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Abstract
Injection molding is classified as one of the economical manufacturing processes for high volume production of plastic parts. 
However, it is a complex process, as there are many factors that could lead to process variations and thus the quality issues of 
final products. One common quality issue is the presence of shrinkage and its associated warpage. Part shrinkage is largely 
affected by molding conditions, as well as mold design and material properties. The main objective of this paper is to predict 
the shrinkage of injection molded parts under different processing parameters. The second objective is to facilitate the setup 
of injection molding machine and reduce the need for trial and error. To meet these objectives, an artificial neural network 
(ANN) model was presented in this study, to predict the part shrinkage from the optimal molding parameters. Molding param-
eters studied include injection speed, holding time, and cooling time. A Taguchi-based experimental study was conducted, 
to identify the optimal molding condition which can lead to the minimum shrinkages in the length and width directions. A 
 L27  (33) orthogonal array (OA) was applied in the Taguchi experimental design, with three controllable factors and one non-
controllable noise factor. The feedforward neural network model, trained in back propagation, was validated by comparing 
the predicted shrinkage with the actual shrinkage obtained from Taguchi-based experimental results. It demonstrates that the 
ANN model has a high prediction accuracy, and can be used as a quality control tool for part shrinkage in injection molding.
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1 Introduction

Injection molding is a widely used process to shape thermo-
plastic materials into molded products of intricate shapes. It 
is particularly suitable for mass production due to its short 
cycle time and high tooling cost. The qualities of injection 
moldings are affected by many factors such as plastic part 
design, mold design, materials, and molding parameters. 
One of common quality issues for injection moldings is part 
shrinkage. Part shrinkage is natural due to thermal contrac-
tion, as the plastic material changes from its high tempera-
ture molten state to low temperature solid state, to form the 
desired shape in the mold cavity. A packing phase is thus 
required to force more plastic melt into the mold cavity to 

compensate for material shrinkage during mold cooling. 
Large non-uniform shrinkages, due to poor part or tool-
ing design and improper molding conditions, often create 
internal or residual stresses that could lead to part warpage. 
Therefore, it is highly desirable to minimize the shrinkage of 
injection moldings by optimizing processing conditions, and 
to predict the shrinkage under different molding parameters. 
This will help reduce the setup time with proper molding 
parameters and improve the quality of injection moldings.

Shrinkage prediction for plastics injection molding has 
been studied extensively. Han et al. [1] developed a simula-
tion program based on crystallization kinetics to predict the 
shrinkage of slowly-crystallizing thermoplastic polymers in 
injection molding. The material properties such as viscosity, 
thermal conductivity, heat capacity, PVT (pressure–volume-
temperature) relation and crystallization kinetics were con-
sidered in their study. Jansen et al. [2] studied the effect of 
processing conditions on shrinkage for seven thermoplastic 
polymers, and concluded that a simple thermoelastic model 
used in the study could predict amorphous polymers, but it 
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over-predicted for semi-crystalline polymers. Choi et al. [3] 
conducted a numerical analysis of shrinkage for amorphous 
polymers in consideration of the residual stresses produced 
during the packing and cooling stages of injection mold-
ing. These shrinkage predictions with conservation equa-
tions (mass, momentum and energy) are associated with 
assumptions and simplifications to obtain the solutions. 
Some commercial simulation programs such as Moldflow 
were used for predicting the shrinkage. Lucyshyn et al. [4] 
used a differential scanning calorimeter to identify the tran-
sition temperatures at different cooling rates, and applied 
the transition temperatures in calculating the shrinkage with 
Moldflow. Pomerleau et al. [5] investigated the injection 
molding shrinkage of polypropylene with a factorial design 
of experiment, and examined the effects of holding pressure 
and injection velocity on shrinkages.

Artificial neural network (ANN) is a modeling technique 
that is capable of dealing with highly nonlinear problems 
with multi-input and multi-output systems. It requires no 
assumption of the problem and has a strong adaptive learn-
ing capability. ANN handles information in a way similar to 
the operation mechanism of neurons within the human brain. 
It has been applied to various applications such as design 
optimization, pattern recognition, etc. In the literature, there 
are a few studies that applied ANN in injection molding to 
predict part shrinkage. Shen et al. [6] used the combination 
of ANN and genetic algorithm (GA) to optimize the injec-
tion molding process for minimizing the volumetric shrink-
age variation. Lee et al. [7] developed a neural network 
which was trained by the data from a numerical flow analy-
sis, to predict shrinkage of the injection molded polypro-
pylene parts. Liao et al. [8] demonstrated the successful use 
of back-propagation ANN in predicting the shrinkage and 
warpage of injection-molded thin-wall parts, and amorphous 
plastics polycarbonate and acrylonitrile butadiene styrene 
were used in their study. Wang et al. [9] evaluated the effect 
of injection molding process parameters on shrinkage based 
on neural network simulation, however, the data input was 
from Moldflow simulation results and no real experiments 
were conducted. Altan et al. [10] reduced shrinkage in injec-
tion moldings via the Taguchi, ANOVA and neural network 
methods for PP and polystyrene (PS). The same network was 
used to predict both PP and PS. Tsai et al. [11] combined the 
ANN with a genetic algorithm (GA) to establish an inverse 
model of injection molding for optical lens form accuracy.

High density polyethylene (HDPE) is one of the most 
widely used thermoplastics in injection molding, because 
it offers many benefits such as low processing temperature, 
low cost, good stiffness and toughness, compared to other 
thermoplastics. As a semi-crystalline polymer, HDPE typi-
cally has a higher shrinkage than amorphous plastics, due 
to its higher crystallinity. The Taguchi approach has been 
used to optimize injection molding conditions to achieve 

desirable product qualities [10–13]. Compared with a fac-
torial design, the Taguchi approach is more efficient with a 
fewer resources required.

To our knowledge, few studies have been conducted to 
investigate the shrinkage prediction accuracy of injection 
molded HDPE parts by using the combination of ANN and 
the Taguchi approach. In this study, back propagation ANN 
is used as data-driven modeling technique in predicting 
the minimum shrinkages along the flow direction (i.e., the 
length) and the cross-flow direction (i.e., the width), under 
the injection molding conditions optimized by the Tagu-
chi approach. Three important molding parameters studied 
include injection speed, holding time, and cooling time. A 
Taguchi orthogonal array  (L27) was designed for conducting 
experiments, to identify the optimal molding conditions for 
minimum shrinkages. Experimental data were used to train, 
test, and validate the ANN model. The main objective is to 
predict the minimal shrinkage under the optimized molding 
parameters. The second objective is to facilitate the molding 
setup with proper molding parameters and reduce the need 
for trial and error.

2  Model description

2.1  ANN

Figure 1 shows the typical structure of ANN. It consists of 
an input layer, hidden layer(s), and an output layer. Each 
layer has several elements which are called nodes or neu-
rons. The links between elements carry values (or weights), 
and they usually determine the network function. ANN is 
trained by adjusting the link weights to perform a particular 
function for reaching the target outputs. Many input/target 
data pairs are required to train a network [14]. In this study, 
we have three inputs (injection speed, holding time, and 
cooling time) and two outputs (length and width shrinkages).

2.2  Multi‑layer ANN and backpropagation training

For the feedforward model adopted in this study, there are 
three neurons in its input layer, which are the dimensionless 
injection speed, cooling time and holding time. The output 
layer has two neurons, which are the length shrinkage and 
width shrinkage. Experimental data are randomly separated 
into a training set, a testing set, and a validation set. The 
training set is used to train the backpropagation ANN to 
identify the relationship between the inputs and the outputs. 
The testing set is used to test the prediction performance of 
the ANN. There were 27 experimental data points used to 
train the ANN. The number of hidden layers, the transfer 
function of hidden layer, the learning rate, the minimum 
gradient and momentum are considered in this study. The 
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training process for the ANN is stopped when one of two 
following criteria is met: (1) the sum squared error (SSE) 
should be smaller than 0.0001, and (2) the iteration epoch 
reaches 10,000 times. The training quality is determined by 
the root mean squared (RMS) error. The definitions of SSE 
and root mean squared error are [8]:

where Tij is the target value, and Pij is the predicted value 
from the model.

2.3  Steps for the backpropagation ANN design 
process

The multilayer feedforward neural network is widely used 
for function fitting, pattern recognition, and prediction prob-
lems. In this study, the work flow for designing the feedfor-
ward ANN involves the following six primary steps:

1. Performing injection molding experiments and collect-
ing the data set of inputs and outputs

2. Providing these input and output data pairs to the soft-
ware (i.e., MATLAB-Mathworks)

3. Tagging the data as inputs, outputs, training, and testing
4. Creating a custom network of the required structure 

(check for the network with the least RMSE value)
5. Training and testing the network, checking for the least 

RMSE value. The data tagged as “train” will be used for 
training;

6. Validating the network with the validating data set for 
post-training analysis

(1)

SSE =

m
∑

j=1

n
∑

i=1

(Tij − Pij) ∧2

RMSq =

√

SSEq

m × n

7. Using the network for predicting the minimum shrink-
ages under the optimal molding condition.

3  Experimental

3.1  Molding machine and experimental material

The molding machine used is Engel E-victory 30 with a 
clamping force of 30 ton, and it has the screw diameter of 
22 mm and the L/D ratio of 30. HDPE (Proline 2053), sup-
plied by Shannon Industrial Corporation, has a density of 
0.953 g/cm3 and a melt flow index of 18 g/10 min.

3.2  Mold design

A two-part family mold was designed as shown in Fig. 2. 
The fan gate was selected to achieve a uniform material flow, 
minimize backfilling and part warpage, and keep the cross 
sectional area constant. The steel insert mold base, from 
DME Company (Model 08/09 U Style Frame), was cut with 
a CNC machining center. The original length and width of 
the mold cavity are 116.56 mm and 19.25 mm, respectively, 
measured with a coordinate measuring machine (CMM, 
Mitutoyo). The resolution of CMM is 0.0005 mm. All the 
injection molded samples were measured with the CMM.

The length and width shrinkages were calculated as 
follows.

where  SL = length shrinkage,  Lm = mold length,  Lp = part 
length,  Sw = width shrinkage,  Wm = mold width,  Wp = part 
width

(2)
SL =

(

Lm−Lp

)

∕Lm × 100%

SW =
(

Wm−Wp

)

∕Wm × 100%

Fig. 1  Typical structure of an ANN
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3.3  Baseline study

The baseline study was conducted with the injection speed 
10 cm3/s, the injection pressure of 1000 bar, the cooling time 
of 24 s, and the holding time of 14 s. The obtained aver-
age length shrinkage and width shrinkage from the baseline 
study were 2.64% and 3.56%, respectively.

4  Results and discussions

4.1  Taguchi experimental design

The Taguchi method was applied to identify the effects of 
the molding parameters on the flow direction shrinkage 
(i.e., length shrinkage) and the cross flow shrinkage (i.e., 
width shrinkage). The optimum molding condition for the 
minimum shrinkages can be obtained through the Taguchi 
experiments. Similar to the ANN, the three significant con-
trollable molding parameters with three levels were selected, 
as shown in Table 1. The output variables are the length 
and width shrinkage. The environment temperatures, the 
room temperature without ventilation (70 °F) and the room 
temperature with ventilation (65 °F), were selected as the 
noise factor. The measured shrinkage values and the signal-
to-noise (S/N) results are given in Table 1. Each row in the 
table represents an experiment with different combination of 
molding parameters and their levels. However, these experi-
ments were conducted randomly. The S/N ratio is a quality 
indicator that is used to evaluate the effects of the molding 
parameters on the shrinkages of the injection moldings. In 
this study, ‘‘the smaller the better” criterion was selected 
when calculating the S/N ratios, as minimizing the shrink-
ages is the goal.

where η is the S/N ratio,  Yi is the individual shrinkage meas-
urement, and n is the number of measurements for each run.

4.2  Analysis of noise factor and S/N ratio 
for the length and width shrinkages

Table 2 is the response table for the mean length and width 
shrinkages, as well as their associated S/N ratios. The table 
is used to determine the optimal combination of the control-
lable factors that leads to the minimum shrinkage. Figure 3 
shows the graphical representation of the effects of molding 
parameters on the shrinkage and S/N ratio. Since the shrink-
age is the-smaller-the-better, the optimal setting combination 
for the minimum length shrinkage is  A2-B1-C3, which is 
interpreted as the 2nd level of injection speed, the first level 
of holding time, and the third level of cooling time. For the 
S/N ratio, we are looking for the largest value. Therefore, the 
optimal setting combination for the S/N ratio of the length 
shrinkage is  A2-B3-C3. Similarly, the optimal setting com-
bination for the minimum width shrinkage is  A1-B2-C1, and 
the optimal setting combination for S/N ratio of the width 
shrinkage is  A3-B3-C2.

4.3  Hypothesis testing for the length and width 
shrinkage

Table 3 shows the t-tests with 99% confidence level were 
conducted to determine if the environment temperature had 
a significant effect on the length and width shrinkages.

Based on the results, we fail to reject the null hypothesis, 
as the T value obtained is less than the T- critical value. 
Therefore, the length shrinkage and the width shrinkage are 
not significantly affected by the environment temperature.

4.4  Training and testing ANN

The training function (TRAINGDX), the adaptive learning 
function (LEARNGD), the performance function (MSE), 
and the transfer function (LOGSIG), are used in the back 
propagation ANN. They can be found in neural network 
toolbox [14]. In this study, 135 experimental data sets (see 
Appendix A) were used for training and testing the ANN. 
The inputs of the ANN include injection speed, holding time 
and cooling time, and the outputs are the width shrinkage 
and the length shrinkage.

(3)� =
S

N
= −10Log

�

n
∑

i=1

Yi2
�

n

�

Fig. 2  The mold used in the study
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Table 1  Taguchi experimental design and results for length and width shrinkage (%)

Test no. Injec-
tion speed 
 (cm3/s)

Holding time (s) Cooling time (s) Room tem-
perature without 
ventilation

Room tempera-
ture with ventila-
tion

Y bar S/N ratio

Length Width Length Width Length Width Length Width

T-101 8(1) 12(1) 18(1) 2.66 3.13 2.27 2.44 2.47 2.79 − 21.95 − 18.13
T-102 8(1) 12(1) 24(2) 2.56 2.65 2.47 2.92 2.52 2.78 − 35.48 − 26.50
T-103 8(1) 12(1) 30(3) 2.70 3.07 2.02 3.35 2.36 3.21 − 16.92 − 27.31
T-104 8(1) 15(2) 18(1) 3.14 3.02 2.69 3.14 2.92 3.08 − 22.31 − 34.40
T-105 8(1) 15(2) 24(2) 2.78 2.97 2.55 3.11 2.66 3.04 − 27.51 − 32.45
T-106 8(1) 15(2) 30(3) 2.69 3.87 3.07 1.90 2.88 2.89 − 23.78 − 9.80
T-107 8(1) 18(3) 18(1) 2.55 3.01 2.59 2.64 2.57 2.83 − 42.68 − 23.74
T-108 8(1) 18(3) 24(2) 2.65 3.36 2.93 2.56 2.79 2.96 − 26.22 − 17.48
T-109 8(1) 18(3) 30(3) 2.67 2.97 2.45 2.85 2.56 2.91 − 27.51 − 33.81
T-110 10(2) 12(1) 18(1) 3.07 3.42 2.29 4.04 2.68 3.73 − 16.87 − 21.70
T-111 10(2) 12(1) 24(2) 2.59 3.57 2.93 2.63 2.76 3.10 − 24.10 − 16.46
T-112 10(2) 12(1) 30(3) 2.71 4.39 2.23 4.42 2.47 4.40 − 20.32 − 49.13
T-113 10(2) 15(2) 18(1) 2.67 4.07 2.71 2.85 2.69 3.46 − 41.79 − 15.21
T-114 10(2) 15(2) 24(2) 2.51 2.34 2.02 4.04 2.27 3.19 − 19.47 − 11.77
T-115 10(2) 15(2) 30(3) 2.93 3.06 2.69 4.38 2.81 3.72 − 27.34 − 15.16
T-116 10(2) 18(3) 18(1) 2.75 4.07 2.55 3.10 2.65 3.59 − 28.33 − 17.46
T-117 10(2) 18(3) 24(2) 3.14 3.49 2.12 4.28 2.63 3.89 − 14.43 − 19.89
T-118 10(2) 18(3) 30(3) 2.60 3.83 2.23 1.60 2.42 2.71 − 22.41 − 8.40
T-119 12(3) 12(1) 18(1) 2.69 2.96 2.55 2.56 2.62 2.76 − 31.33 − 23.03
T-120 12(3) 12(1) 24(2) 2.66 4.04 2.65 2.97 2.65 3.51 − 67.73 − 16.39
T-121 12(3) 12(1) 30(3) 2.65 2.56 2.67 4.01 2.66 3.28 − 48.99 − 13.32
T-122 12(3) 15(2) 18(1) 2.76 2.85 2.68 4.04 2.72 3.44 − 37.67 − 15.40
T-123 12(3) 15(2) 24(2) 2.79 4.04 2.17 3.33 2.48 3.68 − 18.14 − 20.43
T-124 12(3) 15(2) 30(3) 2.66 2.63 2.64 3.18 2.65 2.9 − 50.13 − 20.46
T-125 12(3) 18(3) 18(1) 2.65 4.42 2.58 2.92 2.62 3.67 − 38.26 − 13.99
T-126 12(3) 18(3) 24(2) 2.76 2.85 3.12 5.72 2.94 4.28 − 24.28 − 9.96
T-127 12(3) 18(3) 30(3) 2.79 4.04 2.26 3.09 2.52 3.56 − 19.70 − 17.58

Table 2  Response table for 
the mean length and width 
shrinkages and S/N ratios

Level A (injection speed) B (holding time) C (cooling time)

Mean length shrinkage (%) 1 2.64 2.58 2.66
2 2.60 2.67 2.63
3 2.65 2.64 2.59

S/N ratio for length shrinkage 1 − 27.15 − 31.52 − 31.24
2 − 23.90 − 29.79 − 28.60
3 − 37.36 − 27.09 − 28.57

Mean width shrinkage (%) 1 2.94 3.28 3.26
2 3.53 3.27 3.38
3 3.46 3.45 3.29

S/N ratio for width shrinkage 1 − 24.85 − 23.55 − 20.34
2 − 19.46 − 19.45 − 19.04
3 − 16.73 − 18.03 − 21.66
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Fig. 3  The main effect plots for a the length shrinkage; b the width shrinkage
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4.5  ANN network architecture

An optimum number of hidden layer neurons needs to be 
designed to accurately predict the outputs via the ANN. The 
best approach in seeking the optimum number of neurons 
is to first take a small number of neurons and then slightly 
increase it until a considerable improvement is observed. 
At the starting point of the process, 9 neurons was selected 
for the hidden layer. Then, the number of neurons increased 
every step. For the network structure, the selection of hidden 
layers is based on trial and error, and this study used one 
hidden layer. Finally, it was found that the 3-9-2-2 network 
structure has the least RMS error among all selected network 
structures. Thus, the 3-9-2-2 network structure, as shown in 
Fig. 4, was used in this study.

To train a multilayer network, the experimental data used 
is usually divided into three subsets. The first subset is the 
training set used for computing the gradient, the network 
weights, and the biases. The second subset is the validation 
set. The network weights and biases are saved at the mini-
mum validation error. The third subset is the testing set used 
to compare different models. In this study, a total experimen-
tal set of 135 data samples, were used for the training, test-
ing, and validation phases of the network models. The data 

subsets of training, testing, and validation were achieved by 
dividing roughly the available data set into 80, 15, and 5%, 
respectively.

4.6  Analyze neural network performance 
after training

Figure 5 shows the regression plots. It displays the network 
outputs (shrinkage) with respect to targets for training, vali-
dation, and test sets. If the R-value is equal to 1, that means 
the output is equal to the target. A larger R-value indicates 
a smaller difference between the output and the target. For 
this study, all the R-values are larger than 0.91, which means 
the fit is realistically good for all data sets. The minimal 
shrinkage was achieved with the highest R-value based on 
the training, validation, and testing errors. The analysis 
shows that the designed network (3-9-2-2) for the shrinkage 
parameter is sufficiently accurate. If more accurate results 
are required, the network can be retrained, or increased the 
number of hidden neurons, or applied different training func-
tions, or improved with additional training data.

The validation set is used for tuning the model param-
eters. To make sure the network is not overfit, the validation 
set is used to check if the error is within some range.When 
the error in the measurement begins to increase, the training 
process must be stopped by the independent validation set. 
Figure 6 indicates the iteration at which the best validation 
performance reached a minimum at epoch 37. Figure 6 does 
not indicate any major problems with the training.

4.7  Comparison of prediction performance of ANN 
and the Taguchi methodology

Table 4 show the prediction performance of the ANN and 
the Taguchi experimental data for the length and width 
shrinkage under the optimal molding conditions. It indicates 
that the ANN model can predict the shrinkages that are very 
close to the Taguchi experimental data. Figure 7 shows the 
comparison of the experimental data and the ANN predicted 
data for randomly selected 27 test pairs. It demonstrates that 
the ANN model has a high prediction accuracy.

Table 3  T-test for the environment temperature effect on the length 
and width shrinkages

Hypothesis:  H0: μroom temperature without ventilation = μroom temperature with ventilation,  
 H1: μroom temperature without ventilation ≠ μroom temperature with ventilation

Length Width

Average- room temperature without ventila-
tion

2.73 3.36

Average- room temperature with ventilation 2.52 3.26
Variance—room temperature without ventila-

tion
0.026699 0.357715

Variance—room temperature with ventilation 0.088832 0.764972
T value 1.83 0.27
Degrees of freedom 79 79
T-critical 2.37 2.37
Alpha 0.01 0.01

Fig. 4  The ANN network 
architecture
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5  Conclusion

In this study, the Taguchi approach and the ANN model 
were utilized to investigate the effects of injection speed, 
holding time, and cooling time on the length shrinkage 
and the width shrinkage of HDPE injection moldings. The 
experimental results indicate that all these selected factors 
have significant effects on the shrinkages. The best combi-
nation of molding parameters for the minimum shrinkages 
was identified through the Taguchi experiments. Compared 
with the shrinkages obtained from the baseline experi-
ments, the length shrinkage and the width shrinkage under 
the optimal molding conditions were reduced by 5.06% and 
20.4%, respectively. A multi-layer feedforward ANN was 
designed, backpropagation trained, tested and validated with 
the experimental results. It turned out that the ANN model 
has a similar prediction performance under the optimal 

Fig. 5  R-value for testing, train-
ing, and validation

Fig. 6  Schematic representation of validation performance

Table 4  Length and width 
shrinkage comparison: 
experimental versus ANN 
prediction

Optimal process conditions Experimental 
(Taguchi) (%)

Neural network 
prediction (%)

Error (%)

Length Shrinkage under  A2–B1–C3 condition 2.5083 2.5062 0.08
Width Shrinkage under  A1–B2–C1 condition 2.8353 2.8155 0.69
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molding conditions for minimal shrinkages, compared with 
that of the Taguchi approach. In addition, the comparison 
of the experimental data and the ANN predicted data for 
randomly selected 27 test pairs under different molding con-
ditions indicates that the ANN model has a high prediction 
accuracy. The combined use of the Taguchi approach and the 
ANN model, demonstrated in this study, would provide an 
efficient and effective way for injection molders to predict 
and minimize the shrinkages along the flow direction and the 
cross-flow direction under the optimal molding conditions, 
and to facilitate the molding setup and improve the quality 
of injection moldings.
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See Table 5.

Fig. 7  Width and length shrinkages: experimental versus predicted values
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Table 5  Experimental data set 
used for the ANN training & 
testing

Test no. Injection speed 
 (cm3/s)

Holding time (s) Cooling time (s) Length shrink-
age (%)

Width 
shrinkage 
(%)

T-101 8(1) 12(1) 18(1) 2.66 3.13
T-102 8(1) 12(1) 18(1) 2.67 3.13
T-103 8(1) 12(1) 18(1) 2.65 3.14
T-104 8(1) 12(1) 18(1) 2.67 3.14
T-105 8(1) 12(1) 18(1) 2.66 2.65
T-106 8(1) 12(1) 24(2) 2.56 2.66
T-107 8(1) 12(1) 24(2) 2.66 2.65
T-108 8(1) 12(1) 24(2) 2.60 2.66
T-109 8(1) 12(1) 24(2) 2.44 3.13
T-110 8(1) 12(1) 24(2) 2.53 3.03
T-111 8(1) 12(1) 30(3) 2.70 3.03
T-112 8(1) 12(1) 30(3) 2.73 3.09
T-113 8(1) 12(1) 30(3) 2.66 3.05
T-114 8(1) 12(1) 30(3) 2.72 3.07
T-115 8(1) 12(1) 30(3) 2.70 2.97
T-116 8(1) 15(2) 18(1) 3.14 3.01
T-117 8(1) 15(2) 18(1) 2.64 2.99
T-118 8(1) 15(2) 18(1) 3.92 2.97
T-119 8(1) 15(2) 18(1) 2.86 2.96
T-120 8(1) 15(2) 18(1) 3.14 2.97
T-121 8(1) 15(2) 24(2) 2.78 3.05
T-122 8(1) 15(2) 24(2) 2.69 3.22
T-123 8(1) 15(2) 24(2) 2.69 5.36
T-124 8(1) 15(2) 24(2) 2.95 3.92
T-125 8(1) 15(2) 24(2) 2.78 2.73
T-126 8(1) 15(2) 30(3) 2.69 3.23
T-127 8(1) 15(2) 30(3) 2.66 3.07
T-128 8(1) 15(2) 30(3) 2.68 3.01
T-129 8(1) 15(2) 30(3) 2.73 3.35
T-130 8(1) 15(2) 30(3) 2.69 3.28
T-131 8(1) 18(3) 18(1) 2.55 3.19
T-132 8(1) 18(3) 18(1) 2.53 3.56
T-133 8(1) 18(3) 18(1) 2.60 3.10
T-134 8(1) 18(3) 18(1) 2.52 2.70
T-135 8(1) 18(3) 18(1) 2.55 2.97
T-136 8(1) 18(3) 24(2) 2.65 3.10
T-137 8(1) 18(3) 24(2) 2.58 2.98
T-138 8(1) 18(3) 24(2) 2.68 3.11
T-139 8(1) 18(3) 24(2) 2.70 4.17
T-140 8(1) 18(3) 24(2) 2.65 3.42
T-141 8(1) 18(3) 30(3) 2.67 3.03
T-142 8(1) 18(3) 30(3) 2.62 4.13
T-143 8(1) 18(3) 30(3) 2.77 3.54
T-144 8(1) 18(3) 30(3) 2.62 3.56
T-145 8(1) 18(3) 30(3) 2.67 2.72
T-146 10(2) 12(1) 18(1) 3.07 6.32
T-147 10(2) 12(1) 18(1) 2.64 4.13
T-148 10(2) 12(1) 18(1) 3.85 4.39
T-149 10(2) 12(1) 18(1) 2.71 3.93
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Table 5  (continued) Test no. Injection speed 
 (cm3/s)

Holding time (s) Cooling time (s) Length shrink-
age (%)

Width 
shrinkage 
(%)

T-150 10(2) 12(1) 18(1) 3.07 2.92
T-151 10(2) 12(1) 24(2) 2.59 5.22
T-152 10(2) 12(1) 24(2) 2.59 4.20
T-153 10(2) 12(1) 24(2) 2.61 2.34
T-154 10(2) 12(1) 24(2) 2.56 2.40
T-155 10(2) 12(1) 24(2) 2.59 2.43
T-156 10(2) 12(1) 30(3) 2.71 2.20
T-157 10(2) 12(1) 30(3) 2.73 1.74
T-158 10(2) 12(1) 30(3) 2.68 4.39
T-159 10(2) 12(1) 30(3) 2.72 3.06
T-160 10(2) 12(1) 30(3) 2.71 3.07
T-161 10(2) 15(2) 18(1) 2.67 3.87
T-162 10(2) 15(2) 18(1) 2.66 4.27
T-163 10(2) 15(2) 18(1) 2.70 3.97
T-164 10(2) 15(2) 18(1) 2.66 4.13
T-165 10(2) 15(2) 18(1) 2.67 2.18
T-166 10(2) 15(2) 24(2) 2.51 3.46
T-167 10(2) 15(2) 24(2) 2.62 4.27
T-168 10(2) 15(2) 24(2) 2.62 4.08
T-169 10(2) 15(2) 24(2) 2.28 4.30
T-170 10(2) 15(2) 24(2) 2.51 3.35
T-171 10(2) 15(2) 30(3) 2.93 4.27
T-172 10(2) 15(2) 30(3) 3.36 3.36
T-173 10(2) 15(2) 30(3) 2.66 3.17
T-174 10(2) 15(2) 30(3) 2.78 2.93
T-175 10(2) 15(2) 30(3) 2.93 3.14
T-176 10(2) 18(3) 18(1) 2.76 2.57
T-177 10(2) 18(3) 18(1) 2.62 3.43
T-178 10(2) 18(3) 18(1) 2.57 3.36
T-179 10(2) 18(3) 18(1) 2.89 4.66
T-180 10(2) 18(3) 18(1) 2.93 4.70
T-181 10(2) 18(3) 24(2) 3.30 2.43
T-182 10(2) 18(3) 24(2) 3.73 2.70
T-183 10(2) 18(3) 24(2) 2.89 2.64
T-184 10(2) 18(3) 24(2) 2.92 2.49
T-185 10(2) 18(3) 24(2) 2.86 2.56
T-186 10(2) 18(3) 30(3) 2.55 2.85
T-187 10(2) 18(3) 30(3) 2.63 3.28
T-188 10(2) 18(3) 30(3) 2.64 2.73
T-189 10(2) 18(3) 30(3) 2.67 4.70
T-190 10(2) 18(3) 30(3) 2.51 3.05
T-191 12(3) 12(1) 18(1) 2.69 4.17
T-192 12(3) 12(1) 18(1) 2.71 4.25
T-193 12(3) 12(1) 18(1) 2.70 2.70
T-194 12(3) 12(1) 18(1) 2.70 2.59
T-195 12(3) 12(1) 18(1) 2.67 2.63
T-196 12(3) 12(1) 24(2) 2.61 2.57
T-197 12(3) 12(1) 24(2) 2.61 4.55
T-198 12(3) 12(1) 24(2) 2.69 4.27
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