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Abstract
Models are increasingly applied to improve the thermo-elastic behavior of machine tools. The most universal models are 
those with physically based approaches. They are used for analysis in the design process of the machines and for determining 
correction values in machine control during operation. In order to achieve sufficient accuracy, the models must be adjusted 
with metrological support. This is due to some model parameters, which have a high degree of uncertainty and overall effect. 
Because of the large number of parameters with very different characteristics, the determination of the parameters relevant 
for the adjustment is manually and computationally time-consuming. This article presents a systematic method of parameter 
selection that reduces this effort. The procedure is demonstrated exemplarily by the example of the thermo-elastic model 
of a hexapod strut axis.
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1 Introduction

The machining industry continues to be confronted with 
demands for higher accuracy. A large part of the accuracy 
limiting machining errors of today’s machine tools is due 
to their thermo-elastic behaviour. Therefore, the mastering 
of the thermo-elastic machine behaviour has a particular 
relevance. Numerous measures are known to control this 
behaviour [1]. They can be divided into measures for com-
pensation and correction [2]. Compensatory measures have 
influence through constructive modifications with the aim 
of minimizing the displacements of the Tool Center Point 
(TCP). Corrective measures in contrast are used to predict 
the remaining thermo-elastic deformations by control inte-
grated models and correct the deformations by inverse move-
ments of the feed axes. Using these measures, machine tools 
get resilient and self-adaptable to thermal loads from inside 

the machines and its surroundings. These are attributes of 
the worry-free productivity in an Industry 4.0 factory [3].

Thermal models are increasingly used for these measures. 
Compensatory measures are incorporated during the concept 
and design phase of the machine tool. This is an interactive 
process. In this process, various virtual prototypes, repre-
senting promising design options, are generated. Thermal 
models are part of the virtual prototypes and are used to 
analyse the thermo-elastic behaviour. Based on this, deci-
sions about the machine design are made. An example is the 
analysis of a latent heat storage device [4]. The device tem-
porarily stores the feed drive heat losses using paraffin based 
phase-change materials. The aim is to lower the temperature 
rising as a response to the drive activity and with it lower the 
accuracy relevant temperature dependent deformation of the 
machine structure. A simulation is used to predict the impact 
of the devices on the temperature field under typical load 
cycles. Based on this, predictions for the efficiency during 
deployment of these devices are made.

In the case of correction measures, the models are 
used for the internal calculation of correction values for 
the motion axes. The models compute the thermo-elastic 
machine behaviour mainly with internal signals of the 
numerical control as input signals. The effectiveness of 
the correction approach is e.g. verified on the example of a 
current 5-axis machine tool. The thermal error induced by 
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internal heat sources of the rotary axes could be reduced by 
up to 85% [5].

2  Structure based models

Thermal behaviour models can be divided into correlative 
and structure-based models. Correlative models use empiri-
cal approaches, in which all parameters must be identified by 
a metrologically supported adjustment. This enables a high 
model quality, but in principle also limits its validity to the 
load regimes on which the measurements are based. This is 
especially suitable for the repetitive load regimes in series 
production. Instead, structure-based models use physically 
founded approaches. They therefore have a larger range of 
validity [6]. They are suitable for a broad variety of load 
regimes that are typical for single-item production. Further-
more, they appropriate for a wide range of applications.

This is demonstrated in [7]. A structure-based model is 
developed and used alongside the life cycle of a machine 
tool. Beginning in the concept phase, fundamental design 
decisions are made based on coarse models of the general 
machine structure. In the design phase, machine compo-
nents are constructively developed. The models get gradu-
ally adapted to the development progress. In the accom-
panying analyses, detailed design variants are compared. 
Finally, in the operating phase, the model can be used for 
the control-integrated correction. In this application, the 
model computes the correction values during the operation 
of the machine.

One particular problem of structure-based thermal mod-
els is the high uncertainty of results. The cause is typi-
cally not the model structure, because the available model 
approaches are mostly adequate. In addition, most param-
eters can be estimated with sufficient accuracy from design 
data of the computer-aided engineering process. Only some 
of the parameters show very high uncertainties and at the 
same time high impact. This leads to large model deviations 
compared to real behaviour [8]. Especially for models with 
correction purpose, the resulting accuracy is not sufficient. 
Therefore, a model adjustment based on measurements of 
the thermal machine behaviour is necessary. So far, a high 
temporal, personnel and metrological expenditure is neces-
sary for this. The aim is therefore to reduce this effort.

3  Tasks of the model adjustment process

In order to find approaches for reducing the effort, a sys-
tematic analysis of the procedure for parameter adjust-
ment is carried out. The analysis delivered the workflow 
of the parameter adjustment shown in Fig. 1 consisting of 
7 steps. The steps are underlaid with specific subtasks. The 

parameter adjustment can be divided into three phases: the 
planning phase for planning the load tests and measure-
ments, the experimental phase for carrying them out on the 
machine and the adjustment phase for non-linear optimiza-
tion of the parameters and the final verification.

The need for support of individual subtasks varies consid-
erably. The need for non-linear optimization of the param-
eters in the adjustment phase, for example, is relatively low. 
However, it is more evident in the planning and experimental 
phase. There is particularly large potential for increasing 
efficiency in the planning phase, because not only the plan-
ning effort itself can be reduced, but also the effort in the test 
and comparison phase.

The effort in the planning phase results in particular from 
the fact that the adjustment must be specifically adapted in 
each case due to the always individual characteristics of the 
machine, their operating conditions and the model. In the 
first step of this phase, the basis for a successful adjustment 
is laid by conditioning the model. An essential sub-task is 
the selection of the parameters to be adjusted from the large 
number of total parameters. The work is currently charac-
terized by an intuitive approach, requires in-depth thermal 
expertise and involves a great deal of manual and computa-
tional effort. A systematic methodology for determining the 
parameters to be calibrated has been developed to reduce 
these requirements.

Pl
an

ni
ng

Ex
pe

rim
.

O
pt

im
is

at
.

1. Model conditioning
• Simplify the model structure
• Determination of parameters for adjustment
2. Parameter analysis
• Determination of input values for stimulation
• Determination of measurement values & locations
3. Procedure planning
• Design of load and measurement regimes

4. Stimulation and measurement
• Conduction of load tests and measurements
5. Data preparation
• Conditioning of actuating and measuring data

6. Parameter identification
• Nonlinear optimisation of parameters
7. Result verification
• Control measurement

Fig. 1  Generalized procedure for parameter adjustment (according to 
[8])
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4  Thermo‑elastic model of a hexapod strut

The methodology is presented by example of the correc-
tion model of a hexapod. The correction model shows the 
accuracy relevant thermo-elastic behaviour of 6 identical 
rod axes of a hexapod [7]. The thermo-elastic behaviour is 
characterized by processes that extends over several physical 
domains. These processes form the thermo-elastic chain of 
effects and are shown in Fig. 2 in the form of a cause-effect 

relationship. The model uses a so-called structure-based 
approach, in which primarily physically justified model 
approaches are used.

The thermal behaviour extends over several physical 
domains and shows several non-linear effects within. Digi-
tal block simulation (DBS) network models are well suited 
to simulate this. Therefore, the correction model is imple-
mented in this form. Figure 3 shows the part of the model 
for simulation of the temperature field. It contains different 
types of simulation objects: Assemblies are finite element 

Load regime Heat flow Temperature
field

Deformation TCP 
displacement

Heat losses, 
ambient temperatures

Heat transfer and
-storage

Thermal expan-
sion and stress
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Fig. 2  Accuracy relevant behaviour of the thermo-elastic chain of effects (according to [9])
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(FE) models to represent temperature fields of solids. Con-
tact elements describe thermal connections between two 
assembly objects and between assembly objects and the 
environment. This includes the non-linear effects of heat 
radiation, convection and heat transport by mass transfer. 
The contact elements also represent relative movements 
between the assembly objects, e.g. for the simulation of 
moving axis assemblies of the machine tools. There are also 
simulation objects for temperature restraints and source heat 
flows. They describe the boundary conditions of assemblies 
such as measured ambient temperatures and friction caused 
heat losses. Another model part not shown here determines 
the thermos-elastic deformation of the components based 
on the calculated temperature field of the strut axes. It is 
determined by the free longitudinal thermal expansion based 
on the mean temperature of each machine part.

Conventionally, FE models of machine tools approxi-
mate the fine geometry of the components with high geo-
metric resolution. They therefore have a very high number 
of degrees of freedom and are very computationally inten-
sive. In order to achieve the real-time capability necessary 
for the correction model, the assembly objects consist of 
order-reduced FE models. To generate these reduced mod-
els, geometric high-resolution FE models are created based 
on CAD data of the components using FE tools. These are 
subsequently transformed into compact models, without 
significant loss of accuracy. For this purpose, adapted and 
further enhanced model order reduction (MOR) methods 
of the Krylov type [10] are used. The enhancements sup-
port mainly the simulation of relative movements between 
axis assemblies and other substantial nonlinearities [7]. As a 
result, the ratio of real time to simulation time for the model 
of the hexapod axis strut using a conventional PC is about 
100 to 1.

5  Principle procedure for parameter 
selection

Physical based thermal models have a high number of 
parameters. Some of these parameters have a high uncer-
tainty and a high overall impact on the machine behaviour 
and have to be adjusted. Both the uncertainty and the impact 
of the parameters are initially unknown and thus also the 
parameters to be adjusted. When determining the parameters 
to be adjusted, the following characteristic boundary condi-
tions must be considered:

• Structure-based models are comparatively large. The 
number of parameters is typically well above 100, i.e. a 
high number of model parameters has to be investigated.

• As a result of the large heat capacities of the machine 
parts, the impact of the parameters is strongly delayed. 
The effect of the parameters can therefore only be deter-
mined by computationally expensive transient model 
calculations.

• The effect of the parameters is very versatile. For exam-
ple, the time delayed effect of the parameters depend on 
the time constant of the components, the parameter type 
and the machines movement.

• The uncertainty of many individual parameters of model 
approaches for convection, thermal radiation and power 
dissipation are unknown. In most cases, only the overall 
uncertainty of model approaches can be estimated.

• The structure of the models clearly varies due to the 
wide variety of machine types and existing modelling 
approaches.

• The thermal behaviour of the machines depend on 
the varying operating and ambient conditions of the 
machines.

A methodology for parameter selection was developed 
with the aim of systematically using prior knowledge about 
the model and typical boundary conditions to reduce the 
manual and computational effort. It covers five stages:

1. Determination of the parameter characteristics and cat-
egorisation for efficient use in the further procedure,

2. Reduction of the number of parameters by combining 
the individual parameters of sub-models into condensed 
characteristic values,

3. Further reduction of the number of parameters by pre-
selecting parameters with significant uncertainty,

4. Determination of realistic (manufacturing, operating 
and environmental conditions of the machine) and time-
optimal load regimes for parameter stimulation and

5. Selection of the parameters to be adjusted using quanti-
tative results of simulative sensitivity analyses.

After the parameter selection, the metrologically assisted 
identification of the parameters contained in the characteris-
tic values can take place.

6  Relevant parameter characteristics 
and categorisation

Efficient and successful parameter selection is only possi-
ble if the characteristics of the parameters are systemati-
cally considered. In the first stage of parameter selection, 
the primary characteristics of the parameters of the model 
are therefore determined and categorized for efficient use in 
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further procedures. The essential characteristics are uncer-
tainty, temporal course of effects and location of effects.

With regard to the uncertainties, there are clear dif-
ferences between physically based and empirical model 
approaches. The parameters of physically based models 
describe material properties and geometry. This is typically 
achieved with very little uncertainty. However, some sub-
models are empirical in nature. They are used as a simplified 
representation of complex processes such as fluid- and elas-
tohydrodynamics. Physically based models are too compu-
tationally expensive for this. Empirical models approximate 
the behaviour much stronger. They therefore have signifi-
cantly higher uncertainties.

The result of an analysis of the application of these two 
types of model abstraction within physical-based thermal 

models is shown in Fig. 4. The parameters can be divided 
into the categories of basic thermal quantities with respect 
to uncertainties. These are capacity C, conductance L, heat 
source Q̇ and deformation u. It turns out, that the parameters 
for calculating thermal capacities have very low uncertain-
ties due to physically based models. The parameters for heat 
sources, on the other hand, are mostly empirical in nature. 
They have very high uncertainties. The parameters for ther-
mal conductance of solids and heat transfer require further 
differentiation. They are classified into their behavioural 
domains, since typical characteristics for their uncertainty 
can be found there. For example, the behaviour domain of 
solid-state conduction is described physically based, while 
heat transfer processes like convection are represented 

Fig. 4  Typical approaches for sub-models representing the behavioural domains along the thermal effects chain

(a) (b)

Fig. 5  a Step response of a uniformly heated body; b influences of the uncertainties of the basic thermal variables capacity C, conductance L 
and heat load Q̇ (corresponding to [11])
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empirically. The models for the deformation calculation are 
physically based and therefore show minor uncertainties.

With regard to the temporal course of thermal effects, the 
parameters are also divided into the basic thermal quanti-
ties. They show a different character in their temporal effect. 
This is clearly shown by the example of a minimal thermal 
machine model [11]. The capacity of the machine body is 
concentrated in one point. The body has a uniform tempera-
ture and is connected to the environment via heat transfer h 
at the surface A. When the body gets constantly heated by 
an internal heat source Q̇ , the response of the temperature 
T corresponds to the behaviour of a 1st order delay element 
(Fig. 5a):

The temporal effect of the uncertainty of the parameters 
can be determined by the total differential. Figure 5b shows 
the proportions of uncertainties with respect to the total 
uncertainty over time. It is assumed that the uncertainty of 
the basic quantities is equal and the total uncertainty uT can 
be determined according to the error propagation law:

As can be seen in Fig. 5b, the influence of the conduct-
ance component increases over time. The capacity compo-
nent goes in the opposite direction. It is constantly decreas-
ing. The influence of the heat source portion, on the other 
hand, remains constant.

A further classification is required with regard to the local 
effect, since the parameters show a locally higher influence 
mainly due to insulating heat transfer mechanisms around 
certain machine areas. The classification of the local effect 
of the parameters is done via the sub-model or the model 
object (e.g. assembly, contact, environment) in which the 
parameter is located.

7  Aggregation of parameters 
to characteristic values

A general approach to reduce the high manual and simula-
tive effort for the analysis of the many individual parameters 
during parameter selection is to aggregate individual param-
eters. This enables the combined handling of parameters, 
which significantly reduces the number of required partial 
analyses during the whole parameter adjustment process.

In order to allow the characteristics of the parameters 
to be used during selection of parameters, only parameters 
with the same characteristics should be combined. This can 
be achieved by aggregating only parameters of the same 

(1)ΔT = ΔT
s
(1 − e

−t/τ) with ΔT
s
=

Q̇0

L
.

(2)u
T
≈
√

2u with u = uQ̇ = u
L
= u

C
.

category. The fact that the sub-models of the existing model 
structure each contain parameters with a similar effect char-
acter can be used here. For example, the sub-model for heat 
capacity of a machine part contains the parameters for spe-
cific heat capacity, density and volume (see Fig. 4). These 
parameters are united by the effect character of the thermal 
delay at the given location. The greater are their resulting 
capacity values, the greater is the thermal time constant 
of the machine part. According to these correlations, the 
parameters can be structured on the level of the sub-models. 
The result variables of the partial models represent the effect 
of several partial parameters. They are therefore called con-
densed parameters.

If the model contains geometrically or physically high-
resolution sub-models with the same characteristics, it is 
useful to combine several of these sub-models. An example 
is the heat conduction in solids. The conduction is often 
modelled with a locally very high-resolution FE mesh. 
The FE elements of this mesh can be interpreted as sub-
models. The parameters of these sub-models are thermal 
conductivity and geometric parameters. They have a similar 
effect, because they represent the thermal conduction over 
the structure. Furthermore, the properties of the material 
describing the parameters hardly vary within the compo-
nents. Accordingly, the sub-models can be combined over 
larger local areas. Another example is the power loss of a 
sealed rolling bearing. There is often a high physical resolu-
tion of the power loss description with sub-models for the 
seal friction and sub-models for the friction of the rolling 
contacts. The sub-models have the same thermal charac-
teristics of heat sources and a similarly high uncertainty. 
They are arranged locally close to each other and thus act 
approximately at the same location in the machine. Here it 
is also useful to combine the parameters of the sub-models.

Figure 6 shows the grouping of the parameters to con-
densed values using the example of the strut axis model. 
The local mapping of the parameters is given by the model 
objects of the network plan. The parameters of the reduced 
FE models of the assembly objects are combined to con-
densed parameters which represent the capacities and heat 
conduction of the respective solids. The contact model 
objects contain model approaches for heat transfer and fric-
tion heat sources. The heat transfer represents joints, gaps 
and fluid-filled interiors. They are modelled with approaches 
for convection, heat radiation and heat transport by mass 
transfer. The condensed parameters represent the parameters 
of the respective models. The same applies to the heat flow 
model objects, which represent boundary conditions for 
assembly objects with sub- models for friction and electri-
cal losses.
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8  Preselection of parameters 
with significant uncertainty

In order to further reduce the computational effort of the 
sensitivity analysis, a pre-selection of parameters with 
parameters of significant uncertainty is done. Uncertainty 
values of previous uncertainty analyses are used [8], which 
are briefly summarized below.

Statements on uncertainties can be found in particular 
for material and geometry parameters of physically based 
solid models. From this, overall uncertainties of partial mod-
els can be estimated. They can be estimated as ± 7% for 
approaches for the determination of heat capacities, ± 10% 
for heat conduction and ± 10% for thermal expansion.

There is little information on the uncertainties of empiri-
cal model approaches for heat transfers and heat sources at 
machine tools. There are isolated literature references to the 
uncertainty of model approaches itself, e.g. for convection. 
However, these uncertainties refer to idealized boundary 
conditions which do not exist at machine tools. For example, 

approaches for convective heat transfer at component sur-
faces assume undisturbed conditions of the oncoming air-
flow and homogeneous temperature fields of surfaces. In 
reality, the on flow conditions are affected by surrounding 
components and forced flows and the temperature fields of 
the components are distinctly inhomogeneous. Therefore, 
further literature searches as well as simulative and experi-
mental analyses on uncertainties of the model approaches 
were carried out. As boundary conditions, realistic operating 
and environmental conditions of machine tools were consid-
ered. The investigations allow a rough quantitative estima-
tion of the uncertainties. They range from about ± 20% to 
− 70/+ 200%.

These high uncertainty values of the empirical approaches 
lead to the assumption of insufficient model accuracy in cor-
rection applications. The pre-selection of the parameters for 
the sensitivity analysis therefore include these approaches.

Condensed 
parameters

Heat-
source Q

Capacity C
Conduc-
tance LSpindle (spd)

Screw drive-nut 
(nut)

Teleskopic tube
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Fig. 6  Condensed parameters of the thermal network model of the strut axis with the corresponding model objects

Table 1  Comparison of common sensitivity analysis methods; The calculation time considers an analysis of 19 preselected parameters of the 
strut axis model by processing a 8-h load regime for parameter stimulation

Partial derivatives Morris [13] and Campolongo et al. 14] Sobol [15] and Saltelli 
et al. [16]

Result quality Qualitative Qualitative Quantitative
Range of validity Lokal Global Global
Calculation time PC approx. 1.5 h 2.7 days 1 year
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9  Procedure for screening the condensed 
parameters

The further selection of the parameters is carried out by 
means of a sensitivity analysis. It is intended to provide a 
ranking of the uncertainty of condensed parameters. There 
are numerous methods of sensitivity analysis. They differ 
quite considerably in the information content of the sensi-
tivity measures, which characterize the parameter impact. 
A common classification of sensitivity analyses is local and 
global as well as qualitative and quantitative [12]. Local 
methods determine the sensitivity of the parameters at a 
point in its parameter space with fixed values of all other 
parameters. The sensitivity measure is determined by par-
tial derivatives or correlation coefficients. Global methods 
additionally determine the relationship between individual 
parameters. Therefore, several model parameters are varied 
simultaneously. Compared to qualitative methods, quanti-
tative methods may consider the statistical distribution of 
the uncertainty of the parameters in their parameter space. 
Variance-based methods are usually used for this purpose. 
Table 1 shows a comparison of three representative and fre-
quently used methods of sensitivity analysis. The methods 
roughly cover the described range of sensitivity analyses.

As Table 1 indicates, variance-based quantitative meth-
ods are computationally too intensive for the sensitivity 
analysis of the preselected parameters. Local methods, on 
the other hand, are relatively fast, but do not provide suf-
ficient information for the subsequent parameter adjust-
ment. Therefore, the global qualitative method by Morris 
is chosen. The method is computationally less demanding 
and allows at least a good estimation of the ranking of the 
parameter impact.

The Morris method determines the sensitivity by so-
called elementary effects. The mean elementary effect �∗ for 
a parameter [14] serves as the global sensitivity measure. It 
is determined from several elementary effects with simulta-
neous variation of the other parameters. The standard devia-
tion of the elementary effects serves as a further sensitivity 
measure. It reflects the interdependencies of the parameters 
(e.g. temperature-dependent heat transitions, which depend 
on the magnitude of the input power loss) as well as the non-
linearities in the effect of the parameters.

10  Determination of appropriate load 
regimes for parameter excitation

The parameter selection is based on a realistic stimulation of 
the parameters, i.e. it corresponds to the use of the correction 
model under realistic machine tool operating conditions. The 
stimulation is performed by load regimes which describe 

the temporal course of the input data of the thermo-elastic 
model (Fig. 4). Input data are mostly technological data such 
as positions {x} and velocities {ẋ} of the axes. However, they 
also contain measurement data, such as the temperature of 
surrounding air TU of the machines, for the acquisition of 
ambient conditions.

A realistic stimulation of the machine tool means a ther-
mal load under typical operating and environmental condi-
tions. The conditions depend on the application scenarios of 
the machine tools, which can be very different. Additionally 
the application scenarios cover long time periods. This is 
associated with computationally expensive simulations. It 
is therefore analysed to what extent the scenarios influence 
the parameter effect and how realistic stimulation can be 
achieved with the lowest possible computational load. Three 
fundamentally different scenarios are examined using the 
hexapod as an example (Fig. 7):

• Manufacturing of individual parts are characterized by 
operating phases with changing working areas and long 
breaks for workpiece change, programming and set-up.

• The machining in series production runs almost unin-
terrupted (short workpiece exchange times can be 
neglected) with movements around the axis center, 
because the machine tools are typically tailored for the 
manufacturing task.

• Lastly an artificial scenario of a “step response” follow-
ing a constant load of a continuous full axis stroke and 
subsequent cooling at standstill. The load is applied until 
the approximate steadiness in order to achieve a balanced 
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effect of the basic thermal parameters C, L and Q̇ (see 
Fig. 3).

All scenarios simulate an 8-h shift of a working day and 
are performed at average axis speed.

The evaluation of the parameter stimulation is done by a 
sensitivity analysis according to Morris. The parameters are 
considered in the form of condensed parameters. The sub-
models of the thermal model, which represent the condensed 
parameters, are provided with a scaling factor. This factor is 
varied in the sensitivity analyses and thus scales the effect 
of the respective parameter. The sensitivity is determined 
with respect to the accuracy relevant displacement of the 
TCP. The longitudinal expansion of the strut axis serves as 
the characteristic quantity for this, whereby the individual 
values are averaged over the simulation time.

The comparison of the impacts of the parameters for dif-
ferent application scenarios of the machine shows different 
absolute values. This is caused by different thermal loads, 
e.g. by the varying length of the motion cycles. However, 
the parameters should be selected based on the relative effect 
of the parameters compared to each other. The effects are 
therefore normalized. The mean elementary effects of the 
individual parameters �∗

k
 are thus evaluated in relation to the 

sum of all mean elementary effects 
∑

�∗
i
 of the respective 

application scenario. Figure 8 shows a comparison of the 
normalized effects. There are clear differences between the 
application scenarios for some parameters. Overall, however, 

the effects are quite similar and the ranking order of the 
parameters hardly differs. In principle, therefore, each of the 
load regimes examined can be used for parameter selection.

The computational effort of the load regimes depends 
on the machine time to be simulated. The investigated load 
regimes each require 8 h. However, the step response load 
regime can be shortened without noticeably changing the 
parameter effect. The reason for this lies in the thermal time 
constant of the strut axis. The time constant results in an 
approximate steadiness after 3 h of constant load. After 3 h 
of heating and 3 h of cooling, there is no longer any relevant 
parameter effect with this load regime. It can be terminated. 
Because of this, the step response load regime is to be pre-
ferred for parameter selection.

11  Selection of the parameters to be 
adjusted

In the last stage, the parameters for adjustment can finally 
be selected based on a sensitivity analysis. The sensitiv-
ity analysis according to Morris and uncertainty values as 
defined in [7] are used. The result of the analysis ranks the 
parameter impacts in the form of elementary effects (Fig. 8). 
The elementary effects can be understood as a variation of 
the strut axis elongation if the analysed parameter is varied 
over its entire value range. Thus, the statistical distribution 
of the parameter values within the range of uncertainty is 
assumed to be equal. This corresponds to a uniform distribu-
tion. It roughly reflects the reality. It conveys a rather high 

Fig. 8  Comparison of the 
impact of the condensed 
parameters in different machine 
application scenarios
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and unlikely value. The elementary effects can therefore be 
interpreted as an upper limit for the considered impact.

Based on the analysis, the parameters for the adjust-
ment process can be selected. As can be seen in Fig. 9, the 
elementary effects of the first four parameters have values 
above 50 µm. These values are relatively high with regard to 
the desired motion accuracy of the hexapod. If the uncertain-
ties are significantly reduced by a parameter adjustment, an 
acceptable residual error of the model can be expected for 
the correction application. These four parameters are there-
fore selected for subsequent optimization.

The values of the standard deviation σ determined in the 
sensitivity analysis also provide essential information for the 
subsequent optimization of the parameters. In the present 
case, the values have a relevant amount. Thus, dependencies 
between the condensed parameters and/or nonlinear effects 
of the condensed parameters must be assumed. The behav-
iour must be analysed in greater depth in the further proce-
dure of the parameter adjustment and, if necessary, taken 
into account. If, for example, dependencies exist between 
the characteristic values, the parameter optimization of these 
characteristic values cannot take place independently.

12  Summary and outlook

Thermal machine models contain parameters with high 
uncertainties. For applications with high accuracy require-
ments, such as control-based correction, these must be met-
rologically adjusted. An essential part of the effort for the 
adjustment occurs in the work stages for the selection of 
parameters to be adjusted. For this purpose, a 5-step pro-
cedure was presented in this article and exemplarily imple-
mented using the thermal model of a hexapod strut axis:

1. Categorisation of the parameters with regard to their 
character of impact,

2. Reduction of the number of parameters by combining 
them into condensed parameters,

3. Further reduction by preselection of parameters with 
significant uncertainty,

4. Determination of realistic and time-optimal load regimes 
for parameter stimulation and

5. Selection of the parameters to be adjusted via simulative 
sensitivity analyses.

The 5-stage parameter selection represents a consistently 
well-founded methodology. It allows a sound selection of the 
parameters and thus represents the prerequisite for achiev-
ing a sufficient model quality in the following parameter 
adjustment.

An efficient workflow was developed for the individual 
stages and a computationally favourable method of sensitiv-
ity analysis was selected. This reduces the necessary com-
putational effort.

The procedure of parameter selection was systematically 
elaborated. This provides an operating scheme and thus 
minimizes the necessary expert knowledge. Furthermore, 
it forms the basis for the development of support tools that 
automate parts of the work. This can reduce the manual 
effort.

The procedure consistently takes the given prior knowl-
edge into account. For example, the character of the parame-
ters is taken into account. This makes it possible to condense 
individual parameters, enables time-optimised load regimes 
and allows the pre-selection of relevant parameters with sig-
nificant uncertainty. Eventually, a significant reduction of the 
computational effort could be achieved.

The selection of parameters considered in this article is 
followed by numerous further stages of the parameter adjust-
ment. The approach of the bundled treatment of the param-
eters in the form of condensed parameters can be further 
pursued. This means the parameter adjustment is initially 
done with the condensed parameters. Only in case of a need 
in increased model accuracy, the adjustment is shifted to the 
level of individual parameters.
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Fig. 9  Impact of the parameters determined with the Morris method
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