
International Journal on Interactive Design and Manufacturing (IJIDeM) (2019) 13:567–595
https://doi.org/10.1007/s12008-018-0519-z

ORIG INAL PAPER

Quantitative and qualitative study of methods for solving
the kinematic problem of a planar parallel manipulator based
on precision error optimization

Sid-Ahmed Dahmane1 · Abdelwahab Azzedine1 · Abdelkader Megueni1 · Abdelkader Slimane2,3

Received: 13 August 2018 / Accepted: 29 November 2018 / Published online: 13 December 2018
© Springer-Verlag France SAS, part of Springer Nature 2018

Abstract
The main objective of our work is to optimize the positional and orientation error of a platform using the direct geometric
model of a parallel plane manipulator robot. It is well known that the main disadvantage of parallel manipulators is the
existence of singularities within its workspace, the adaptive neuro-fuzzy solution is proposed in this study. Intermediate
methods have been used to determine the optimal solution. The first method is a graphical method which determines all
possible positions of the platform based on the intersection of circles. The second method is the polynomial method used
to calculate the coordinates of the center of gravity and the orientation of the platform. Matlab programming simulation of
these methods makes it possible to find all the solutions deduced from these methods. The analysis shows that the polynomial
method is the one that provides the optimal solution.

Keywords Parallel plane manipulator · Error · Direct geometric model · Singularities · ANFIS · Polynomial method ·
Optimization

1 Introduction

The parallel robot manipulators, owing to their closed-loop
structure possess a number of advantages over traditional
series manipulators such as high rigidity, high value of power
density, high natural frequencies, speeds and high precision
[1]. However, they also have a few disadvantages such as a
relatively small workspace, relatively complex forward kine-
matics as well as the existence of singularities inside the
workspace. [2]. The geometrical model analysis of parallel
manipulators is divided into two types namely direct and
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inverse models. The inverse geometrical model which maps
the operational space in the joint space, is not difficult to
solve. Unlike direct geometrical model that performs the
reverse operation presents difficulties in problem solving.
Moreover, the existence not only of multiple direct geo-
metrical solutions (or work patterns) is another problem in
the geometrical analysis [3]. The analysis of the singularity
of planar parallel manipulators has been studied by many
researchers [4, 5]. Efforts to solve the direct geometry of
planar parallel manipulators have focused on the manipula-
tor plane 3RPR due to its inherent simplicity. It is established
that the direct geometrical solution of this type of manipu-
lator leads to a polynomial [6, 7]. However, the study of
the problem of direct geometry leads to a maximum of six
real solutions. A neural network-based approach was devel-
oped to curb the problem of the inverse geometric model.
Many efforts have been made on the applications of adaptive
neuro-fuzzy inference system (ANFIS) in different types of
parallel machine tools due to their extreme flexibility and
nonlinear approximation ability of the correspondence func-
tion output/input [8–12]. Multiple neural networks can solve
the problem of multiple branches of the direct or inverse geo-
metrical problem. This approach also overcomes the problem
of singularities and uncertainties arising from the path plan-
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ning. In this approach, a network is formed using the data
generated by the inverse geometrical model.

An analysis and comparison of the three used methods
are made for determining the best optimal solution concern-
ing the minimum error with minimum execution time. The
analysis shows that the optimal solution is obtained by the
polynomial method.

2 Main objective of the study

This study represents the comparison of three methods,
graphical method, analytical method and ANFIS interactive
method which represents the main part of our project. The
objective of this study was the general formalization of a
direct geometry problem for parallel robots, which proves
that this method is an interactive method used to solve prob-
lems of the optimal position of industrial robots. The results
obtained by this method encourage us to consider the follow-
ing points:

• Modeling of nonlinear systems by the fuzzy hybrid
approach (ANFIS).

• Inject the neuro-fuzzy control into the application of indus-
trial robots.

• Build programs that are able to perform increasingly com-
plex and precise calculations in the robots’ work space.

After presenting the degeneracy of the systemwe examine
the situations where the direct geometry degenerates.

After we go on to the main problem of our study, which
consists of conducting an investigation in the direct geomet-
rical model that we tried to solve with several methods with
a good precision at the beginning with the polynomial solu-
tion that sought the existence of the angle ϕ then find the
coordinates of the platform p (x, y).

3 Kinematics of parallel manipulators

Kinematic analysis of parallel manipulators includes solu-
tion for both forward and inverse kinematic problems. The
forward kinematics of a manipulator deals with the com-
putation of the position and orientation of the manipulator
end-effector in terms of the active joints variables. Forward
kinematic analysis is one of essential parts in control and
simulation of parallel manipulators. Contrary to the forward
kinematics, the inverse kinematics problem deal with the
determination of the joint variables corresponding to any
specified position and orientation of the end-effector. The
inverse kinematics problem is essential to execute manip-
ulation tasks. Most parallel manipulators can admit not
only multiple inverse kinematic solutions but also multiple

forward kinematic solutions. This property produces more
complicated kinematic models but allows more flexibility
in trajectory planning [13]. In other words a manipulator
configuration can be defined either by actuator coordinates
q� [q1,…, qn]T or by cartesian end effector coordinates x�
[x1,…, xn]T with n the DOF of the manipulator under study.
The transformation between actuator coordinates and carte-
sian coordinates is an important issue from the viewpoint of
kinematic control. Computation of the end effector coordi-
nates from given actuator coordinates (forward kinematics)
can be written in the general form as:

X � f(Q) (1)

The inverse task which is to establish the actuator coordi-
nates corresponding to a given set of end effector coordinates
(inverse kinematics) can be also expressed in the general form
by:

Q � f−1(X) (2)

The forward kinematics model is given by:

Ẋ � J Q̇ (3)

where J is the Jacobian matrix.
The inverse kinematics model is expressed by the follow-

ing relation:

Q̇ � J−1 Ẋ (4)

J is the inverse matrix of J−1

Inverse kinematic singularity occurs when different
inverse kinematic solutions coincide that happens usually at
the workspace boundary. Hence the manipulator loses one or
more degrees of freedom. Mathematically they can detected
by det (Jq)�0. Forward kinematic singularity occurs when
different forward kinematic solutions coincide. Hence the
manipulator gains one or more degrees of freedom. That
happens inside the workspace so it is a great problem. Math-
ematically they can detected by det (Jx)�0.

Let X� [x, yϕ]T, the vector of the operational coordinates
(3 degrees of freedom DOF of the robot) which corresponds
to the position [x, y] T of the geometric center P1 of the
reference of the platform and to the orientation of the latter
With respect to the x-axis of the basemarker located as shown
in Fig. 1.

Let Q � [
q1q2q3

]T be the vector of the articular vari-
ables corresponding to the elongations.

From the diagram of the robot 3RPR (Fig. 1) one can
deduce the solution to the inverse geometric problem.

It can be easily written as follows:

q1 �
√
x2 + y2 (5)
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Fig. 1 Schematic representation of the robot 3 RPR

q2 �
√

(x + l2 cosϕ − x2)2 + (y + l2sinϕ)2 (6)

q3 �
√

(x + l3 cos(ϕ + β) − x3)2 + (y + l3 sin(ϕ + β) − y3)2 (7)

The direct geometric problem can be solved using the ana-
lytical method proposed by [14]. The loop closure equations
are expressed:

Ai Pi � q2i i � (1, 3) (8)

From the system of Eqs. (7) the equations of the inverse
geometric problem can be written as follows:

q21 � x2 + y2 (9)

q22 � (x + l2 cosϕ − x2)
2 + (y + l2sinϕ)2 (10)

q23 � (x + l3 cos(ϕ + β) − x3)
2 + (y + l3 sin(ϕ + β) − y3)

2

(11)

4 Workspace

The workspace corresponds to the set of poses (positions and
orientations) that the characteristic point of the end effector
can reach. The workspace of a robot manipulator is consid-
ered a key feature for the various applications in robotics. It
is used to analyze the performance of robot manipulators and
also for optimal design. The working space is determined by
the geometrical parameters of the robot manipulator such as
the lengths of the elements as well as the articular limits of
the motorized and passive links. From the industrial point
of view, the working space of a manipulator robot is a pri-
mordial and fundamental datum. Indeed, when a trajectory
is programmed we must verify that all the poses are located
inside the workspace of the robot manipulator. In other more
complex cases such as collision and avoidance much of the
research involves analyzing the work space of a manipulator
robot. This work presents different methods and techniques

for determining, representing and characterizing the differ-
ent types of workspaces. For our robot this is the operative
zone of the robot where it is possible to fix the position G (x,
y) and orientation ϕ of platform. It is obtained by drawing
the three circles centered on the fixed points Ai , and having
for their respective radii the three articular coordinates q1,
q2 and q3. In the graphics window (Fig. 2), this procedure
has been automated by selecting the Work Plan menu and
then the Work Area submenu. The software then displays an
editor which allows the intervals of variation to be entered
for each joint. The domain delimited by the three circles thus
defines the working space.

5 Geometric method

5.1 Method of graphic construction

The geometric method makes it possible to determine by
graphic construction the direct geometry of the robot by
drawing three concentric circles Ci (i � 1 : 3), the cen-
ters of which are placed at the fixed points of articulation
Ai (i � 1 : 3) and whose radius correspond to the articu-
lar coordinates qi (i � 1 : 3). It is then sufficient to place
the platform in such a way that the vertices of the triangle
Pi � (1 : 3) are positioned on the corresponding circles.
This procedure can be automated as follows:

1. The vertex 1 will be moved in such a way that it scans
the entire circle. Let P1 be its initial position P1

(
q1, 0

)
.

2. For each position P1, we will trace a circle of radius l2
will be drawn which will intersect the circle C2 at a point
or two points (P2 and P ′

2). The intersection condition
must be verified beforehand: distance between the two
centers less than the sum q1 + q2 + l2

3. From P2, one will draw a circle of radius l1 and another
circle of center P1 and having a radius equal to l3. These
two circles intersect at a point P3

It will be checked whether the point P3 belongs to the
circleC3, by calculating the distance A3P3 which must be
equal to q3 to a precision fixed in advance.

4. The point will be retained in this eventuality, otherwise
we will proceed in the same way with the second point
P ′
2

5. The point P1 will be moved on the circle until it is
completely swept. It is obvious that the condition of inter-
section of the circles makes it possible to sweep only
certain points of the circle C1 to the detriment of others.

The sweeping step is necessarily limited (we have taken
1000 points or an increment of 0.36°), once the solution is
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Fig. 2 Graphical view of the
Workspace

found, the procedure is resumed by determining the succes-
sive positions of the solutions that will be retained, refining
the step to find the solution Optimal corresponding to the
minimum error (quadratic criterion)

5.2 Calculation of the intersection coordinates
of two circles known by their centers and radius
C1

(
x1, y1, r1

)
andC2

(
x2, y2, r2

)

• Case where x1 �x2

yc � r21 − r22 + y22 − y21
2(y2 − y1)

(12)

xc � x1 ±
√√√√r21 −

(
r21 − r22 + (y2 − y1)2

2(y2 − y1)

)2

(13)

• Case where y1 �y2

xc � r21 − r22 + x22 − x21
2(x2 − x1)

(14)

yc � y1 ±
√√√
√r21 −

(
r21 − r22 + (x2 − x1)2

2(x2 − x1)

)2

(15)

• General case

Ax2 − 2Bx + C � 0 (16)

A � 1 +

(
x2 − x1
y2 − y1

)2

(17)

B � x1 +
(x2 − x1)

(y2 − y1)2

(
r21 − r22 + x22 − x21 + (y2 − y1)

2
)

(18)

C � x21 − r21 +

(
r21 − r22 + x22 − x21 + (y2 − y1)2

2(y2 − y1)

)2

(19)

• Case where B2−AC �0

xc � B

A
(20)

yc � y1 ±
√
r21 − (xc − x1)2 (21)

• Case where B2−AC >0

xc � B ± √
B2 − AC

A
(22)

yc � r21 − r22 + x22 − x21 + y22 − y21 − 2xc(x2 − x1)

2(y2 − y1)
(23)

• Case where B2−AC <0 No Solutions
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Fig. 3 Graphic construction of the solution

5.3 Graph construction

This graph was made for the following data:
A1(0,0), A2(3,0), A3(2,3), A1(0, 0), A2(3, 0), A3(2, 3),

T(1, 1, 60◦), andQ � [1.31322.23612.1918]
Corresponding to the initial pose P (1, 1, 0)
The polynomial method gives us two solutions:

P1 � [1.000 − 1.0000], P2 � [2.0000 − 1.0000],

P3 � [1.5000 − 0.1330]

and:

P1 � [1.0150 0.9838], P2 � [2.0131 1.0277],

P3 � [1.3773 1.8715]

Wehave represented the graph corresponding to the first solu-
tion (Fig. 3).

The sweeping of the circle requires a not inconsider-
able calculation time which depends on the power of the
processor. This method is systematic and finds all possible
solutions even in the case of degeneration. However, it can
generate several solutions according to the fixed accuracy
criterion. The higher the accuracy, the more care will be
taken to retain only the exact solutions. However, if an
acceptable precision is sufficient, we find solutions that the
analytical calculus cannot give.

(a) Case of non-degeneration
A numerical example of the geometric method is now pre-
sented to show the case of non-degeneration given assembly.
The geometric parameters are

x2 � 4, x3 � 2, y3 � 4, l2 � 1, l3 � 1 β � π/3,

q1 � 1.4142, q2 � 3.1196 and q3 � 2.6084

Table 1 Solutions for a non-degenerate manipulator

P1 #1 #2

ϕ (degrés) −53.9651 60.0

x 0.3434 1

y 1.3719 1

Table 2 Positions Pi for a non-degenerate manipulator

Pi #1 #2

P1 0.3434 1.3719 1 1

P2 0.9316 0.5632 1.500 1.866

P3 1.3378 1.4770 0.500 1.866

Table 3 Positions Pi, the articular vector and the overall resultant error
for a non-degenerate manipulator

P1 #1 #2

q1 1.414213562373095 1.414213562373095

q2 1.414213562373095 3.119623504137780

q3 2.608419547897759 2.608419794289794

Error (10−6) 0.95087 1.19726

From the direct geometry it is an optimization which
allows finding the optimal solution, presenting the minimal
quadratic error, and the poses of the corresponding robot.
A Matlab program was developed to calculate the minimal
squared error and the robot poses (Tables 1, 2, 3).

To which correspond the two positions Pi (i�1: 3) of the
vertices of the platform of the robot.

The two poses of the platform that corresponds to these
two solutions of which the data below, the arrow segments
point to the numbers of the solutions of the preceding table
(Fig. 4).

(b) Case degeneration of the first order
A numerical example of the geometric method is now pre-
sented to show the case of first-order degeneracy given
assembly. The geometric parameters are

x2 � 2, x3 � 0, y3 � 1, l2 � 2, l3 � 1.5,

β � π/3, q1 � q2 � q3 � 1

Four solutions are found in (Table 4).
With the corresponding positions Pi in Table 5.
With the corresponding articular vector and the overall

resultant error in Table 6.
The graphs of the four poses are shown below (Fig. 5).
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Fig. 4 The assembly mode corresponding to Table 1 for solution geo-
metric non-degenerate

Table 4 The four solutions for a first order degenerate manipulator

P1 #1 #2 #3 #4

ϕ(degrés) −38.6320 0 0 29.5331

x −0.4885 −0.7138 −0.0036 −0.9618

y 0.8723 0.7003 −0.9993 −0.2736

(c) Case of degeneracy of the first order: four roots non
degenerate, one degenerate
A numerical example of the geometric method is now pre-
sented to show the case of first order degeneracy (four
degenerate roots, one degenerate) given assembly. The geo-
metric parameters are x2 � 2, x3 � 0.5, y3 � 1, l2 � 2,
l3 � 1.5, β � π/3, q1 � q2 � 1, q3 � 0.7

We find the four solutions, including one (ϕ�0) degen-
erate (Table 7).

The corresponding poses Pi are in the Table 8.

Fig. 5 The four assembly modes corresponding to Table 3 for two non-
degenerate solutions, one degenerate

With the corresponding articular vector and the overall
resultant error in Table 9.

The four positions are shown in the following Fig. 6.

(d) Case of degeneration of order three
A numerical example of the geometric method is now pre-
sented to show the case of degeneracy of order three assembly
data. The geometric parameters are

x2 � 2, x3 � 1, y3 � 1, l2 � 1, l3 � 1,

β � −π/2, q1 � 0.8, q2 � q3 � 1.5

The possible solutions are shown in the Table 10.
The corresponding Pi positions are in the Table 11.
For this example we have determined the articular vector

and the overall resultant error in Table 12.
The different poses are described below (Fig. 7).
The geometric method is a systematic method which

allows finding all the solutions generated by the polynomial

Table 5 Positions Pi for a
first-order degenerate
manipulator

Pi #1 #2 #3 #4

P1 −0.4885 0.8723 −0.7138 0.7003 −0.0036 −0.9993 −0.9618 −0.2736

P2 1.0734 −0.3722 1.2861 0.7003 1.9638 −0.9993 2.7019 0.7122

P3 0.9080 1.4188 0.0361 1.9993 0.7138 0.2996 0.9740 1.2263

Table 6 The articular vector and the overall resultant error for a first-order degenerate manipulator

P1 #1 #2 #3 #4

q1 1.000000000000000 0.9999999999999999 1.0000000000000 1.0000000000000

q2 0.9999999999999992 0.9999999999999971 0.999999999999995 0.9999999999999768

q3 1.000004023116677 1.000001598632977 9.999948946771762 0.9999959643548794

Error (10−6) 4.0231 1.5986 5.1053 4.03568
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Table 7 The six solutions for a manipulator for the case of four non degenerate roots, one degenerate

P1 #1 #2 #3 #4 #5 #6

ϕ (degrés) −43.8047 −6.6275 0 0 23.6387 58.4875

x −0.3395 −0.9849 −09487 −0.1393 0.6631 0.9768

y 0.9405 0.1728 0.3126 −0.9902 −0.7484 −0.5141

Table 8 Pi positions for a manipulator for the case of four non-degenerates roots, one degenerate

Pi #1 #2 #3 #4° #5◦ #6

P1 −0.3395 0.9406 −0.9850 0.1728 −0.9499 −0.3126 −0.1394 −0.9902 0.9768 −0.2141 0.6632 −0.7485

P2 1.1039 −0.4838 1.0017 −0.0580 1.0501 −0.3126 1.8606 −0.9902 2.8090 0.5878 −1.7085 0.9566

P3 1.1009 1.3590 −0.0900 1.3766 −0.1999 0.9864 0.6106 0.3088 1.1430 1.2766 −0.0523 0.5699

Table 9 articular vector and overall resultant error for a manipulator for the case of four non-degenerate roots, one degenerate

P1 #1 #2 #3 #4° #5◦ #6

q1 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000

q2 0.999999999999998 0.999999999999997 1.000000000000034 1.0000000000001 0.999999999999974 0.699991607557378

q3 0.699993182215874 0.699992614668121 0.700005720554232 0.699993461795613 0.999999999999997 0.699997896382708

Error (10−5) 0.6817 0.7385 0.5720 0.6538 0.8392 0.2103

Fig. 6 The six assembly modes corresponding to Table 5 for four non-
degenerate solutions, one degenerate

method with the same precision. It also makes it possible to
generate other solutions that satisfy the method precision test
conditions (ten solutions instead of six in the last example).
The precision of the solution can be improved by reducing
the sweep pitch of the circle centered on the point A1 and of
radius q1.

We have resumed the four examples previously studied by
the graphical method.

The geometric method that allows finding all the solutions
generated by the Graphic method.

6 Polynomial solution

The direct geometric problem can be solved using the ana-
lytical method proposed by [15]. The loop closure equations
are expressed by the expression of equation.

Ai Pi � q2i i � (1, 3) (24)

From the system of Eqs. (5), the equations of the inverse
geometric problem can be written as follows:

q21 � x2 + y2 (25)

q22 � (x + l2 cosϕ − x2)
2 + (y + l2sinϕ)2 (26)

q23 � (x + l3 cos(ϕ + β) − x3)
2 + (y + l3 sin(ϕ + β) − y3)

2

(27)

The system of Eqs. (9–11) can be written in the simplified
forms:

q21 � x2 + y2 (28)

q22 � x2 + y2 + Qx + Ry + C (29)

q23 � x2 + y2 +Ux + V y + F (30)
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Table 10 The six solutions for a
manipulator for the case of
degeneracy of order three

P1 #1 #2 #3 #4 #5 #6

ϕ (degrés) −155.6267 −90 −90 −48.6331 48.6331 53.6099

x 0.4335 −0.4597 0.6547 0.2826 −0.7484 0.3963

y 0.6724 0.6547 −0.4597 −0.7484 0.2826 0.6950

P1 #7 #8 #9 #10

ϕ (degrés) 53.6099 126.3898 126.3898 155.6268

x −0.7945 0.0933 0.6950 0.6724

y 0.0933 −0.7945 0.3963 0.4335

Table 11 Positions Pi, for a manipulator for the case of the degeneration of order three

Pi #1 #2 #3 #4 #5 #6

P1 0.4335 0.6724 −0.4597 0.6547 0.6547 −0.4597 0.2826 −0.7484 −0.7484 0.2826 0.3963 0.6950

P2 −0.4774 0.2597 −0.4597 −0.3453 0.6547 −1.4597 0.9434 −1.4989 −0.0876 1.0331 0.9895 1.500

P3 0.8462 −0.2385 −1.4597 0.6547 −0.3453 −0.4597 1.0331 −0.0876 −1.4989 0.9434 1.2013 0.1017

Pi #7 #8 #9 #10

P1 −0.7945 0.0933 0.0933 −0.7945 0.6950 0.3963 0.6724 0.4335

P2 −0.2013 0.8983 −0.5000 0.0105 0.1017 1.2013 −0.2385 0.8462

P3 0.0105 −0.500 0.8983 −0.2013 1.5000 0.9896 0.2597 −0.4774

Table 12 Articular vector and overall resultant error for a manipulator for the case of degeneracy of order three

P1 #1 #2 #3 #4° #5◦ #6

q1 0.800000000000000 0.8000000000000002 0.8000000000000000e 8.000000000000000 8.000000000000000e 8.000000000000002

q2 1.500000000000000 1.500000000000000 1.500000000000000 1.500000000000000 1.500000000000000e 1.500000000000000

q3 1.500001310578265 1.499998227294674 1.499998618717735e 1.499997131024234 1.499994545565069e 1.499992739634409

Error (10−6) 1.315 1.7727 1.38183 2.8689 5.4544 7.2603

P1 #7 #8 #9 #10°

q1 0.8000000000000000 0.8000000000000000 0.80000000000008 8.000000000000000

q2 1.499999999999998 1.500000000000000 1.500000000000000 1.500000000000000e

q3 1.500001037586281 1.499998508919643 1.500000440110932 1.500001649812265

Error (10−5) 1.0375 1.4910 9.9541 1.6498

With intermediate variables:

Q � 2l2 cosϕ − 2x2 (31)

R � 2l2 sin ϕ (32)

C � x22 + l22 − 2l2x2cosϕ (33)

U � 2l3 cos(ϕ + β) − 2x3 (34)

V � 2l3 sin(ϕ + β) − 2y3 (35)

F � x23 + y23 + l23 − 2l3x3 cos(ϕ + β) − 2l3y3 sin(ϕ + β)

(36)

It has already been established that, at most for a given
combination of articular variables, there may be six possible
solutions. The solutions are always even: two or four or six.

In the case where the solution exists it is always matched. In
the case of non-existence all solutions are complex.

(a) Case of non-degeneration
A numerical example of the polynomial method is now pre-
sented to show the case of non-degeneracy (two solutions)
given assembly. The geometric parameters are

x2 � 4, x3 � 2, y3 � 4, l2 � 1, l3 � 1, β � π/3,

q1 � 1.4142, q2 � 3.1196, q3 � 2.6084

The dimensions of the platform are defined by the vector
T� [l2 l3 β]
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Fig. 7 The ten assembly modes corresponding to Table 7 for degenera-
tion of order three

The passive points Ai are defined by the matrix:

A �
⎡

⎢
⎣

x1 y1

x2 y2

x3 y3

⎤

⎥
⎦

This combination was obtained by calculating the inverse
geometry which starting from the position data of the three
fixed points A, whose coordinates are represented by the
matrix A. The configuration of the triangle representing the
platform (matrix T [l2 l3 opening angle β (In degrees)]. The
coordinates of the point M�P1 (x, y, ϕ) calculates the artic-
ular vector Q� [q1, q2, q3] and the remaining points P (P2
and P3).

The call of the program function implementing the poly-
nomial method and displaying the platform poses with the
indication of the angle and coordinates of the vertex P1 gives
the values of the other points Pi in the structured variable
P and the corresponding angles in the ϕ vector. The input
arguments are the matrix as already defined, the vector T and
the vector Q (Fig. 8).

The two possible solutions are shown in the following
Table 13.

The positioning error for each pose is calculated by the
Matlab function, Which, starting from the positions Pi (i�
1:3), the matrix A, and the vector T, Addresses the Matlab
function which returns the actual articular coordinates and
compares it to the desired joint position using a quadratic
criterion (Table 14).

We find an error: Er � [0.0888 0.1110] · 10−14.

Fig. 8 Two assembly modes corresponding to Table 13 correspond to
non-degeneracy with two solutions

Table 13 The two sets of solutions for a manipulator correspond non-
degeneration has two solutions

P1 #1 #2

ϕ (degrés) −53.9651 60.0

x 0.3434 1

y 1.3719 1

Table 14 Positions Pi for a corresponding manipulator to no degenera-
tion with two solutions

Pi #1 #2

P1 0.3434 1.3719 1 1

P2 0.9316 0.5632 1.500 1.866

P3 1.3378 1.4770 0.500 1.866

(b) Case of degeneration of order 1: four solutions
A numerical example of the polynomial method is now
presented to show the case of degeneracy of order 1 (four
solutions) given assembly. The geometric parameters are
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Fig. 9 The four assembly modes
corresponding to the Table 15
corresponding to the
degeneration of order 1 with
four solutions

Table 15 The four sets of solutions for a manipulator correspond to
degeneration of order 1 has four solutions

P1 #1 #2 #3 #4

ϕ (degrés) 0 0 −38.6319 29.5330

x 0.7138 −0.0362 −0.4889 0.9618

y 0.7003 −0.9993 0.8724 −0.2736

x2 � 2, x3 � 1, y3 � 1, l2 � 1, l3 � 1,

β � −π/2, q1 � 0.8, q2 � q3 � 1.5

We are in the case where x2 � l2 and q1 �q2. We shall
therefore be faced with degeneration of the first order. The
angle phi equal to zero admits two positions

The degeneracy conditions for the three solutions are ver-
ified for these data (Fig. 9).

The four sets of solutions are reported in Table 15.

The six sets of positions Pi are reported in Table 16.
We find an error: Er � [0.0089 0.0011 0.0022 0.1132] ·

10−13.

(c) Case degeneration of order 1: six solutions
A numerical example of the polynomial method is now
presented to show the case of degeneracy of order 1 (six solu-
tions) given assembly. The geometric parameters are defined
by x2 � l2 �2, x3 �1/2, y3 �1,l3 �3/2 and β�π/3.

q1 � q2 � 1 and q3 � 7/10,

As before, x2 � l2 and q1 �q2. The angle phi equal to
zero admits two positions. The four other solutions will be
non-degenerate (Fig. 10).

The six sets of solutions are reported in Table 17.
The six sets of positions Pi are reported in Table 18.

Table 16 Positions Pi for a manipulator the last two correspond to degeneration of order 1 has four solutions

Pi #1 #2 #3 #4

P1 −0.7138 0.7003 −0.0362 −0.9993 −0.4889 0.8724 0.9618 −0.2736

P2 1.2862 0.7003 1.9638 −0.9993 1.0735 −0.3763 2.7020 0.7122

P3 0.0362 1.9993 0.7138 0.2997 0.9080 1.4189 0.9741 1.2263

123



International Journal on Interactive Design and Manufacturing (IJIDeM) (2019) 13:567–595 577

Fig. 10 The six assembly modes
corresponding to Table 14 with
the last two corresponding to the
degenerate root

Table 17 The six sets of solutions for a manipulator with the last two corresponding to the degenerate root

P2 #1 #2 #3 #4 #5 #6

ϕ (degrés) −43.8049 −6.6271 0 0 23.6384 58.4876

x −0.3395 −0.9850 −0.9499 −0.1394 0.9768 0.6632

y 0.9406 0.1728 −0.3127 −0.9902− −0.2141 −0.7485

Table 18 Positions Pi, for a manipulator with the last two corresponding to the degenerate root

Pi #1 #2 #3 #4 #5 #6

P1 −0.3395 0.9406 −0.9850 0.1728 −0.9499 −0.3127 −0.1394 −0.9902 0.9768 −0.2141 0.6632 −0.7485

P2 1.1039 0.4438 1.0017 0.0580 1.0501 −0.3127 1.8606 −0.9902 2.8090 0.5878 1.7085 0.9566

P3 1.1010 1.3590 −0.0900 1.3768 −0.1999 0.9864 0.6106 0.3088 1.1430 1.2766 −0.0523 0.5699

We find an error: Er � [0.0067 0.5473 0.0033 0.0100
0.0100 0.0344] · 10−13.

(d) Case of degeneration over the whole space
A numerical example is now presented to show the different
modes of degenerate manipulation given assembly. The geo-
metric parameters are x2 � l2 �1,x3 �0,y3 �1,l3 �1 and
β� -π/2 these parameters fulfill the geometric conditions for
manipulation to be degenerate. The direct kinematics is now
a calculator for q3 �4/5, q2 �q3 �3/2.

The six sets of solutions are reported in Table 19.
The six sets of positions Pi are reported in Table 20
The conditions of degeneracy for the set of solutions are

verified for these data (Fig. 11).
We find an error:

Er � [
2.2210 · 10−15 1.7763 · 10−15 4.4408 · 10−16

2.2204 · 10−16 1.1738 · 10−08 1.1738 · 10−08]
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Table 19 The six sets of
solutions for a degenerate
manipulator

P1 #1 #2 #3 #4° #5◦ #6

ϕ (degrés) −90 −90 53.6102 53.6102 126.389 126.389

x −0.4597 0.6547 −0.7945 0.3963 0.6950 0.0933

y 0.654745 −0.4597 0.0933 0.6950 0.3963 −0.7945

Table 20 Positions Pi for a degenerate manipulator

Pi #1 #2 #3 #4° #5◦ #6

P1 −0.4597 0.6547 0.6547 −0.4597 −0.7945 −0.0933 0.3963 0.6950 0.6950 0.3963 0.0933 −0.7945

P2 −0.4597 −0.3453 0.6547 −1.4597 −0.2013 0.8983 0.9895 1.500 0.1017 1.2013 −0.500 0.0105

P3 −1.4597 0.6547 −0.3453 −0.4597 0.0105 −0.5000 1.2013 0.1017 1.500 0.9895 0.8983 −0.2013

Fig. 11 The six assembly modes
corresponding to Table 16

The polynomialmethod is systematic. It always gives even
solutions in the casewhere the polynomial of order six admits
solutions. The problematic case is that where the solution
is degenerate which corresponds to a singularity that is to
say that for the same articular coordinates. There correspond
two distinct solutions which must be calculated according to

the procedure. This type of singularity is distinct from that
encountered when calculating the direct kinematics where
the calculation of the operational speeds may prove impos-
sible for certain configurations of the robot.
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Fig. 12 Flowchart of training process

7 Method using ANFIS

7.1 Introduction to the adaptive neuro fuzzy
inference systemmethod (ANFIS)

Neuro- Fuzzy systems combine the advantages of two com-
plementary techniques. Fuzzy systems provide a good repre-
sentation of knowledge. The integration of neural networks
within these systems improves their performance through the
ability to learn neural networks. Conversely, the injection of
fuzzy rules into neural networks, which are often critical for
their lack of readability, clarifies the meaning of the network
parameters and facilitates their initialization, which repre-
sents a considerable saving of time for their identification
[16–19].

In this paper, a supervised ANFIS approach is developed
to control the movement of 3RPR planar parallel manipula-
tors. The hybrid approach (Neuro-Fuzzy) is used to solve
the problem of direct kinematic solutions. This approach
also overcomes the problems of singularities and uncertain-
ties that occur during trajectory planning because it has,
like any ANFIS algorithm, a generalization capacity [20–22]
(Fig. 12).

We have illustrated this method on the first example
analyzed by the two previous methods and which admits
two solutions. The Matlab function geo_directe_fuzzy that
implements this method is given in the “Appendix”. It calls
for the following remarks:

1. It uses the Matlab anfis tool to automatically generate
the inference rules using the neural networks of the three
structures with three inputs q1, q2 and q3 and one output,
x, y and phi, respectively anfis1, anfis2 and anfis3.

2. The number of channels that can be taken by the output
depends on the number ofmembership functions adopted
for each input. Ifwe call n1, n2 and n3 the number of these
membership functions (MF:Membership function), then
the number of channels of the neural structure will be
equal to n1×n2×n3

3. Firstly, two candidate functions will be taken by input
of the bell function type (gbellMF), which will generate
8 channels at the output, then thereafter one will take
three functions per inputwhichwill generate 27 channels.
The fuzzy structures will be called fismat1, fismat2 and
fismat3.

4. The values of the variation intervals for each joint value,
that of the parameters of the membership functions, as
well as the linear and non-linear coefficients of the out-
puts are given in “Appendix”.

5. The matrix of the input data for each structure will have
a size of n3 if n is the grid pitch adopted for each of the
three dimensions (meshgrid). One notices that this size
becomes rapidly voluminous and can lead to an overflow
of the memory signaled by Matlab. The execution times
for the two examples studied are on average two (02) and
nine (09) minutes for each structure of the two exam-
ples. The compilation times quickly become exhibitory
as soon as the grid density (mesh) increases.

6. In order to apply this method, we have been led to reduce
the search domain of the solution and to split the grid size
by two by assigning half of the data to the initiation step
(the odd indices), and the remaining half (even indices)
to learning which will generate the final fuzzy structure.
The definition files are given in the “Appendix” for both
examples.

7.2 First case: case where twomembership
functions per input are used

The analysis research domain that allows generating the three
dimensional grid is as follows:

0.8 ≤ x ≤ 1.2, 0.8 ≤ y ≤ 1.2, 45◦ ≤ ϕ ≤ 90◦

Calling the Matlab function geo_directe_fuzzy with these
parameters uses the anfis function which defaults to two bell
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Fig. 13 Structure output

Table 21 coefficients a, b, c of
the bell functions a b c

q1 0.2926122351942617 1.999575554910495 1.137526254458919

0.2921104456450778 1.999508511833954 1.691752052184750

q2 0.3309800878348759 1.998893941500382 2.879697690925664

0.3315245202873079 1.998958418473497 3.359159191615123

q3 0.6411531208672442 1.999966155038961 2.117796859719111

0.6412853049205336 1.999975382640182 3.399587220647379

membership functions for initiating the fuzzy structure and
automatically generating inference rules.

The schematic of the structure obtained by theMatlab rule
edit or rule view commands followed by the selection of the
“Edit” and then “Structure” menus is given below (only the
AND operator is used): Fig. 13.

The 23 �8 inference rules are as follows: (Rule Edit com-
mand)

1. (if q1 is inmf1) and (q2 is inmf1) and (q3 is inmf1) then
(x is outmf1)

2. (if q1 is inmf1) and (q2 is inmf1) and (q3 is inmf2) then
(x is outmf2)

3. (if q1 is inmf1) and (q2 is inmf2) and (q3 is inmf1) then
(x is outmf3)

4. (if q1 is inmf1) and (q2 is inmf2) and (q3 is inmf2) then
(x is outmf4)

5. (if q1 is inmf2) and (q2 is inmf1) and (q3 is inmf1) then
(x is outmf5)

6. (if q1 is inmf2) and (q2 is inmf1) and (q3 is inmf2) then
(x is outmf6)

7. (if q1 is inmf2) and (q2 is inmf2) and (q3 is inmf1) then
(x is outmf7)

8. (if q1 is inmf2) and (q2 is inmf2) and (q3 is inmf2) then
(x is outmf8)

The bell membership functions for the three inputs can
be visualized by the Matlab mfedit command or calculated
directly from the data of their parameters a, b, c. We can also
address the function Matlab gbellmf (Table 21; Figs. 14, 15,
16, 17):

f (x) � 1

1 +
∣∣ x−c

a

∣∣2b

The curves of the three outputs according to the three
inputs will have the following appearance (Fig. 15).

We can then evaluate the predicted outputs for the three
structures that correspond to the solution of the problem of
direct geometry by the Matlab evalfis
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Fig. 14 Plot of the membership functions
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Fig. 15 Output curves X� f (q1, q2, q3)

Input Articular Vector:

Q � [1.414213562373095 3.119623504137779
2.608418597022603]

Sortie x � evalfis(Q, anfis1) � 1.000027167658954
Sortie y � evalfis(Q, anfis2) � 1.000670581045958
Sortieϕ � evalfis(Q, anfis3) � 1.049580733914649
Theoretical value[1, 1, π/4]

Let an absolute squared error be equal to: 2.47·10−3 to
improve this precision, one can either decrease the value of
the pitch of the meshgrid, or increase the number of mem-
bership functions, thus the number of rules of inferences.

We have adopted this approach for the second example.
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Fig. 16 Output curves Y�g (q1, q2, q3)
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Fig. 17 Output curves ϕ�h (q1, q2, q3)

7.3 Second case: use of three MFmembership
functions per entry

The three functions induce twenty-seven 27 rules obtained
by factorial combination of 3×3×3 values. The resulting
neural structure (fismat1, fismat2 and fismat3) for the three

outputs will be as follows, only the AND connector is used
(Fig. 18).

The coefficients a, b, c for the three inputs is shown in the
following Table 22.

As before, only the mapping of the membership functions
for output X is given. The variation of these functions is given
by (Fig. 19).
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Fig. 18 Structure of the output

Table 22 Coefficients a, b, c of
candidate bell functions a b c

q1 0.1869765621511652 1.998865172765118 1.162004288131832

0.1957437245602229 2.000463685625106 1.412000420106174

0.1853454687358375 1.999372490381056 1.658321693403733

q2 0.1964474545565682 1.997127645803953 1.154088654049545

0.1881717541684498 2.000496920186938 1.412078678112379

1.842899913945532 1.999333777721351 1.660393593238623

q3 0.2028818362109726 1.995342301460311 1.144793336155356

0.1828246535062499 2.001584855884983 1.424752650303841

0.1598563243030001 2.000327527063421 1.675333465729023

The graphs of the outputs as a function of the inputs are
represented by the two-dimensional curves (Figs. 20, 21,
22).

The solution found is obtained by following the same
approach will be:

x � 1.000000956587682
y � 0.9999828841351883

Let an absolute squared error equal to: 1.57·10−4.

A 25% step reduction (n�75) will require an average
execution time of 20 min (20 min) per structure and gives
the following results

x � 1.000000956587682
y � 1.000000956587682
ϕ � 1.049506257922610

The model of the PC used is Intel type dual core, 2.4 GHz,
and 1 Gb of RAM.
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Fig. 19 Plot of the membership functions
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Fig. 20 Plot of the Output X Membership Functions
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Fig. 21 Plot of the Output Y Membership Functions
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Fig. 22 Plot of the Membership Functions ϕ Output
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Let us consider an absolute squared error equal to:
1.56·10−4 of the same order as that found above but with
three entries. An increase in the number of inputs with the
grid pitch being maintained (n�5), improves the absolute
precision on the abscissa X) and the gate at 0.9·10−5. How-
ever, at the cost of a run time for A single structure (output
X) of two hours and fifty minutes (2 h 50 min).

The calculation of the direct geometry by the neural
network-fuzzy logic approach requires relatively long execu-
tion times for the determinationof the structures that establish
the input–output correspondence. But this step necessary to
determine the fuzzy structure once realized, will be able to
determine the solution of the problem for any input articular
vector insofar as it belongs to the intervals of variations.

The accuracy is greatly improved by reducing the grid
pitch value of the variation range. This is also the case if the
number of membership functions per entry is increased.

However, this method cannot determine all the solutions
corresponding to a given articular vector or a fortiori degen-
erate solutions.

Moreover, the grid of the whole domain for a satisfactory
precision leads to prohibitive matrix sizes and will inevitably
lead to memory overruns.

The solution is either to work on a high-performance
workstation with computational power and enough RAM
or to partition the domain into subdomains on which so
many structures will be defined, look for the optimal solu-
tion, checks the conditions of belonging to the domain and
presents the minimum error if several solutions are found.

8 Conclusion

The work presented in this paper concerns the modeling
of nonlinear systems using advanced techniques such as
ANFIS, the geometric method and the polynomial method.

The proposed approaches rely on the optimization of the
error of position as the objective function as well as to exploit
the advantages of each of them to develop a better method.

An analysis and comparison of the three used methods
are made for determining the best optimal solution concern-
ing the minimum error with minimum execution time. The
analysis shows that the optimal solution is obtained by the
polynomial method.
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Appendix: Fuzzy neural method
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