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Abstract
Fused deposition modeling (FDM) is one of the most widely used additive manufacturing processes to produce prototypes 
as well as functional parts from thermoplastics. However, the applications of the FDM process are still limited due to several 
drawbacks, such as poor surface quality, poor mechanical properties, or high built time. It has been deemed that the part 
characteristics and build time can be improved by determining an optimum combination of process parameters. To optimize 
multiple process parameters in FDM, this paper employs a multi-objective particle swarm optimization based on the data 
collected from the experimental study. Four (04) process parameters, namely layer thickness, build orientation, infill density, 
and extrusion temperature are optimized to achieve higher compressive strength and lower build time. The optimization 
results provide information on the combined impacts of the four process parameters on compressive strength and build time. 
This information can aid decision makers with better judgment when dealing with multiple conflicting objectives.

Keywords Fused deposition modeling · Process parameters · Compressive strength · Build time · Multi-parameters · 
Particle swarm optimization

1 Introduction

Additive manufacturing (AM) is a rapidly growing man-
ufacturing technology. AM is often used to produce geo-
metrically complex shaped parts layer by layer, the part 
that otherwise would be difficult to produce with traditional 
manufacturing processes. Also, AM can also reduce prod-
uct development time since a prototype can be produced 
within a short period of time [1]. Stereolithography (SLA), 
fused deposition modeling (FDM), direct metal laser melting 
(DMLM), laminated object manufacturing (LOM), selective 
laser sintering (SLS), selective laser melting (SLM), direct 
metal deposition (DMD), and laser metal deposition (LMD) 
are commonly used AM manufacturing processes that can 
produce metal and nonmetals objects [2].

FDM, one of the AM processes, is an extrusion-based 
AM technology used to produce parts from different ther-
moplastic filaments. ABS (Acrylonitrile butadiene styrene) 

[3–6] and PLA (Polylactic acid) [7–10] are the two most 
commonly used thermoplastics in the FDM process. In this 
work, PLA was employed as the filament material because 
of its biodegradability and low melting point. PLA is more 
rigid but less flexible when compared with ABS. In addition, 
PLA filament and PLA products are less analyzed compared 
to ABS. Another reason for using PLA is that MakerBot 
Replicator Z18 FMD machine was used to produce parts, 
and PLA is the commonly used filament material for that 
particular FDM machine.

Application of the FDM process is not confined to pro-
ducing visual aids and prototypes. Nowadays FDM is also 
used for the production of functional parts such as drilling 
grids in the aerospace industry [10] and catapult design [11]. 
However, the FDM built parts are applied limitedly because 
of their poor dimensional accuracy and/or mechanical prop-
erties [12]. In the FDM process, the thermoplastic filament 
is heated at high temperature, then cooled each layer. Due 
to this heating and cooling process, parts characteristics 
of FDM parts are difficult to predict. Generally, one of the 
major concerns of industries is ameliorating part character-
istics and reducing production time. Due to the nature of the 
FDM process and the interplay among various parameters, 
achieving the optimal combination of process parameters 
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is very challenging. There are several factors such as fila-
ment properties, extruder path planning, STL file resolution, 
and process parameters that are responsible for part quality 
degradation. Process parameters have significant impacts 
on part characteristics and production cost (e.g. build time 
and energy consumption) [8, 9, 13]. A process parameter, 
as well as combinations of two or more process parameters, 
can be responsible for one or more-part characteristics. A 
proper combination of process parameters can purposefully 
optimize brittle characteristics, bonding between deposited 
layers, and a mesostructured configuration of a build part 
[14, 15].

FDM process has several process parameters such as layer 
thickness, build direction, raster angle, raster width, infill 
density, air gap, extrusion temperature, feed rate, and many 
others. One part characteristic, for example, dimensional 
accuracy, surface roughness, mechanical properties, or build 
time, of an FDM part can be improved by choosing an opti-
mal combination of process parameters. In several studies, 
process parameters were analyzed explicitly to determine the 
effects of process parameters on surface roughness, dimen-
sional accuracy, mechanical properties, build time, etc. The 
influence of layer thickness, raster angle, raster width, and 
air gap on the tensile strength was studied by Panda et al. 
[16]. Chacón et al. [7] used experimental analysis in order 
to examine the impact of layer thickness, build orientation, 
and feed rate on PLA parts tensile and flexural strength. 
Sood et al. [6] analyzed five process parameters with three 
levels to improve the compressive strength of ABS parts. 
Similarly, other authors including Noriega et al. [17], Nan-
charaiah et al. [18], Rinanto et al. [19], and Qattawi et al. [9] 
examined the impact of process parameters on different part 
characteristics. The existing research showed that process 
parameters have significant impacts on part characteristics. 
Most of the existing research determined an optimum com-
bination of process parameters by experimental analysis. 
The major drawback of experimental analysis is the opti-
mum combination of process parameters is selected from 
all experimental runs instead of considering the all possible 
values within a range of process parameters. This drawback 
can overcome by applying different numerical optimization 
algorithms.

Many researchers had investigated one-part characteristic 
optimization through optimization algorithms. Sood et al. 
[6] and Rayegani and Onwubolu [20] used quantum-behaved 
particle swarm optimization (QPSO) and differential evo-
lution (DE), respectively, to get an optimum combination 
of process parameters for compressive strength and tensile 
strength. But, the single objective optimization is not always 
practical because, in many realistic cases, functional parts, 
need to meet multiple requirements. This is because of the 
improvement of the one-part characteristic may deteriorate 
other part characteristics due to a combination of parameters 

is not always applicable to optimize all part characteristics. 
It is necessary to determine a combination of process param-
eters that can meet the requirements of multiple characteris-
tics. For this reason, the simultaneous optimization of mul-
tiple part qualities is preferable.

In some recent research, two or more-part characteristics 
were optimized simultaneously. This kind of optimization 
is often known as multi-objective optimization. Sood et al. 
[21] determined an optimum combination of layer thick-
ness, build orientation, raster orientation, raster width, and 
air gap for three directional dimensional accuracies. Liu 
et al. [22] also determined an optimum combination of the 
same five process parameters form tensile, compressive, and 
flexural strength. For multiple part characteristics optimiza-
tion, both groups of researchers used gray Taguchi method 
that converts multiple objectives into a single objective. 
The desirability function also applied in process parameter 
optimization [15]. Srivastava et al. [23] and Peng et al. [4] 
used fuzzy logic approach to determine optimum levels of 
analyzed process parameters for two-part characteristics 
(build time and support material) and three-part charac-
teristics (dimensional error, warp deformation, and built 
time), respectively. One limitation of the above mentioned 
multi-objective optimization methods is that it generated one 
optimum solution. This unique solution may not be valid 
for multiple responses due to the different users’ require-
ments and other process uncertainties. The problem can be 
overcome by multi-objective optimization methods that can 
generate a set of non-dominated solutions, known as a Pareto 
frontier. This kind of solution for FDM parameters optimiza-
tion is more preferable than a unique solution for decision 
makers, so they can customize a certain process parameter 
according to their situations.

The mathematical models that express a relation between 
parameters and part characteristics are often complex and 
non-linear. Some papers had utilized multi-objective opti-
mization algorithms that generate non-dominated solutions. 
Two-part characteristics, strength, and volumetric shrinkage 
were optimized using the NSGA-II (Non-dominated Sorting 
Genetic Algorithm II) approach by Gurrala and Regalla [24]. 
They showed the impacts of build interior, the horizontal 
build direction, and the vertical build direction of both char-
acteristics. Pandey et al. [25] also applied NSGA-II to get 
a set of non-dominated solutions for build time and surface 
roughness. In a paper by Rao and Rai [26], a non-dominated 
sorting teaching–learning based optimization (NSTLBO) 
algorithm was used for multi-objective optimization and 
compared with desirability function and NSGA-II to evalu-
ate the performance of NSTLBO.

In this paper, a multi-objective optimization algorithm 
based on swarm algorithm, known as a multi-objective 
particle swarm optimization (MOPSO) is employed to get 
optimum combinations of process parameters for build time 
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and compressive strength. The work presented combines 
both experimental and simulation approaches. The data for 
analysis and optimization were collected from experimental 
study according to faced centered central composite design 
(FCCCD). In this work, layer thickness, build orientation, 
infill density, and extrusion temperature were considered 
as controllable parameters, and the impacts of all four (04) 
parameters on compressive strength and build time are 
investigated. The impact of the combination of the four (04) 
process parameters (layer thickness, build orientation, infill 
density, and extrusion temperature) in compressive strength 
and build time is still unknown. Build time is important to 
reduce product development time and to increase efficiency. 
Some works showed that build time is affected by process 
parameters [13, 19]. On the other hand, the impacts of pro-
cess parameters on compressive strength were analyzed in a 
few papers [6, 10]. A number of researches showed that layer 
thickness and build orientation are two important param-
eters for improving part characteristics and build time [10, 
27–30]. Conversely, infill density and extrusion temperature 
are two of the least analyzed process parameters.

The main contribution of this paper is exploring MOPSO 
approach in FDM process parameters optimization. In this 
paper, the combination of the two most analyzed param-
eters, layer thickness, and build orientation, and two of the 
least analyzed parameters, infill density, and extrusion tem-
perature, are analyzed to optimize compressive strength and 
build time. This research helps to gain information on the 
impacts of the four (04) parameters on both compressive 
strength and build time. In addition, the results found may 
be used as a support in decision making to perform tradeoffs 
between build time and compressive strength. The proposed 
MOPSO approach can be used for more than two objectives 
as well. The rest of this paper is organized as follows. Sec-
tion 2 describes the machine, materials, and methodology 
used for this research. Section 3 presents the experimental 
and optimization outcomes. In addition, the key findings are 

discussed in Sect. 3. Last, of all, Sect. 4 consists of conclu-
sions and scopes of future research.

2  Materials and methods

2.1  FDM process

In the FDM process, a computer-aided design (CAD) object 
translates into a 3D printer readable format (e.g. STL file), 
and the final part produces from the CAD file. The FDM 
process is demonstrated in Fig. 1. In the figure, part and 
support materials both are fed through the same nozzle, but 
separate nozzles are also used to build material and support 
material in many FDM machines. A spool of thermoplastic 
filament is melted and fed through an extrusion nozzle after 
the nozzle reaches the desired temperature, typically the 
melting point of the filament. The nozzle can move in both 
the X and Y-direction and the semi-molten filament deposits 
on the build platform layer by layer in predetermined direc-
tions. The build platform moves downward (in Z-direction) 
after finishing one layer. The process repeats until the part is 
fully printed. Some post-production processes, for example, 
removal of raft and support material, heat treatment, and 
surface finishing can be additionally performed if required.

2.2  Material and equipment

In this research, PLA is used as the filament material 
because PLA is nontoxic and biodegradable, and PLA is 
also used for producing functional parts such as medical 
devices [31]. There is no international standard for compres-
sive strength testing of parts manufactured by the additive 
manufacturing process. For this reason, the specimen was 
built according to ASTM D695, the international stand-
ard for compressive properties of thermoplastics [32]. The 
dimension of the rectangular-prism-shaped specimen is 

Fig. 1  Schematic diagram of a 
general FDM process [9]
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12.7 mm × 12.7 mm × 25.4 mm was selected according to 
ASTM D695, and the specimen shown in Fig. 2.

To estimate the compressive strength and build time, the 
test specimen was designed in Solidworks, a computer-aided 
design (CAD) modeling software. A MakerBot Replicator 
Z18 was used to produce PLA samples from a CAD design. 
MakerBot recommends using smart extruder with nozzle 
diameter 0.4 mm for printing. In this work, for the experi-
ments, we took the recommendation from the manufacturer 
and used their smart extruder with nozzle diameter 0.4 mm. 

The black color PLA filament was used in the experiments. 
This filament is commercially available with a diameter of 
1.75 mm by 3D Solutech. The compressive strength of the 
specimen was evaluated by INSTRON compressive strength 
testing machine with a load, 30 kN moves uniformly speed 
of 1.3 mm/min. The step-by-step process from part design 
to optimization are summarized in Fig. 3.

2.3  Process parameters selection

FDM process has several process parameters that have a 
significant impact on part characteristics and build time. 
In this research, the process parameters were selected for 
investigation as follows: layer thickness, build orientation, 
infill density, and extrusion temperature. The change of com-
pressive strength and build time with the selected four (04) 
process parameters change are analyzed throughout experi-
ments. Different values (levels) of a process parameter are 
responsible for producing a part with different part charac-
teristics. Also, the build time to produce a part depends on 
the levels of process parameters. For this, different levels of 
process parameters were selected to investigate impacts on 
compressive strength and build time. The levels of process 
parameters were decided based on the recommendation of 
the selected literature Refs. [9, 33], machine specifications 
[34], and MakerBot recommendations [35]. The parame-
ters and their levels are shown in Table 1. All other process Fig. 2  Specimen according to ASTM D695

Fig. 3  Step-by-step process from part design to optimization
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parameters were kept constant, and the default setting of 
MakerBot Replicator Z18 was used with the exception of 
the infill pattern. For all samples, the infill pattern was kept 
constant with a hexagonal shape. The definitions of selected 
process parameters are given below:

1. Layer thickness: The height of the deposited layer is 
known as layer thickness. It is selected based on noz-
zle diameter and the part characteristics requirements. 
We used the MakerBot smart extruder with a diameter 
0.4 mm. The range of layer thickness was selected based 
on MakerBot recommendation, which is 0.1–0.34 mm 
[35].

2. Build orientation: Build orientation indicates the direc-
tion of filament deposition on a build platform during 
printing. It is represented by the angle of the parts with 
the XY-plane of an FDM machine (Fig. 4). The range of 
build orientation is 0°–90° [13, 20].

3. Infill density: Infill is the inside structure of an object 
printed by the FDM process. Infill density is the por-
tion of the inside fill with materials and represents in 
percentage. The strength and mass of FDM build part 
depend on infill density. In this case, we considered the 
minimum and maximum infill density are 20% and 80%, 
respectively. It is possible to use 100% infill density, 
but we considered 80% as maximum density because 
an object with 100% infill density is solid, and a solid 
object with a better property can be produced by con-
ventional manufacturing process like injection molding 
[30].

4. Extrusion temperature: The thermoplastic filament 
heated at extrusion temperature during passes through 
the extruder. The extrusion temperature depends on fila-

ment materials, print speed, etc. In this paper, to analyze 
the impacts of extrusion temperature, we considered the 
range of temperature from 200 to 230 ○C.

The levels of four (04) process parameters are given in the 
following Table 1. For each process parameters, we are con-
sidering three levels (low, center, and high). The center level is 
the average between the high level and the low level.

2.4  Experimental design

The goal of Design of Experiment (DoE) is obtaining the pos-
sible maximum amount of information from a smaller number 
of experiments. As part of the DoE approach, the faced cen-
tered central composite design (FCCCD) was used to reduce 
part production as the experimental run is costly and time-
consuming. Central composite design (CCD) is a mathemati-
cal and statistical DoE tool used to develop a non-linear model 
from a reduced number of experiments. In CCD, rotatability of 
design points incorporated by a constant value, α [36]. When, 
α = 1, it is called FCCCD. FCCCD requires parameters with 
three levels: low (− 1), center (0), high (+ 1). In this experi-
mental design, − 1, 0, + 1 are the coded levels of parameters. 
We considered four (04) parameters, and each has three (03) 
levels. Total design points consist of two-level full factorial 
design points  (2K), axial design points (2k), and center design 
points (6 or more). Here, k is representing the number of fac-
tors (process parameters).

In this research, the influence of four process parameters 
was investigated, and the total of 30 combinations of process 
parameters was generated according to two levels full factorial 
design (16), axial (8), and center (6) design points. The total 
number of experiments with coded values of levels of process 
parameters using FCCCD is given in Table 2.

The actual levels of parameters can be converted into coded 
values by using the following formula. This is called normali-
zation and the range of coded variables from − 1 to + 1. More 
information on this normalization can be found in Ref. [37].

In the Eq. (1),  xic is the coded level of ith parameters,  xil is 
the lower (uncoded) level of an ith parameter,  xiu is the upper 

(1)xic =
2xi −

(

xil + xiu
)

xiu − xil
, i = 1, 2,… k

Table 1  Investigated parameters 
and their levels

Parameters Units Level

Low (− 1) Center (0) High (+ 1)

1. Layer thickness, x1 Millimeters (mm) 0.1 0.22 0.34
2. Build orientation, x2 Degree 0 45 90
3. Infill density, x3 Percentage 20 50 80
4. Extrusion temperature, x4 ○C 200 215 230

Fig. 4  Build orientations
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level of an ith parameter and  xi is the uncoded level of the 
i-th parameter that is intending to convert to the coded level.

According to experimental design, three (03) sets of 
parts, a total of 90 parts, were produced. For, each part 
build time was recorded directly from the FDM machine 
dial box. Then, the compressive strength of PLA parts was 
evaluated with Instron compression testing machine. The 
average values of build time and compressive strength of the 
three specimen samples were used for further analysis. From 
experimental data, two quadratic response surface models 
(RSM), one for compressive strength (Fig. 5) and the other 
for build time (Fig. 6), were developed to represent the rela-
tion of process parameters with build time and compressive 
strength, respectively. In mathematical models, coded values 
of process parameters are used as input variables. The quad-
ratic equation that shows the relationship between a response 
variable and input variables is given below.

In the above equation, y is the response variable; xi and xj 
are coded levels of i and j parameter respectively; �0 , �i , �ii 
and �ij are intercept, linear, quadratic and interaction coef-
ficient respectively. Each term of a mathematical model may 
not be significant, and a backward elimination technique 
was used to eliminate insignificant terms. The backward 
elimination technique can be explained as follows. Initially, 
all possible terms are incorporated into a model. Then, the 
least significant term is eliminated based on given fitting 
criteria. A new mathematical model generates without the 
insignificant term. Again, if any, the least significant term 
is removed from the newly developed model. This process 
repeats until all terms of a model become significant. A more 

(2)y = 𝛽0 +

k
∑

i=1

𝛽ixi +

k
∑

i=1

𝛽iix
2
i
+
∑∑

i<j

𝛽ijxixj

Table 2  Experimental set-up by 
FCCCD

Sl. no. x
1

x
2

x
3

x
4

Compressive strength 
(MPa)

Build time (min)

1 − 1 − 1 − 1 − 1 16.88 25.85
2 − 1 − 1 − 1 1 17.64 25.85
3 − 1 − 1 1 − 1 18.79 44.08
4 − 1 − 1 1 1 18.39 44.53
5 − 1 1 − 1 − 1 28.52 35.13
6 − 1 1 − 1 1 29.00 35.12
7 − 1 1 1 − 1 28.01 50.28
8 − 1 1 1 1 27.13 50.28
9 1 − 1 − 1 − 1 20.22 9.74
10 1 − 1 − 1 1 21.20 9.62
11 1 − 1 1 − 1 32.98 14.70
12 1 − 1 1 1 34.24 14.70
13 1 1 − 1 − 1 17.46 12.25
14 1 1 − 1 1 19.48 12.22
15 1 1 1 − 1 27.86 16.48
16 1 1 1 1 30.12 16.48
17 − 1 0 0 0 15.98 49.78
18 1 0 0 0 18.68 15.41
19 0 − 1 0 0 23.28 18.52
20 0 1 0 0 22.75 20.85
21 0 0 − 1 0 11.32 15.70
22 0 0 1 0 22.10 23.83
23 0 0 0 − 1 13.24 20.38
24 0 0 0 1 18.45 20.39
25 0 0 0 0 16.58 20.39
26 0 0 0 0 18.05 20.39
27 0 0 0 0 16.36 20.40
28 0 0 0 0 14.80 20.39
29 0 0 0 0 16.68 20.38
30 0 0 0 0 17.91 20.39
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details explanation of the backward elimination technique 
can be found in Ref. [38]. In this case, we assumed the con-
fidence level is 95%, the terms that have the p value less than 
0.05, are significant terms. In this paper, the multi-objective 
optimization problem formulated, and the quadratic models 
of build time and compressive strength are two objective 
functions of optimization.

2.5  Multi‑objective optimization

The multi-objective optimization problem was solved by 
MOPSO algorithm, which is a metaheuristic iterative opti-
mization algorithm. The details of MOPSO can be found 
in the paper by Lalwani et al. [39] and the pseudocode for 
MOPSO can be found in the paper by Kim et al. [40]. The 
quadratic models of build time and compressive strength are 
two objectives functions of optimization, and the constraints 
are the coded range (− 1 to 1) of process parameters. In a 

Fig. 5  Normal probability plot 
of residuals for compressive 
strength

Fig. 6  Normal probability plot 
of residuals for build time
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single part characteristic optimization, process parameters 
and their combination are optimum for only the part charac-
teristic. In the multi-objective optimization, a combination 
of process parameters is optimum for all objectives (e.g. 
compressive strength and build time).

Unlike single objective optimization, multi-objective 
optimization generates a set of non-dominated solutions, 
the set of solutions is called Pareto optimal solution set. A 
non-dominated solution defined as the improvement of one 
solution results in at least one other worse solution [41]. A 
decision maker then chooses a solution from all non-domi-
nated solution based on requirements. For instance, if for a 
prototype, build time is deemed to be more important than 
compressive strength. Thus, in this case, a decision maker 
will choose a combination of parameters that reduce build 
time without disregarding compressive strength. MOPSO is 
a metaheuristic optimization algorithm that optimizes two 
or more objectives simultaneously and generates a Pareto 
frontier.

3  Results and discussions

According to FCCCD and ASTM D695, FDM parts pro-
duced from PLA filament by MakerBot Replicator Z18. 
Three (03) specimen for each combination of process 
parameters were produced, and the average build time and 
compressive strength of three specimens were recorded for 
further analysis. The build time of each built part recorded 
from FDM machine dial box, and the compressive strength 
of each specimen determined by INSTRON compressive 
strength testing machine. The collected data of build time 
and compressive strength with the levels of the process 
parameters given in Table 2. Based on the experimental 
data, quadratic response surface models for both compres-
sive strength and build time were developed. For the rest 
of this paper, the coded levels of variables will be used for 
further analysis.

3.1  Compressive strength

Based on the experimental data, a quadric model for com-
pressive strength was developed that represents the relation-
ship of compressive strength with layer thickness ( x1 ), build 
orientation ( x2 ), infill density ( x3 ), and extrusion tempera-
ture ( x4 ). For this, a response surface quadratic equation 
for compressive strength was generated using MINITAB 18 
software. In a mathematical model, all terms are not signifi-
cant. In this case, all insignificant terms were eliminated by 
backward elimination method with 95% confidence level. 
The terms with p values less than 0.05 are considered as 
significant terms. Other than that, t-value of all signifi-
cant terms was determined at 95% confidence level. The 

coefficient, t-value, p values of all significant terms are 
given in the following Table 3. From Table 3, it is visible 
that extrusion temperature is not significant for compressive 
strength. Therefore, we do not need to consider extrusion 
temperature as a variable for further analysis of compres-
sive strength. There are some square terms 

(

x2
1
andx2

2

)

 and 
interaction terms 

(

x2x3
)

 also insignificant. All insignificant 
terms were eliminated by backward elimination method. We 
recommend using a low extrusion temperature (in the range 
of 190 ○C), as it will reduce extruder preheating time. A low 
extrusion temperature also increases dimensional accuracy 
and surface finishing, but the bond between layers becomes 
strong at a high temperature.

The quadratic model of compressive strength is in Eq. (3).

In Table 3,  R2, adjusted  R2 and predicted  R2 also given, 
and the values are 0.9456, 0.9315 and 0.9163, respectively. 
The high values are representing that the mathematical 
model has good agreement with experimental data. Addi-
tionally, another verification method is the normal probabil-
ity plot was used for determining the statistical significance 
of the quadratic model. The fitted linear line in the normal 
probability plot shown in Fig. 5 indicates that residuals are 
approximately normally distributed, and the predictions by 
this model have good agreement with experimental results. 
Subsequently, this model can also be used as an objective 
function in multi-objective optimization.

3.2  Build time

A response surface quadratic model for build time also 
developed by using experimental results from Table 2 but, 
the model became statistically insignificant as the normal 
probability plot was not linear and errors were not random. 

(3)

Compressive Strength = 16.679 + 1.217x1 + 1.483x2

+ 3.216x3 + 7.430x2
2
− 3.418x1x2

+ 2.910x1x3

Table 3  Compressive strength analysis

Term Coefficient t-value p value

Constant 16.679 37.09 0.000
x1 1.217 3.31 0.003
x2 1.483 4.04 0.001
x3 3.216 8.76 0.000
x
2
2

7.430 12.80 0.000
x1x2 − 3.418 − 8.78 0.000
x1x3 2.910 7.47 0.000
R2 0.9457

Adjusted R2 0.9315

Predicted R2 0.9163
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For this reason, we collected more data for build time. The 
levels of process parameters for additional experimental runs 
and the build time represented in Table 4.

By using all experimental data for build time from Tables 2 
and 4, a quadratic model generated that consists of all signifi-
cant terms at 95% confidence levels. The extrusion tempera-
ture is insignificant for build time, like compressive strength. 
Some square terms 

(

x2
3

)

 and interaction terms 
(

x2x3
)

 are also 
insignificant. All insignificant terms are eliminated from the 
mathematical model by backward elimination method. The 
results of t-test and p values with coefficients of all significant 
terms are given in Table 5.

The quadratic mathematical model for build time is given 
in Eq. (4). In Table 5, the high value of  R2, adjusted  R2, and 
predicted  R2 indicate that the experimental data are well-fitted 
with the quadratic model. In Fig. 6, it is shown the normal 
probability plot of build time, and the linearity of the graph 
represents that the distribution of residuals is normal.

Equations (3) and (4) represent the relation of the analyzed 
process parameters with compressive strength and build time, 
respectively. The two equations are employed as the objective 

(4)Build time (min) = 21.362 − 13.680x1 + 2.014x2 + 4.863x3 + 8.865x2
1
− 3.441x2

2
− 1.286x1x2 − 2.965x1x3

functions in the multi-objective optimization problem that will 
be solved by MOPSO algorithm.

3.3  Multi‑objective particle swarm optimization

For the multi-objective optimization, MOPSO algorithm was 
used with the mathematical model given in Eq. (5).

Objective Function,

Subject to (s.t.),

In the above mathematical model, the decision variables 
are x1, x2 and x3 . The constraints are the coded bounds of 
process parameters (− 1 to 1), and the objective is to maxi-
mize compressive strength and minimizing build time. In 
this optimization problem, we considered the population and 
repository size is 100, and the maximum generation is 500. 
Personal learning coefficient and global learning coefficient 
are 2. Moreover, the mutation rate, inertia weight, and iner-
tia dumping weight are 0.1, 0.5, and 0.99, respectively. To 
solve this multi-objective optimization and generate non-
dominated Pareto frontier, the MOPSO algorithm was coded 
and run in MATLAB R2018b software environment. The 

Max 16.679 + 1.217x1 + 1.483x2 + 3.216x3 + 7.430x2
2

− 3.418x1x2 + 2.910x1x3 (Comprehensive Strength)

Min 21.362 − 13.680x
1
+ 2.014x

2
+ 4.863x

3

+ 8.865x
2

1
− 3.441x

2

2
− 1.286x

1
x
2
− 2.965x

1
x
3

(Build Time)

(5)

− 1 ≤ x1 ≤ 1

− 1 ≤ x2 ≤ 1

− 1 ≤ x3 ≤ 1

Table 4  Experimental data for build time

Sl. no. x
1

x
2

x
3

x
4

Build time (min)

1 1 − 1 0 − 1 12.46
2 0 − 1 0 1 18.31
3 − 1 0 0 1 46.98
4 1 0 1 1 17.35
5 1 1 0 1 14.60
6 − 1 0 1 0 54.52
7 0 − 1 − 1 0 13.30
8 0 1 − 1 − 1 17.07
9 0 − 1 1 − 1 21.60
10 − 1 0 − 1 1 38.35
11 − 1 1 0 0 43.72
12 0 1 1 0 23.98
13 1 0 − 1 1 12.93
14 − 1 − 1 0 − 1 37.32
15 − 0.50 − 0.33 − 0.67 − 0.33 25.88
16 − 0.50 − 0.33 0.67 − 0.33 32.63
17 − 0.50 0.33 − 0.67 − 0.33 26.43
18 − 0.50 0.33 0.67 − 0.33 32.43
19 0.50 − 0.33 − 0.67 0.33 15.13
20 0.50 − 0.33 0.67 0.33 19.08
21 0.50 0.33 − 0.67 0.33 15.30
22 0.50 0.33 0.67 0.33 19.67

Table 5  Build time analysis

Term Coefficient t-value p value

Constant 21.362 49.47 0.000
x1 − 13.680 − 40.28 0.000
x2 2.014 5.81 0.000
x3 4.863 14.48 0.000
x
2
1

8.865 14.96 0.000
x
2
2

− 3.441 − 6.01 0.000
x1x2 − 1.286 − 3.17 0.003
x1x3 − 2.965 − 7.42 0.000
R2 0.9805

Adjusted R2 0.9774

Predicted R2 0.9725
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outcome of the multi-objective optimization problem repre-
sents in Table 6. The table consists of the levels of process 
parameters for 100 non-dominated solutions.

3.4  Pareto frontier analysis and discussion

From Table 6, we can observe the change of build time and 
compressive strength for different combinations of process 
parameters. For all non-dominated solutions, the value of 
x2 , build orientation, is − 1. The original level for build 
orientation for the coded value − 1 is  0○. Therefore,  0○ 
build orientation is preferable for two-part characteristics. 
As at  0○ build orientation, the filament fibers remain paral-
lel to the direction of the applied compressive load, and 
this increases the ability of compressive load resistance. 
At  0○ build orientation, the number of layers decreases for 
any constant value of layer thickness, and at this orienta-
tion the shortest side places along Z-direction of an FDM 
machine. It also preferable for build time because after 
completing each layer build platform moves downward, 
and the downward speed of build platform is low com-
pared to the print speed. The number of downward move-
ments of a build platform decreases as the layer thickness 
increases.

Build time and compressive strength increase as infill 
density increase, but the target of any production is to mini-
mize build time. Therefore, it is necessary to determine the 
level for infill density based on the required compressive 
strength of a functional part. In our view, the minimum 
infill density that meets the required compressive strength 
of a part is preferable as it reduces build time as well as the 
weight of a part. For this type of decision, selecting param-
eters for multiple objectives, multi-objective optimization 
plays a vital rule. Unlike build orientation and infill density, 
the layer thickness not showing any trend with the change 
of build time and compressive strength. This is possibly due 
to the bond between molecules of materials in a layer and 
between different layers.

In general, build time is inversely proportional to layer 
thickness. But, the multi-optimization result is showing 
that the optimum level of layer thickness depends on other 
parameters as well as the required compressive strength. 
Other than analyzed parameters, the level of a process 
parameter can be significantly affected by the level of con-
stant parameters. Therefore, it is necessary to consider as 
many as possible parameters as variables to get more reliable 
results. However, considering many process parameters will, 
in turn, require, additional resources and time.

Addition to numerical data, the graphical representation 
also helps to visualize information. The Pareto pointer com-
monly used to show a trade-off between objectives graphi-
cally. The Pareto frontier shows the relationship between 

compressive strength and build time is shown in Fig. 7. In 
the graph, the X-axis (horizontal) and Y-axis (vertical) rep-
resented compressive strength and build time, respectively. 
The graph represents a trade-off between build time and 
compressive strength. The compressive strength increases 
as build time increases. However, this is not a situation that 
is ideal for many decision makers. Thus, as an advantage, the 
Pareto chart shows all the solution points in Fig. 7 are non-
dominated, and a decision maker can choose any solution 
based on his/her requirements. For any required combination 
of build time and compressive strength, the coded levels of 
layer thickness, build orientation and infill density can be 
obtained from Table 6. The actual level of a parameter can 
be determined from Eq. (1) by putting the value of  xic.

The FDM process has several process parameters, con-
trollable and uncontrollable depending on the equipment 
used. Although in this research, the influence of four process 
parameters (each with three levels) on two-part character-
istics was extensively analyzed, there are still other process 
parameters that have not been taken into considerations. The 
goal of this paper is to systematically provide a tool for deci-
sion makers when dealing with conflicting decisions, and not 
to purposely select the most optimum process parameter. As 
this situation is very hard to achieve due to some process 
parameters are not controllable, material properties, manu-
facturer limitations, ambient environment, and other process 
uncertainties. In the future, a stochastic optimization model 
will be developed to account for uncertainties in the process 
parameters.

Please note that the optimization results represented are 
based on the data collected from experimental study. The 
outcome is that extrusion temperature is found to be insignif-
icant for both compressive strength and build time. For other 
parameters, our outcomes are found to be similar to some 
existing research. The presented results may be different if 
other materials, equipment, and optimization algorithms are 
used. In addition, slight discrepancies should be expected 
for readers who plan to replicate the experimental results 
from this paper. To minimize discrepancies in optimization 
results and further analysis, it would be best to construct the 
mathematical model based on the collected experimental 
data. However, if there are time and resources constraints, 
readers can use the experimental data resulted in this paper 
for their further study.

4  Conclusion

In this paper, the impacts of layer thickness, build orienta-
tion, extrusion temperature, and infill density on build time 
and compressive strength of PLA parts were analyzed using 
a multi-objective particle swarm optimization. A set of non-
dominated solutions for build time and compressive strength 
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Table 6  The non-dominated solutions by MOPSO

Sl. no. x
1

x
2

x
3

Compressive 
strength (MPa)

Build time (min) Sl. no. x
1

x
2

x
3

Compressive 
strength (MPa)

Build time (min)

1 1.00 − 1.00 1.00 33.39 14.28 51 0.76 − 1.00 0.00 26.14 11.60
2 1.00 − 1.00 1.00 33.39 14.28 52 0.72 − 1.00 − 0.01 25.92 11.56
3 1.00 − 1.00 1.00 33.39 14.28 53 0.81 − 1.00 − 0.10 25.81 11.43
4 1.00 − 1.00 1.00 33.39 14.28 54 0.72 − 1.00 − 0.06 25.67 11.43
5 1.00 − 1.00 1.00 33.39 14.28 55 0.75 − 1.00 − 0.08 25.63 11.37
6 1.00 − 1.00 0.99 33.30 14.25 56 0.79 − 1.00 − 0.12 25.63 11.35
7 1.00 − 1.00 0.99 33.30 14.25 57 0.75 − 1.00 − 0.10 25.56 11.34
8 0.97 − 1.00 1.00 33.17 14.22 58 0.77 − 1.00 − 0.15 25.33 11.21
9 1.00 − 1.00 0.93 32.95 14.14 59 0.71 − 1.00 − 0.17 25.04 11.12
10 1.00 − 1.00 0.84 32.42 13.98 60 0.73 − 1.00 − 0.20 24.93 11.04
11 1.00 − 1.00 0.83 32.34 13.95 61 0.76 − 1.00 − 0.27 24.71 10.92
12 1.00 − 1.00 0.82 32.30 13.94 62 0.74 − 1.00 − 0.25 24.69 10.91
13 0.97 − 1.00 0.85 32.29 13.93 63 0.74 − 1.00 − 0.30 24.46 10.80
14 0.97 − 1.00 0.85 32.25 13.91 64 0.76 − 1.00 − 0.31 24.44 10.79
15 1.00 − 1.00 0.81 32.21 13.91 65 0.75 − 1.00 − 0.31 24.42 10.78
16 0.99 − 1.00 0.81 32.15 13.89 66 0.78 − 1.00 − 0.34 24.37 10.77
17 0.93 − 1.00 0.86 32.02 13.86 67 0.76 − 1.00 − 0.36 24.17 10.66
18 0.90 − 1.00 0.84 31.70 13.77 68 0.72 − 1.00 − 0.43 23.70 10.41
19 0.94 − 1.00 0.79 31.68 13.73 69 0.76 − 1.00 − 0.49 23.51 10.34
20 1.00 − 1.00 0.69 31.50 13.69 70 0.67 − 1.00 − 0.44 23.46 10.32
21 0.89 − 1.00 0.75 31.14 13.58 71 0.70 − 1.00 − 0.48 23.34 10.23
22 1.00 − 1.00 0.62 31.08 13.56 72 0.75 − 1.00 − 0.53 23.27 10.21
23 0.96 − 1.00 0.63 30.90 13.46 73 0.72 − 1.00 − 0.51 23.26 10.19
24 0.93 − 1.00 0.63 30.65 13.37 74 0.76 − 1.00 − 0.56 23.15 10.17
25 1.00 − 1.00 0.51 30.40 13.35 75 0.71 − 1.00 − 0.54 23.05 10.08
26 0.96 − 1.00 0.51 30.18 13.23 76 0.70 − 1.00 − 0.56 22.92 10.01
27 0.94 − 1.00 0.52 30.13 13.19 77 0.68 − 1.00 − 0.57 22.80 9.95
28 0.89 − 1.00 0.56 29.96 13.13 78 0.74 − 1.00 − 0.62 22.70 9.92
29 0.89 − 1.00 0.54 29.89 13.10 79 0.71 − 1.00 − 0.62 22.66 9.88
30 0.91 − 1.00 0.52 29.85 13.08 80 0.71 − 1.00 − 0.71 22.16 9.62
31 0.92 − 1.00 0.47 29.66 13.01 81 0.71 − 1.00 − 0.73 22.06 9.56
32 0.93 − 1.00 0.42 29.39 12.92 82 0.71 − 1.00 − 0.76 21.88 9.47
33 0.86 − 1.00 0.46 29.23 12.86 83 0.61 − 1.00 − 0.73 21.83 9.43
34 0.92 − 1.00 0.32 28.79 12.70 84 0.64 − 1.00 − 0.76 21.75 9.36
35 0.96 − 1.00 0.25 28.54 12.66 85 0.66 − 1.00 − 0.84 21.36 9.14
36 0.92 − 1.00 0.26 28.44 12.57 86 0.60 − 1.00 − 0.84 21.24 9.07
37 0.84 − 1.00 0.30 28.22 12.46 87 0.64 − 1.00 − 0.86 21.21 9.05
38 0.92 − 1.00 0.21 28.08 12.43 88 0.60 − 1.00 − 0.85 21.18 9.03
39 0.90 − 1.00 0.22 28.05 12.40 89 0.65 − 1.00 − 0.87 21.18 9.03
40 0.85 − 1.00 0.23 27.89 12.32 90 0.61 − 1.00 − 0.86 21.18 9.03
41 0.87 − 1.00 0.11 27.31 12.10 91 0.61 − 1.00 − 0.88 21.09 8.98
42 0.85 − 1.00 0.13 27.29 12.08 92 0.63 − 1.00 − 0.88 21.08 8.97
43 0.82 − 1.00 0.15 27.28 12.07 93 0.60 − 1.00 − 0.88 21.02 8.93
44 0.85 − 1.00 0.10 27.15 12.02 94 0.57 − 1.00 − 0.89 20.94 8.91
45 0.82 − 1.00 0.12 27.12 12.00 95 0.59 − 1.00 − 0.93 20.76 8.78
46 0.78 − 1.00 0.14 27.04 12.00 96 0.67 − 1.00 − 0.98 20.66 8.76
47 0.87 − 1.00 0.02 26.74 11.86 97 0.64 − 1.00 − 1.00 20.52 8.65
48 0.76 − 1.00 0.09 26.66 11.85 98 0.60 − 1.00 − 1.00 20.44 8.57
49 0.80 − 1.00 0.02 26.43 11.71 99 0.56 − 1.00 − 1.00 20.38 8.55
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were generated, and the Pareto frontier was developed as a 
way to represent the trade-off between build time and com-
pressive strength. According to experimental results and 
the outcome of the optimization, among the analyzed four 
parameters, the extrusion temperature is insignificant for 
both build time and compressive strength. For build time and 
compressive strength,  0○ build orientation is preferable. The 
outcomes of multi-objective optimization can aid decision 
makers to select process parameters level when dealing with 
conflicting objectives. In this paper, the conflicting objec-
tives are to maximize compressive strength and minimize 
build time. As a future direction, process uncertainty will be 
investigated in order to achieve more reliable and consistent 
parts to be printed through the FDM process.
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