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Abstract
In this study, significant process parameters (layer thickness, build orientation, infill density and number of contours) are 
optimized for enhancing the magnitude/dimensional preciseness of fused deposition modeling (FDM) devise units. Hybrid 
statistical tools such as response surface methodology–genetic algorithm (RSM–GA), artificial neural network (ANN) and 
artificial neural network-genetic algorithm (ANN-GA) in MAT LAB 16.0 are utilized for training and optimization. An 
attempt has been made to build up a mathematical model in order to set up an indirect correlation between various FDM 
process parameters and magnitude preciseness. Sequentially to verify the different developed models and the optimum pro-
cess parameters setting validation tests were also performed. The results showed that various hybrid statistical tools such as 
RSM-GA, ANN and ANN-GA are very adequate tools for FDM process parameter optimization. The minimum percentage 
variation in length = 0.06409%, width = 0.03961% and thickness = 0.85689% can be obtained by using ANN-GA.

Keywords  Response surface methodology (RSM) · Artificial neural network (ANN) · Genetic algorithm (GA) · Fused 
deposition modeling (FDM) · Process parameters

1  Introduction

Use of FDM is extensively increasing within in a number 
of manufacturing sectors such as automotive, biomedical 
implants, aerospace, electronic, telecommunication due to 
ability to make prototypes or product with high quality and 
different grades of engineering materials. The FDM complex 
nature of fabricating end use part in various engineering 
applications often create difficulty in selecting various con-
flicting process parameters and controlling high magnitude 
preciseness.

Additive manufacturing or 3D printing, also known 
as rapid manufacturing technique is used for fabricat-
ing products by depositing layers one over another in an 
additive manner as go up against to subtractive manner. In 
the current scenario to manage the increased antagonism 
in the global economy has necessitated for manufacturers 
to deliver new tailored products faster with higher magni-
tude preciseness, quality and good mechanical and physical 

properties than before. Thus keeping in mind the end goal to 
meet client requests and fulfillment has expanded producer 
fixation towards 3D printing techniques. Different 3D print-
ing emerged in the last few years such as fused deposition 
modeling (FDM), selective laser sintering (SLS), selective 
laser melting (SLM), 3D ink jet printing (Binder Jetting), 
Laminated object manufacturing (LOM). These 3D print-
ing techniques are capable of directly making any part of 
the CAD database under consideration of different process 
parameters, printing materials, manufacturing style, magni-
tude preciseness those could be used for different end use 
engineering applications. FDM is one such 3D printing tech-
nique developed by Stratasys Inc. [1] is extensively used to 
fabricate product or prototype from thermoplastic material 
such as acrylonitrile butadiene styrene (ABS) [2] by deposit-
ing semi-molten plastic filament in a layer by layer additive 
manner directly from a CAD model [3, 4] using the princi-
ple of extrusion. The demand of FDM is increasing within 
in a number of manufacturing sectors such as automotive, 
biomedical implants, aerospace, electronic, telecommunica-
tion [5] due to ability to fabricate prototype or product with 
high quality and different grades of engineering materials. 
So in such applications to maintain high magnitude stability 
and repeatability of the fabricated parts, magnitude variation 
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with stiff tolerance should be maintained. Magnitude pre-
ciseness, quality, mechanical and physical properties of 
a part material in FDM process are dependent on various 
selected conflicting process parameters [5–7]. Hence, the 
study of these parameters is of paramount importance in 
order to minimize the dimensional inaccuracy in comparison 
to other 3D printing techniques. The complex process nature 
and conflicting parameters of FDM creates much difficulty 
in determining the process parameters which mainly affect 
the magnitude preciseness [8]. Rayegani et al. [5] developed 
a relationship between process parameters (Raster angle 
and Part orientation) and tensile strength of the fabricated 
parts by using Group method for data handling and found 
that tensile strength is greatly affected by these two process 
parameters. Sood et al. [9] analyzed the effect of different 
process factors on the magnitude preciseness using artifi-
cial neural networks (ANN) and Taguchi method. Lieneke 
et al. [10] studied about the geometrical deviation in FDM 
fabricated parts which is very common due to various con-
flicting process parameters. Application of FDM fabricated 
parts for end use part production is limited because relevant 
challenges regarding process parameters have not been suf-
ficiently researched yet. Sahu et al. [11] used Fuzzy logic 
combined with the Taguchi method to enhance the magni-
tude preciseness by optimizing the effect of various process 
parameters. They pointed out that a large number of contra-
dictory factors independently or in interaction with others 
may affect the magnitude preciseness. As a result, the fuzzy 
logic method is used to improve the magnitude preciseness. 
But the use of Fuzzy technique requires prior knowledge 
and experience to apply precisely. Equbal et al. [12] used 
Taguchi orthogonal array approach for experimental design 
matrix combined with ANN and Fuzzy logic to develop 
models for improving the magnitude preciseness in terms of 
variation in length, width, thickness and diameter under con-
siderations of five factors viz., layer thickness, part build ori-
entation, raster angle, raster to raster gap (air gap) and raster 
width each at three levels. Chou et al. [13] has studied that 
deformation in FDM made up part is mainly due to growth 
of inner stress which was analyzed by using finite element 
analysis. Mohamed et al. [14] presented a review on various 
optimization techniques such as RSM, Taguchi method, full 
factorial, gray relational, fractional factorial, ANN, fuzzy 
logic and GA in the determination and optimization of the 
various process parameters for FDM. They found that there 
were fruitful modern uses of these robust optimization tech-
niques to optimize the FDM process parameters to improve 
the dimensional accuracy. The above discussed reading 
shows that the magnitude preciseness of FDM made-up parts 
depend upon various process parameters such as build ori-
entation, number of contours, layer thickness, raster width, 
air gap and raster angle. Although to enhance the magnitude 
preciseness of FDM made-up parts various optimization 

techniques have been studied with top of writing. They have 
few regular confinements and focal points outlined as takes 
after: First a large portion of analysts has used Taguchi and 
GRG to improve the magnitude precision. However, all such 
conventional methods are unable to develop those models 
which could predict and established relationship between 
magnitude preciseness and various process parameters. For 
example Taguchi method leads to non-optimal solution due 
to higher interaction and confused interaction between two 
factors with the other two factors [11, 15] and unable to 
develop higher order empirical polynomial fitting models as 
per multiple process optimization requirements in relation to 
FDM 3D printing technique magnitude preciseness. Finally, 
due to the presence of various conflicting process parameters 
in FDM, manufacturers are not able to deliver good quality 
parts in terms of magnitude preciseness [16]. Therefore an 
interactive approach can be an efficient way to study interac-
tion between various process parameters and magnitude pre-
ciseness of FDM fabricated parts. An interactive approach 
is one that encourages mutual communication between the 
wellspring of the cooperation and the objective. Interactive 
design a part of interactive approach rises as a methodology 
that coordinates customer desires in the item advancement 
process, enabling the planner to associate with the virtual 
item and its condition [17]. Interactive design is a notewor-
thy monetary and vital issue in imaginative items age by 
considering three factors: the specialists’ information, the 
end-client fulfillment and the acknowledgment of capacities 
[18]. In order to gain advancement in the produced parts, the 
interactive design helps architects to actualize virtual mod-
els empowering the association among genuine and virtual 
components [17]. So as to achieve this point, the proposed 
strategy can be utilized as a helpful and profitable piece of 
equipment by considering CAD design as a virtual item and 
FDM fabricated parts dimensional preciseness as targeted 
output at optimum process parameters value to success in 
the competitive environment of mechanized units. So there 
is a need for further study by keeping in mind indirect cor-
relation, multi parameters connections and limitations on 
varying levels of parameters. In a manufacturing industry, 
process of interactive design is carried out in following man-
ner: Identification of need, Designing of product, Evaluating, 
Building of interactive version of product and Redesigning. 
In this proposed study, to enhance the dimensional accuracy 
of a product, a number of model has been built and based on 
their outcomes an interactive design is proposed.

In contrast with past research, this work helped to 
enhance the magnitude preciseness of FDM fabricate parts 
by optimizing the various conflicting process parameters 
using combine hybrid statistical tool such as RSM-GA, 
ANN-GA. A four process parameters, five level central 
composite designs were employed to grasp the interac-
tions between various process parameters and magnitude 
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preciseness of FDM made-up parts. Further with the help of 
various hybrids statistical tools it has been tried to optimize 
the process parameters more precisely by developing mathe-
matical models, so that enhanced magnitude preciseness can 
be obtained by establishing inclusive relationship between 
them. This study gives inclusive exploration by taking into 
account layer thickness, build orientation, infill density and 
number of contours as conflicting process parameters.

2 � Methodology

2.1 � Experimental work

A total of 30 specimens having magnitude 65 mm length, 
13 mm width, and 4 mm thickness (Fig. 1) were fabricated 
on the R*P2200i FDM machine by Adroitec using ABS 
thermoplastic as an extruded material. All specimens were 
designed and modeled in CAD software and converted into 
Standard Tessellation Language (STL) file. Then the tool 
path was generated for each specimen according to process 
parameter value in the FDM machine using an STL file 
which was generated earlier. Three values of each dimen-
sion length, width and thickness were measured by using 
a micrometer having least count of 0.01 mm. Then average 
of these three is considered as experimental value. In this 
work percentage variation in length, width and thickness 
were taken as the output response value.

2.2 � Experimental plan

2.2.1 � FDM process parameters

From above discussed literature, it is found that the mag-
nitude preciseness of FDM fabricated parts depends upon 
various process parameters. Four parameters layer thick-
ness, build orientation, number of contours and infill density 
selected with their range and levels are shown in Table 1.

The low and high value range of the selected parameters 
is set in terms of alpha according to the FDM machine speci-
fications and other parameters are kept fixed. Central com-
posite design with five levels for each process parameter was 
used to enhance the magnitude preciseness of FDM devise 
parts. Each process parameter is defined like so:

Layer thickness (Fig. 2a) Layer thickness based on the 
size of nozzle tip is the height of each layer deposited one 
over another to fabricate the part.
Build orientation (Fig.  2b) It refers to the direction 
in which the part is oriented on the machine bed with 
respect to different axis.
Infill density (Fig. 2c) It defines the inside amount of 
material used in fabricating the part.
Number of contours (Fig. 2d) it refers to the number of 
lines on the periphery.

2.3 � Experimental design matrix

A set of mathematical and statistical technique which is 
used for analysis and modeling of specific problem factors 
is called response surface methodology (RSM). In RSM we 
consider the effect of output variables on desired response by 
employing linear or square polynomial function to achieve 
the optimization. Five level central composite design was 
used to study the effect of linear, quadratic, cubic and cross 
product models of four process parameters and also used to 
develop an experimental design matrix. In this work second 
order quadratic model was used for each response value to 
develop the mathematical model and to show the correlation 
between input process parameters and magnitude precise-
ness by using Eq. (1) given below. A total number of 30 
experiments with 6 replicate at the centre were conducted for 
estimation of a pure error sum of square using DOE 6.0.8. 
Predicted and observed response values of all the experi-
ments have been described in Table 2.

[Q = predicted response value, γ0 = regression equation con-
stant, γi = linear coefficient γii = square term of each param-
eter, γij = first order interaction effect].

2.4 � RSM‑GA model for process parameter 
optimization

The whole GA cycle which is an extremely well known tool 
to tackle wide sorts of seeking, complex and optimization 

(1)Q = �0 +
∑

�ipi +
∑

�iip
2
i
+
∑

�ijpipj

Fig. 1   CAD designed specimen

Table 1   A four process parameter for five level central composite 
design

S. no. Process param-
eters

Notation Unit (−alpha) (+alpha)

1 Layer thickness A mm 0.12 0.4
2 Build orientation B Degree 0 90
3 Infill density C Percentage 0 100
4 No. of contours D No. 2 10
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problems [19–21] consist of four basic steps which were 
repeated until the ideal desired target halted fluctuating. The 
First step is randomly generate initial new population from 
the random individual population. The second is to con-
sider these individuals for evaluation on the basis of objec-
tive function. Third is to select the best individual having 
maximum fitness value for mutation and crossover because 
that would have a greater probability of generating progeny. 
Fourth step is the selection of new individual parent after 
selection, mutation and crossover from the population. In 
general the following steps were followed to create RSM-
GA model:

1.	 Randomly generation of the initial individual popula-
tion having length of each chromosome is equal to the 
number of process parameters we consider.

2.	 The individual process parameter values have been gen-
erated within the consider range.

3.	 In GA, RSM generated equation is considered as fitness 
function.

4.	 The GA, develops a series of novel population. At each 
step, the GA uses the individuals to develop the next 
novel population. The following steps were used to gen-
erate novel population by GA tool:

5	 The Calculation is ended after meeting of best fitness 
function and the chromosome based on the best value is 

selected as the optimal process parameter for minimiz-
ing the magnitude variation.

2.5 � Development of ANN model using experimental 
data

The ANN technique is collected work of data which is 
used for creating the network, configuring the network, 
initializing the weights and biases, network training, vali-
dation of network and investigate the data. Artificial neural 
network systems, being great calculations for information 
investigation, have given wide chances to making utili-
zation of the information contained in mechanical data-
bases [22]. The sigmoid 10 hidden neurons with two level 
feed-forward network fitted the multidimensional map-
ping problem as shown in Fig. 3. The ANN mechanism 
to generate the best fit model has used inputs, outputs and 
neurons three layer model. The input and output data were 
investigated from the RSM design matrix. Every input has 
four variables and six replications. The various process 
parameters such as input, output, net and fitness obtained 
from ANN model were used in GA to find out the optimum 
process parameters.

Fig. 2   a Layer thickness. b 
Build orientation. c Infill den-
sity (25% 50% 75%). d Number 
of contours

(a) Layer thickness (b) Build orientation

(c) Infill density (25% 50% 75%)

(d) Number of contours
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2.6 � ANN‑GA model for process parameter 
optimization of 3D printing

A MATLAB 16.0 based GA mechanism was used to opti-
mize the input process parameters for minimum percent-
age variation in magnitude by using the previous devel-
oped ANN model. ANN-GA model was developed similar 
to RSM-GA as in previous Sect. 2.4. To start with the 
GA, mat file developed in the ANN model was used as 
a fitness function. Now, with various sets of ANN vari-
ables, generate an initial population randomly and calcu-
late fitness function of each chromosome of ANN. The 
Chromosome is one string of the population, which is 
further crossover and mutated to generate a new string of 
chromosomes for each generation. This process of vari-
ous steps such as reproduction, crossover and mutation is 
known as one generation. Each new string of the popula-
tion obtained after mutation is known as child strings, 
which become the parent strings for the next generation. 
This is continued until the mean fitness squared error of 
the strings comes out to be minimum.

3 � Results and discussion

In the present work focused is on enhancing magnitude 
preciseness by optimizing process parameters using RSM-
GA and ANN-GA hybrid techniques. Table 2 represents 
the design matrix which was built using central composite 
design under a different set of process parameters includ-
ing experimental response results and predicted value of 
different response values by RSM and ANN. Experimental 
response values were analyzed by developing mathemati-
cal models using Design of Experiment 6.0.8 and Mat Lab 
16.0 software. In present study quadratic and 2FI (two-factor 
interaction) models were analyzed and selected according to 
three different tests- the sequential model sum of squares, 
lack-of-fit and the adequacy model. For percentage variation 
in length and width quadratic model has the maximum value 
of R2, adjusted R2 and predicted R2 with very fine concord 
with each other, but for percentage deviation in the thickness 
2FI model has the maximum values for all these correlation 
coefficient as represented in Table 3. So smaller p values 
and insignificant lack-of-fit for quadratic and 2FI models in 
comparison to other models gives an admirable clarification 
among FDM process parameters and magnitude preciseness.

3.1 � Effect of process parameters on percentage 
variation in length

Effect of different FDM process parameters on percentage 
variation in length is revealed in Fig. 4a–c. Figure 4a shows 
the effect of number of contours and infill density that with 
increment in both parameters percentage variation in length 
is increasing. After reaching the maximum value again start 
to decrease and it is minimum at 4 number of contours and 
25% infill density. This is because at low infill density less 
amount of material is used, so heat is easily transferred as 

Fig. 3   Artificial neural network for FDM process parameter optimiza-
tion

Table 3   Figures summary of the models

Response Model Sequential p value Lack of fit-value R2 R2 adj R2 pred PRESS Precision Remarks

Percentage variation in length Quadratic < 0.0001 0.3977 0.968 0.9386 0.8547 1.8120 Sufficient Suggested
2FI 0.1519 0.0024 0.555 0.3207 0.2393 9.4886 Insufficient
Cubic 0.3969 0.3537 0.987 0.9455 0.3429 8.1960 Insufficient Aliased
Linear 0.0539 0.0018 0.301 0.1895 − 0.087 13.5596 Insufficient

Percentage variation in width Quadratic < 0.0001 0.8166 0.983 0.9661 0.9358 0.3797 Sufficient Suggested
2FI 0.099 0.019 0.817 0.7205 0.6985 1.7845 Insufficient
Cubic 0.6348 0.8095 0.991 0.9616 0.8796 0.7125 Insufficient Aliased
Linear < 0.0001 0.0123 0.695 0.6456 0.5288 2.7892 Insufficient

Percentage variation in thickness Quadratic 0.3452 0.1434 0.978 0.9573 0.8878 0.6480 Insufficient
2FI < 0.0001 0.1433 0.971 0.9554 0.9073 0.5352 Sufficient Suggested
Cubic 0.1524 0.2327 0.994 0.9743 0.6002 2.3088 Insufficient Aliased
Linear 0.3892 0.0001 0.147 0.0104 − 0.331 7.6870 Insufficient
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material cool downs from glass transition temperature to 
machine cabin temperature without producing any ther-
mal stress. The minimum percentage variation in length at 
a minimum number of contours and infill density is found 
0.754167% by keeping other parameter constant as shown 

in Fig. 4a. This variation in length can be further reduced to 
by lessening the layer thickness. The effect of layer thick-
ness with infill density and number of contours is shown 
in Fig. 4b, c which conclude that percentage variation in 
length is minimum at lower values of layer thickness. This 

Fig. 4   a Effect of infill density 
and layer thickness on percent-
age variation in length. b Effect 
of number of contours and 
layer thickness on percentage 
variation in length. c Effect of 
number of contours and infill 
density on percentage variation 
in length

(a) Effect of Infill density & Layer thickness on percentage variation in Length

(b) Effect of Number of contours & Layer thickness on percentage variation in Length

(c) Effect of Number of contours & Infill density on percentage variation in Length
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is due to generation of less amount of inner residual stress as 
fabricated part cool down. The main reason of deformation 
and distortion is growth of inner stress as layer thickness 
increases. The strength of FDM parts also decreases with 
increase in layer thickness [23]. So layer thickness should 
keep minimum. The least percentage variation in length is 
0.695833% at layer thickness of 0.19 mm and 4 number of 
contours.

3.2 � Effect of process parameters on percentage 
variation in width

Figure 5a–d reveals the effect of different process parameters 
on percentage variation in width. The effect of build orienta-
tion and layer thickness on percentage variation in width as 
can be seen (Fig. 5a). The width is increasing linearly with 
increase in layer thickness, but with the increase in build ori-
entation percentage variation in width is decreasing reaches 
a minimum value and then again starts increasing. The mini-
mum percentage variation in width is 0.40% at 600 build ori-
entation and 0.19 mm layer thickness. The effect of number 
of contours and layer thickness on percentage variation in 
width is shown in Fig. 5b. The percentage variation in width 
is decreasing linearly with increase in number of contours 
but increasing with increase in layer thickness as can be 
seen (Fig. 5b). The minimum percentage variation in width 
is 0.41% at 8 number of contours and 0.19 mm layer thick-
ness. Figure 5c shows the effect of infill density and build 
orientation on percentage variation in width. The minimum 
percentage variation in width is 0.42% at 60° build orienta-
tion and 25% infill density. The percentage variation in width 
is increasing with raising infill density value. The reason is 
thermal expansion due to the large amount of material used 
during fabricating part but, with the increase in build orien-
tation, first percentage variation in width is decreasing and 
then becomes constant up to 67.50° build orientation value. 
Similarly, least percentage variation in width 0.67% at 60° 
build orientation and 4 number of contours can be obtained 
as shown in Fig. 5d.

3.3 � Effect of process parameters on percentage 
variation in thickness

Figure 6a–d shows the effect of different process param-
eters on percentage variation in thickness. Figure  6a 
reveals the influence of infill density and layer thick-
ness on percentage variation in thickness that thickness 
is decreasing linearly with a rise in layer thickness value, 
but with the rise in infill density value percentage varia-
tion in thickness is increasing. The minimum percentage 
variation in thickness is 1.3075% at 25% infill density and 

0.33 mm layer thickness. Similarly the effect of number 
of contours and layer thickness on percentage variation in 
thickness is shown in Fig. 6b. The minimum percentage 
variation in thickness is 1.3825% at 4 number of contours 
and 0.33 mm layer thickness. Figure 6c shows the effect 
of infill density and build orientation on percentage vari-
ation in thickness. This figure indicates that the minimum 
percentage variation in width is 1.29% at 67.500 build 
orientation and 25% infill density. The percentage vari-
ation in thickness is increasing with a rise in infill den-
sity value, but with rise in build orientation percentage 
variation in thickness is decreasing. Similarly, minimum 
percentage variation in thickness 1.39% at 67.500 build 
orientation and 4 number of contours can be obtained as 
shown in Fig. 6d.

3.4 � ANOVA models

In this study different process parameters selected for opti-
mization to enhance the magnitude preciseness were layer 
thickness, Build orientation, Density and Number of con-
tours. The process parameters range as given in Table 1 was 
selected on the basis of study literature and developed a 
design matrix by using RSM based central composite design 
(CCD) in the design of expert software 6.0.8. Responses in 
terms of percentage variation in length, width and thick-
ness were measured by performing experiments according 
to Table 2. For each response value mathematical models 
are generated according to the second order equations (ii, 
iii and iv) as given below:

(2)

Percentage variation in length

= (−3.05487 + 27.38520 ∗ A − 0.026865 ∗ B

+ 0.014917 ∗ C − 0.021280 ∗ D − 27.42347 ∗ A2

+ 6.48148E − 004 ∗ B2 − 2.95000E − 004 ∗ C2

+ 0.010156 ∗ D2 − 0.21825 ∗ A*B + 0.075000 ∗ A*C

− 0.49107 ∗ A*D + 2.77778E − 004 ∗ B*C

+ 3.47222E − 003 ∗ B*D − 1.87500E − 003 ∗ C*D)

(3)

Percentage variation in width

= (+0.35930 + 1.76304 ∗ A − 0.012328 ∗ B

+ 0.034635 ∗ C − 0.31389 ∗ D − 4.53515 ∗ A2

+ 2.85322E − 004 ∗ B2 − 1.42222E − 004 ∗ C2

+ 0.011111 ∗ D2 − 0.042328 ∗ A*B

− 0.023810 ∗ A*C + 1.25000 ∗ A*D

− 7.40741E − 005 ∗ B*C − 1.66667E

− 003 ∗ B*D − 6.66667E − 004 ∗ C*D)
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Fig. 5   a Effect of build orienta-
tion and layer thickness on 
percentage variation in width. 
b Effect of number of contours 
and layer thickness on percent-
age variation in width. c Effect 
of infill density and build orien-
tation on percentage variation 
in width. d Effect of number of 
contours and build orientation 
on percentage variation in width

(a) Effect of Build orientation & Layer thickness on percentage variation in width

 (b) Effect of Number of contours & Layer thickness on percentage variation in width

(c) Effect of Infill density & Build orientation on percentage variation in width

(d) Effect of Number of contours & Build orientation on percentage variation in width
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Fig. 6   a Effect of infill density 
and layer thickness on percent-
age variation in thickness. b 
Effect of number of contours 
and layer thickness on percent-
age variation in thickness. c 
Effect of infill density and build 
orientation on percentage vari-
ation in thickness. d Effect of 
number of contours and build 
orientation on percentage varia-
tion in thickness

(a) Effect of Infill density& Layer thicknesson percentage variation in thickness

(b) Effect of Number of contours & Layer thickness on percentage variation in thickness

(c) Effect of Infill density & Build orientation on percentage variation in thickness

(d) Effect of Number of contours &Build orientation on percentage variation in thickness
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Table 4   ANOVA result for 
percentage variation in length

Source Sum of Squares DF Mean square F value Prob > F (p value) Remarks

Model 12.07783 14 0.862702 32.69188 < 0.0001 Significant
 A 1.98375 1 1.98375 75.17368 < 0.0001
 B 1.08375 1 1.08375 41.06842 < 0.0001
 C 0.570417 1 0.570417 21.61579 0.0003
 D 0.120417 1 0.120417 4.563158 0.0496
 A2 0.495268 1 0.495268 18.76805 0.0006
 B2 2.953125 1 2.953125 111.9079 < 0.0001
 C2 0.932411 1 0.932411 35.33346 < 0.0001
 D2 0.045268 1 0.045268 1.715414 0.21
 AB 1.890625 1 1.890625 71.64474 < 0.0001
 AC 0.275625 1 0.275625 10.44474 0.0056
 AD 0.075625 1 0.075625 2.865789 0.1111
 BC 0.390625 1 0.390625 14.80263 0.0016
 BD 0.390625 1 0.390625 14.80263 0.0016
 CD 0.140625 1 0.140625 5.328947 0.0356
 Residual 0.395833 15 0.026389
 Lack of fit 0.2875 10 0.02875 1.326923 0.3977 Not significant
 Pure error 0.108333 5 0.021667

Cor total 12.47367 29
SD 0.162447 R-Squared 0.968266481
Mean 1.256667 Adj R-Squared 0.938648531
C.V. 12.92678 Pred R-Squared 0.854733973
PRESS 1.812 Adeq Precision 24.81128775

Table 5   ANOVA result for 
percentage variation in width

Source Sum of Squares DF Mean square F value Prob > F (p value) Remarks

Model 5.815704 14 0.415407 60.08571 < 0.0001 Significant
 A 1.706667 1 1.706667 246.8571 < 0.0001
 B 1.567407 1 1.567407 226.7143 < 0.0001
 C 0.711852 1 0.711852 102.9643 < 0.0001
 D 0.125185 1 0.125185 18.10714 0.0007
 A2 0.013545 1 0.013545 1.959184 0.1819
 B2 0.572275 1 0.572275 82.77551 < 0.0001
 C2 0.21672 1 0.21672 31.34694 < 0.0001
 D2 0.05418 1 0.05418 7.836735 0.0135
 AB 0.071111 1 0.071111 10.28571 0.0059
 AC 0.027778 1 0.027778 4.017857 0.0634
 AD 0.49 1 0.49 70.875 < 0.0001
 BC 0.027778 1 0.027778 4.017857 0.0634
 BD 0.09 1 0.09 13.01786 0.0026
 CD 0.017778 1 0.017778 2.571429 0.1297
 Residual 0.103704 15 0.006914
 Lack of fit 0.053333 10 0.005333 0.529412 0.8166 Not significant
 Pure error 0.05037 5 0.010074
 Cor total 5.919407 29

SD 0.083148 R-Squared 0.982480729
Mean 0.817778 Adj R-Squared 0.966129409
C.V. 10.16755 Pred R-Squared 0.935849434
PRESS 0.379733 Adeq Precision 31.08757791
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The percentage variation in length, width and thick-
ness actual measured were in the range of (0.1–3.1%, 
0.07–1.93%, 0.9–2.5%). The model fitness is quadratic for 
length and width, but 2FI for thickness, which find that 
there is only one arrangement for each dimension where 
various process parameters show minimum magnitude vari-
ation from the actual one. Then from the F and p test values 
which were checked for each model terms in Eqs. (2), (3) 
and (4), it was decided that the model was significant or not 
significant as described in Tables 4, 5 and 6. The response is 
affected more as compared to other terms in quadratic equa-
tion if the coefficient of the terms in the developed equation 
is significant. Different significant model terms obtained for 
each response are shown in Tables 4, 5 and 6. The model F 
(32.69) and p (< 0.0001) values for percentage variation in 
length, F (60.08571) and p (< 0.0001) values for percentage 
variation in width and F (63.08638) and p (< 0.0001) values 
for percentage variation in thickness showed that the models 
were significant.

Point prediction optimization method was used in this 
work to find out optimum process parameters at minimum 

(4)

Percentage variation in thickness

= (+7.59976 − 21.84524 ∗ A − 0.093122 ∗ B

− 0.031429 ∗ C − 0.11607 ∗ D + 0.32540 ∗ A*B

+ 0.078571 ∗ A*C + 0.44643 ∗ A*D + 1.33333E

− 004 ∗ B*C − 5.55556E − 004 ∗ B*D

+ 1.50000E − 003 ∗ C*D)

percentage variation in part dimension and to confirm the 
validity of the model. It was found that at the 0.19 mm layer 
thickness, 40.74° build orientation, 25% infill density and 
4 number of contours the minimum percentage variation 
in length is 0.360421%, minimum percentage variation in 
width is 0.30% and the minimum percentage variation in 
thickness is 1.83182%. To validate the RSM model a mini-
mum three parts are fabricated at the above obtained opti-
mum process parameters. The minimum percentage varia-
tion in length = 0.3524%, minimum percentage variation in 
width = 0.345% and minimum percentage variation in thick-
ness = 1.78312% were found close to the above predicted 
values. Thus, from experimental results confirm that the 
model is very adequate and reliable for this problem. Fur-
ther optimization of the FDM process parameters to enhance 
magnitude preciseness is necessary as the above discussed 
models output is not much significant as our objective and 
also developed mathematical equations can not find out 
the accurate results [7]. So further hybrid techniques were 
applied to optimize the FDM process parameters.

3.5 � Parameter optimization by RSM‑GA

In GA epochs is a measure which shows the performance 
and the number of cycles that processed by the genetic algo-
rithm for various numbers of generations. It was performed 
for experiments using 50 generations and 200 population 
size to find out the number of souls. Constraint dependent 
crossovers were used up as a crossover function and adap-
tive feasible mutation was taken as mutation function. The 

Table 6   ANOVA result 
for percentage variation in 
thickness

Source Sum of Squares DF Mean square F value Prob > F (p value) Remarks

Model 5.605833 10 0.560583 63.08638 < 0.0001 Significant
 A 0.041667 1 0.041667 4.689042 0.0433
 B 0.326667 1 0.326667 36.76209 < 0.0001
 C 0.24 1 0.24 27.00888 < 0.0001
 D 0.24 1 0.24 27.00888 < 0.0001
 AB 4.2025 1 4.2025 472.9368 < 0.0001
 AC 0.3025 1 0.3025 34.04245 < 0.0001
 AD 0.0625 1 0.0625 7.033564 0.0157
 BC 0.09 1 0.09 10.12833 0.0049
 BD 0.01 1 0.01 1.12537 0.3021
 CD 0.09 1 0.09 10.12833 0.0049
 Residual 0.168833 19 0.008886
 Lack of fit 0.148833 14 0.010631 2.657738 0.1433 Not significant
 Pure error 0.02 5 0.004
 Cor total 5.774667 29

SD 0.094265 R-Squared 0.970763
Mean 1.586667 Adj R-Squared 0.955375
C.V. 5.941096 Pred R-Squared 0.907324
PRESS 0.535175 Adeq precision 27.88458
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Fig. 7   RSM-GA plot for per-
centage variation in length

Fig. 8   RSM-GA plot for per-
centage variation in width

Fig. 9   RSM-GA plot for per-
centage variation in thickness
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crossover fraction was chosen as 0.8 and elite count was 
taken as 0.05 of population sizes. The hybrid RSM-GA has 
been run to get optimum process parameters for least per-
centage variation in different magnitudes in MATLAB by 
fixing upper and lower bound parameter limits as found out 
from the design matrix of RSM.

The minimum percentage variation in length obtained 
with RSM-GA is 0.17919% at process parameters (layer 
thickness 0.19 mm, build orientation 22.50°, infill den-
sity 75% and number of contours 8) and its convergence as 
shown in Fig. 7; the minimum percentage variation in width 
is 0.05342% at process parameters value (layer thickness 
0.19 mm, build orientation 62.301°, infill density 25.002%, 
and number of contours 8) and its convergence as shown 
in Fig. 8; the minimum percentage variation in thickness 
is 0.87418% at process parameters value (layer thickness 

0.33 mm, build orientation 22.5°, infill density 25%, and 
number of contours 4) and its convergence as shown in 
Fig. 9.

3.6 � Validation of RSM‑GA

The optimum process parameter combination sets obtained 
from the RSM-GA developed models were used to validate 
the model. A minimum of three parts were fabricated by 
selecting the optimum process parameters combination 
set for each magnitude from Table 7 to confirm the ade-
quacy of predicted models. An observed average minimum 
0.18076% variation in length, 0.05741% variation in width 
and 0.88906% variation in thickness process parameters 
were near to the predicted value of 0.179192% variation in 
length, 0.05342% variation in width and 0.87418% variation 
in thickness and hence confirms the adequacy of developed 
RSM-GA model.

3.7 � Fitness function development and training 
using ANN

The ANN generated model has been trained with 30 sets 
of input process parameters (A, B, C, D) and an output 
response (variation in length, width and thickness). The 
input [4 × 30] and output [1 × 30] were sacrificed to the neu-
ral fitting tool as an input and output data set. In this study 
30 samples were divided randomly among three varieties 
of samples viz. testing (15%), validation (15%) and training 
(70%) for training purpose. Ten numbers of hidden neurons 
were taken in the fitting network’s hidden layer to define a 
fitting neural network. Chronological arranged incremen-
tal training with learning functions (trains) were utilized to 
perform training. Testing offers an independent standard 

Table 7   Validation of RSM-GA results

Sr. no A B C D Percentage varia-
tion in magnitude

For percentage variation in length
 1 0.19 22.5 75 8 0.17983
 2 0.19 22.514 74.999 7.999 0.17994
 3 0.19 22.506 75 7.997 0.182514

For percentage variation in width
 1 0.19 62.301 25.002 8 0.05243
 2 0.191 62.435 25 8 0.06258
 3 0.191 62.39 25.001 7.999 0.05721

For percentage variation in thickness
 1 0.33 22.5 25 4 0.88215
 2 0.191 67.5 25.005 8 0.89781
 3 0.191 67.498 25.003 7.999 0.88721

Table 8   Result obtained from 
different training functions

R2 Trainlm Trainoss Traincgp Trainscg Traincgb Trainrp Traingdx Trainb

Training function applied in the fitness function of ANN1
Training 0.99607 0.8841 0.99842 0.98427 0.99557 0.99147 0.97063 80,444
Validation 0.86814 0.60643 0.90706 0.98044 0.88022 0.90007 0.58062 − 0.09356
Test 0.98093 0.8682 0.55654 0.81997 0.73328 0.61286 − 0.59326 0.84991
Overall 0.97006 0.81289 0.93978 0.94986 0.96753 0.94915 0.85722 0.53629
Training function applied in the fitness function of ANN2
Training 1 0.86399 0.98761 0.98543 0.94745 0.96998 0.95929 0.77586
Validation 0.78238 0.97379 0.95627 0.97827 0.94739 0.99351 0.85689 0.17088
Test 0.75499 0.73114 0.98889 0.86137 0.98214 0.95676 0.8701 0.63273
Overall 0.98144 0.83984 0.96918 0.96173 0.9441 0.97326 0.93776 0.70189
Training function applied in the fitness function of ANN3
Training 0.99912 0.72656 0.99752 0.91246 0.9803 0.98826 0.80575 0.1652
Validation 0.9686 0.49512 0.92089 0.986 0.82806 0.71555 0.74699 0.99211
Test 0.97202 0.82114 0.83156 0.91142 0.95202 0.94004 0.78036 0.25293
Overall 0.98145 0.74747 0.94378 0.91528 0.9505 0.90435 0.80298 0.45482
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of network execution and bears no impact on training. The 
network was trained multiple times as it generates different 
results owing to initial conditions and sampling. In this way 
different values of correlation coefficient (R) were obtained 
for each run of training algorithm. By varying the number of 

hidden layers/neurons value of R can be varied for training, 
validation and testing for different types of algorithms. The 
value of R decides the relationship, whether it is close or 
random, 0 specify random relationship and 1 specify close 
relationship. For the best value of correlation coefficient, 

Fig. 10   a Neural network parameters for percentage change in length. b Neural network parameters for percentage change in width. c Neural net-
work parameters for percentage change in thickness
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an ANN model has been created in a .mat format by using 
MATLAB software as shown in Table 8.

The best correlation coefficients were obtained by trainlm 
among different training functions for individual percent-
age variation in magnitude. The different neural network 
parameters obtained using ANN as shown in Fig. 10a-c are 
as follows.

For percentage variation in length an overall correla-
tion coefficient of 0.97006, training correlation coeffi-
cient 0.99607, validation correlation coefficient 0.86814 
and testing correlation coefficient 0.98093., for percent-
age variation in width an overall correlation coefficient 
of 0.98144, training correlation coefficient 1.000, valida-
tion correlation coefficient 0.78238 and testing correla-
tion coefficient 0.75499. and for percentage variation in 
thickness an overall correlation coefficient of 0.98145, 
training correlation coefficient 0.99912, validation corre-
lation coefficient 0.9686 and testing correlation coefficient 
0.97202.

3.8 � Process parameters optimization by ANN‑GA

An optimization tool of genetic algorithm was used to 
predict the optimum combinations of process parameters 
to minimize the variation in magnitudes. The ANN model 
(.mat file) produced in the previous part utilized with regard 
to target work. Bring down furthermore upper limits and 
lower limits about process parameters need be fed under 
GA. The fused ANN-GA has been run to get optimum pro-
cess parameters for least percentage variation in different 
magnitudes in MATLAB by fixing upper and lower bound 
parameter limits as found out from the design matrix of 
RSM. Parameters population size = 200, generation = 50, 
elite count = 0.05 of population size, crossover fraction = 0.8, 
constraint dependent crossover function and adaptive feasi-
ble mutation function were used for hybrid ANN-GA.

The minimum percentage variation in length obtained 
with ANN-GA is 0.06409% at process parameters (layer 
thickness 0.19 mm, build orientation 40.382°, infill density 

Fig. 11   ANN-GA plot for per-
centage variation in length

Fig. 12   ANN-GA plot for per-
centage variation in width
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25% and number of contours 6.013) and its convergence 
is shown in Fig. 11; the minimum percentage variation in 
width is 0.03956% at process parameters value (layer thick-
ness 0.19 mm, build orientation 56.144°, infill density 25%, 
and number of contours 8) and its convergence is shown 
in Fig. 12; the minimum percentage variation in thickness 
is 0.85689% at process parameters value (layer thickness 
0.33 mm, build orientation 22.50, infill density 25%, and 
number of contours 4) and its convergence is shown in 
Fig. 13.

3.9 � Validation of ANN‑GA model

The optimum process parameter combination sets obtained 
from the ANN-GA developed models were used to validate 
the models. A minimum of three parts were fabricated by 
selecting the optimum process parameters combination set 
for each magnitude from Table 9 to confirm the predicted 

models. An observed average minimum 0.06445% variation 
in length, 0.03908% variation in width and 0.85337% vari-
ation in thickness process parameters were near to the pre-
dicted value of 0.0640932% variation in length, 0.03961% 
variation in width and 0.856886% variation in thickness and 
hence confirms the adequacy of developed ANN-GA model.

4 � Conclusions

RSM and various hybrid statistical tools such as RSM-GA 
and ANN-GA is used for process parameter optimization 
to enhance the magnitude preciseness of FDM fabricated 
parts. ANN-GA produced better proposed model by using 
back-propagation neural network with four inputs, ten hid-
den, multilayer feed-forward and one output layer as showed 
by high correlation coefficients R (0.97006, 0.98144, 
0.98145) for minimum percentage variation in length, 
width and thickness as compared to R (0.96826, 0.98248, 
0.970763) obtained from RSM. The minimum percent-
age variation in length = 0.06409% at process parameters 
(layer thickness = 0.19 mm, build orientation = 40.382°, 
infill density = 25% and number of contours = 6.013), the 
minimum percentage variation in width = 0.03961% at pro-
cess parameters value (layer thickness = 0.19 mm, build 
orientation = 56.144°, infill density = 25.008%, and number 
of contours = 8) and the minimum percentage variation in 
thickness = 0.85689% at process parameters value (layer 
thickness = 0.33 mm, build orientation = 22.5°, infill den-
sity = 25%, and number of contours = 4) are best predicted 
results value by using ANN-GA in comparison to RSM, 
RSM-GA predicted results value. The proposed tools as a 
computational device used intelligently to help the design-
ing examination through deciding the optimum process 
parameters selection for increasing dimensional precise-
ness. Additionally, it very well may be connected to a high 

Fig. 13   GA ANN plot for per-
centage variation in thickness

Table 9   Validation of ANN-GA results

Sr. no A B C D Percentage varia-
tion in magnitude

For percentage variation in length
 1 0.19 40.382 25 6.013 0.0620932
 2 0.19 40.381 25.001 6.014 0.0620932
 3 0.191 40.409 25.002 6.015 0.0661766

For percentage variation in width
 1 0.19 56.144 25.008 8 0.03802
 2 0.19 56.134 25 8 0.04082
 3 0.19 56.097 25.012 7.999 0.03839

For percentage variation in thickness
 1 0.33 22.5 25 4 0.85031
 2 0.33 22.506 25.015 4.005 0.84286
 3 0.33 22.503 25.002 4.001 0.86786



1214	 International Journal on Interactive Design and Manufacturing (IJIDeM) (2019) 13:1197–1214

1 3

scope of relevance, similarity inside the AM frameworks 
and simplicity in usage.
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