temperature distribu-
tions in FGM-TBC a Garg and 
Pant [41]; b present study
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Appendix

User subroutine for FGMs under thermal loading.
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