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Abstract

Performance characteristics of the products made of metallic materials such as wear resistance, fatigue strength, stability of
gaps and strain between the connections, corrosion resistance, etc., depend to a large extent by the quality of their surfaces
roughness. An interactive control of the manufacturing parameters which influence the surface roughness is particularly
crucial in the construction of many mechanical components. The present paper devises a new method for statistical pattern
recognition on samples produced by the process of robot laser hardening using network theory and describes its application to
the determination of surface roughness. The method is based on the analysis of SEM images. Indeed the data characterizing the
state of surface irregularities detected as extremely small segments contain indicators of surface roughness. Different methods
of machine learning techniques designed to predict the surface roughness of robot laser hardened material are discussed.

Keywords Surface roughness - Machine interactive learning - Statistical pattern recognition - Robot laser hardening - SEM
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1 Introduction

Robot laser hardening (RLH) (thermal hardening by laser
radiation) [1] of metals and alloys is based on local heating
of a surface area by applying radiation (and subsequent cool-
ing) to the material’s surface. The time constants of thermal
regimes are extremely short as a result of rapid heat conduc-
tion into the inner layers of the metal. Compared to the known
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heat-hardening processes (quenching by high-frequency cur-
rents, electric heating, quenching from a melt, and other
methods), laser-quenching is a surface process rather than
a bulk one. At the same time, both the laser induced heating
times and the corresponding cooling times are insignificant,
since the thermal inertia of the small heated area is extremely
low. These conditions provide high heating and cooling rates
of the treated surface areas. Under these extreme thermal
conditions, the deriving material’s structure acquires specific
features.

Due to the machining of metallic material, the state of
the surface layer (its structure and hardness) changes and so
does the surface appearance, since it is directly related to its
roughness [2, 3]. The surface appearance may change due
to the traces of machining tools being used in the process
(plastic deformations caused by cutting the metal). During
the mechanic treatment of material crystallites are crushed.
The surface layer is influenced to a depth of several microns
with fine processing and up to 1 mm at rough machining
with the removal of large layers of metal. Consequently, the
mechanical properties of the surface layer are quite differ-
ent compared to the properties of the metal underneath. The
operational properties of the products (their strength, wear
resistance, corrosion resistance) depend on the thickness of
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this layer (often called the “defected layer”). In this perspec-
tive, the thickness of the defected layer of steel is greater than
that of cast iron, since in the former case plastic deformation
in the surface layer of the metal is greater than that in the
latter case, and large cutting forces and heat release occur
during processing.

The performance and the life of a mechanical compo-
nent, generally, can be influenced by the micro and macro
deviations of the real surfaces with respect to the nominal
surfaces, which are introduced during the manufacturing pro-
cess. These errors can be controlled on a macro-scale by
dimensional and geometrical tolerances [4] so as to guar-
antee the proper operation of a component when assembled
[5]. Instead, the local irregularities of the real surfaces can
be controlled by assigning a limit value, or a range of values,
of a parameter usually indicated as surface roughness.

Surface quality is determined by a combination of char-
acteristics such as roughness and quality of the surface layer.
The surface texture of an engineering component is very
important. It is affected by the machining process, e.g. by
changes in the conditions of either the component, tool or
machine, which will influence the texture of the produced
component [6].

Surface quality has an important role on the perfor-
mance characteristics of the products such as wear resistance,
fatigue strength [7], stability of gaps and strain between the
connections, corrosion resistance, furthermore the improve-
ment of surface finish is one of the most reasonable methods
of reducing friction [8]. For this reason, especially in appli-
cations where components such as bearings [9], gears [10] or
similar are involved, in which these events can mostly affect
the operating, the state of the surfaces has to be accurately
characterized.

Fractals [11] are complex structures possessing the prop-
erty of self-similarity, i.e. a replication of their form on a
different scale. In other words, fractals are not just mathemat-
ical constructs, but a powerful tool for describing complex
structures and processes. It is pertinent to note that fractal
self-similarity structures essentially describe various ways
order can be established in complex systems, i.e. products of
self-organization must be distinguished from chaos in open
systems. The selection of the material is determined by its
properties, the material being subjected to a wide range of
processes and methods transforming the raw material (the
so-called precursor) into the product.

Pattern recognition [12] is a scientific discipline, the pur-
pose of which is to classify objects into several categories or
classes. Classification is based on precedents. A precedent
is an image, the correct classification of which is known; is
a previously classified object, taken as a model for solving
classification problems. In the natural science, the idea of
decision-making based on precedence is a fundamental con-
cept. For each class, a finite number of precedents are known
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and studied. The task of pattern recognition is to assign a
new recognizable object to one of the given classes and such
task represents the core issue in most intelligent systems. The
measurements used to classify images are called character-
istics. A symptom is a certain quantitative measurement of
an object of an arbitrary nature. A set of attributes related to
a single image is called a feature vector. Feature vectors take
measurements to classify images, and state them in the form
of characteristics. Within the recognition task, it is assumed
that each image has a unique value of the feature vector char-
acterizing it and vice versa.

Machine Learning [13] (ML) is a highly specialized field
that is nowadays extensively used as a tool intended to facil-
itate the “big data” and the Internet of Things (IoT) that are
both focused on automated knowledge extraction from alarge
and raw data sets. Among other principles, learning schemes
are based on the generation of predictive and/or prescrip-
tive recommendations, pattern recognition, etc. A sign of the
advancing era of cognitive computing is the increased inter-
est in ML and the numerous attempts to introduce ML in
various, sometimes unexpected, areas of human activity.

The concepts of graph theory [14] are useful in dealing
with many theoretical and practical problems. The complex-
ity of graph structure is well suited to the capabilities of the
human brain: it is clearly structured but, on the other hand,
rich enough to capture many non-trivial phenomena. Algo-
rithms that operate on graphs are the foundation of search
engines, such as Yandex and Google. As a part of computer
science, graphs are actively used in bioinformatics, chem-
istry, sociology, material science, etc.

The aim of the paper is to outline possibilities of applying a
new method for pattern recognition by using network theory
for the prediction of surface roughness as a consequence of
RLH.

This new method lends itself to be applied by an inter-
active control of manufacturing [15—17] through RLH. This
type of control is devised here as a possibility to interact by
hand or automatically with the robot laser cell parameters in
order to verify any increase of roughness and variations in
the operational properties of the surface, as well (strength,
wear resistance, corrosion resistance).

The interactive control can be utilized by implementing
a system of acquisition and analysis of SEM images either
while machining in real time or during the performance of
the first prototypes of products.

2 Material preparation and methodology

Figure la presents the RLH treated specimen whose rough-
ness is presented in Fig. 1b. For the measurement of the
surface roughness, the profilometer was used. Contact pro-
filometry is a quantitative technique known to reflect the
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Fig. 2 Microstructure of (RLH) specimen

irregularities of the surface profile of the robot laser hard-
ened specimens. The most common parameter calculated
from the roughness profile is the average roughness (Ra).
Figure 2 presents the microstructure of the RLH specimen.
Irregular surface texture with a few breaks, represented by
black islands, is revealed. The impact of the robot laser cell
parameters on the morphological properties of the surface
can be observed. Red arrows show the direction of measure-
ments.

The microstructure of RLH specimens is very complex,
irregular and chaotic. Chaotic microstructure of RLH spec-
imens refers, more broadly, to small-scale stochastic or
chaotic behavior affecting dynamics at large scales. Prob-
lems that involve chaotic and irregular microstructure are
of fundamental importance in materials science. Chaotic
microstructure also plays a key role in determining the topo-
graphical properties of hardened materials. Thus, fractal
geometry was used for the assessment of irregularity. In par-
ticular fractal dimension, which describes the complexity of
specimens, was calculated by using box counting method
[18].

men

A new approach to pattern recognition by using graph the-
ory was developed. The graph G=(V, E) is represented by
the set of nodes V(u,v) and the set of edges E(u,v). Firstly,
micro-structural images were transformed into graphs (net-
work). Nodes were established by black pixels detected on
SEM images. Nearest node neighbors were connected and a
SEM image based network was built. By Eq. 1 the network
clustering coefficient (topological property) was calculated
(Figs. 3,4, 5).

3 x number of triangles

number of connected triplets of vertices
number of closed triplets

number of connected triplets of vertices (1)

Black pixels represent holes in material’s microstructures.
Black holes in microstructures depend on the parameters of
the RLH cell. A new approach to pattern recognition by using
graph theory is used for the determination of microstructure
complexity depending on parameters of the RLH cell which
have an influence on the topography of RLH specimens.

Multiple regression (MR) [19] is a method of multivariate
analysis, through which the dependent variable (or criterion)
Y is associated with a set of independent variables (or pre-
dictors) X by means of a linear equation:

Y=a+b1X1+b2X2+-'-+kak.

Regression coefficients or (weights) b are usually deter-
mined by the method of least squares, minimizing the sum
of the squared deviations of the dependent variable actual
values from the corresponding values.

Genetic programming (GP) [20] is an evolutionary opti-
mization methodology that can also be used to identify
patterns or dependencies in data structures. A GP is a set of
instructions (usually simple operators, addition and subtrac-
tion) for a source data and a matching function to determine
how well a system is capable of combining functions and data
to achieve a specific goal. Applied to the trading context, the
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Fig. 3 New method for pattern recognition by using network theory
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Fig. 4 Genetic programming model

initial data may include not only prices, but also volatility,
moving averages, and a set of other technical indicators. The
matching function can be simple, for example, net profit, but
it can also represent other measures of profitability or risk,
with factors such as profit/loss per trade, probability of pre-
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Fig.5 Neural network model

@ Springer

oto1ole o
ad o o
oo .|
4 LY o re
éle o| [o] |e
elo| |e »
o A © ®

diction or maximum drawdown. In order to reduce the risk
of adjustment, it is necessary to restrict the types of functions
such as functions with simple operators (+, —, /, ¥), exponen-
tial and trigonometric functions. The scope of the program
can also be limited in terms of the maximum number of rows
allowed. The evolutionary aspect of the GP process origi-
nates from the idea that the existing signal or model can be
modified by moving nodes in the branches of a tree, or even
replacing one whole branch with another. The performance
of the system is recalculated using the matching function and
the most profitable mutations are selected for further genera-
tions. The resulting models are usually highly nonlinear and
can be represented in a very general form.

Neural network (NN) (artificial neural network) [21] is a
system of combined and interacting simple processors (arti-
ficial neurons). Such processors are usually quite simple
(especially in comparison with processors used in personal
computers). Each processor of such a network only deals
with the signals it periodically receives, and the signals it
periodically sends to other processors. Nevertheless, in con-
junction with such efficient transactions as neural networks,
processors are trained in the process of work. An artificial

n

Lif ) wx, >0

output = =

-1 otherwise



International Journal on Interactive Design and Manufacturing (1JIDeM) (2019) 13:211-219 215

neural network (ANN), or simply a neural network, is a
mathematical model, as well as its software or hardware
implementations, built in a certain way in the image and
nerve cell networks of a living organism. Neural networks
are one of the most famous and oldest methods of machine
learning.

Support vector machine (SVM) [22] is one of the most
popular and universal algorithms of machine learning. Per-
haps, this is the most complex method of classification from
all described. SVM takes a data set consisting of numbers,
and tries to predict which category it falls into. You can, for
example, determine the role of the player in the basketball
team in terms of the person’s height and running speed. For
simplicity, consider only two possibilities: the position in
the attack, which requires great height, and in the defence,
where the player must move quickly. This algorithm can be
used both for solving classification problems and regression
recovery. SVM builds a prognostic model, looking for a line
dividing the two categories. If you enter the height on one
axis and the speed on the other, and select the best positions
for each player, you get the diagram shown in Fig. 6. For-
ward players are represented by crosses, whereas defenders
are represented by circles. Also, the diagram shows several
lines that divide the data into two categories. The reference
vector machine finds the line that best divides the data. This
means that it passes at the maximum distance from the points
located near it. In Fig. 6 there are several dividing lines, but
the best one is marked with the inscription “Best”. To deter-
mine where the line must pass, only the nearest points are
needed, and they are called support vectors. In order to clas-
sify new samples after the dividing line is found, they must
be depicted in the diagram to see on which side of the diving
line they will be situated. Viewing training data during the
classification of new samples is useless, so the classification
process is very fast. We use v-SVM Type with regression
cost (C) 1.00. Optimization parameters, we use 110 iteration
limit and numerical tolerance 0.001. We use Kernel (g x x x
y+0.14)3 and g was auto.

Random Forest (RF) [23] is one of the most popular
and extremely effective methods for solving the problems
of machine learning, such as classification and regression. In
terms of efficiency, it competes with support vector machines,
neural networks and boosting, although it certainly does not
lack its shortcomings. In appearance, the learning algorithm
is very simple (in comparison with the learning algorithm
of the support vector machines). The basic ideas laid down
in Random Forest model (binary decision tree, bootstrap-
ping aggregation or bagging, random subspace method and
decorrelation) are further presented in Fig. 7. We use 16 tree,
30 fixed seed for random generator. Growth Control: Do not
split subset smaller than 5.

The nearest neighbour classifier [24] is one of the simplest
classification algorithms, also used for problem classifica-
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Fig. 7 Random Forest model

tion. Due to its simplicity, it is a good tool to get acquainted
with the field of Machine Learning. Using this approach, one
must consider examples of writing a code for such a classifier
in Python, as well as result visualization. The task of classifi-
cation in machine learning bears the problem of assigning an
object to one of the predetermined classes on the basis of its
formalized characteristics. Each of the objects appears in the
form of a vector in an N-dimensional space, whereas each
measurement contains a description of one of the object char-
acteristics. In order to classify monitors, such measurements
as the available space, size, maximum resolution, presence
of the HDMI interface, costs etc. play a major role. Text
classification is somewhat more complicated, thus the term
document matrix is commonly used. To train a classifier, one
must work in advance to prepare a set of objects for which
classes must be assigned. This set is called a training sample,
and its marking is done manually, with the involvement of
field specialists. For example, in the task of Detecting Insults
in Social Comments for pre-compiled sets of comments that
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Fig.8 Nearest neighbour model

have been declared opinions, the task of determining whether
the comment is an insult to one of the participants in the
discussion is an example of a binary classification. In the
classification problem there can be more than two classes
(multi-class), and each of the objects can belong to more than
one class (intersecting). We use Chebyshev metric, number
of neighbour was 2. We use uniform weight. The nearest
neighbour model is presented in Fig. 8.

3 Results and discussion

Table 1 outlines the parameters of hardened specimens that
have an impact on material hardness. Column S presents
specimens, which are marked from A1 to A22. Parameter X1
represents the temperature in °C, X2 is the speed of harden-
ing [mm/s], X3 represents the calculated fractal dimension,
and X4 presents Network Clustering Coefficient (Transitiv-
ity) of graph shown in Fig. 3. The last parameter Y is the
measured roughness of RLH specimens. In Table 1, we can
see that A11 possesses the largest fractal dimension, 1.9784.
Thus the specimen A11 is the most complex. Specimen A13
has the highest roughness after hardening (2350 nm). Spec-
imen A4 has the lowest roughness (76 nm). Specimen A20
has the highest network clustering coefficient of the network
presented in Fig. 3 (0.38682865). The multiple regression
model is presented by Eq. 2, but the genetic programming
model is presented by Eq. 3.
Regression Model

Y = 8611.99 + 1.50405 x X1 — 68.9251

x X2 —1802.03 x X3 — 16373.7 x X4 (2)

Table 1 Parameters of hardened

. Specimen  Temperature Speed of Fractal Network Rughness (Y)
specimens (X1) [°C] hardening (X2)  dimension (X3)  clustering [nm]
[mm/s] coefficient (X4)
Al 1000 2 1.9135 0.36439782 201
A2 1000 3 1.9595 0.36447704 171
A3 1000 4 1.9474 0.37053900 109
A4 1000 5 1.9384 0.37918233 76
AS 1400 2 1.9225 0.37755990 1320
A6 1400 3 1.9781 0.36442500 992
A7 1400 4 1.9540 0.37316478 553
A8 1400 5 1.9776 0.36003014 652
A9 1000 2 1.972 0.38459861 337
Al0 1000 3 1.858 0.37792667 307
All 1000 4 1.9784 0.36732337 444
Al2 1000 5 1.9410 0.37918233 270
Al3 1400 2 1.9784 0.35172824 2350
Al4 1400 3 1.5810 0.37168732 1900
AlS 1400 4 1.9650 0.38615246 661
Al6 1400 5 1.8113 0.36449236 759
Al7 800 0 1.9669 0.36010932 183
Al8 1400 0 1.9753 0.35704133 1330
A19 2000 0 1.9706 0.35887944 1740
A20 950 0 1.6931 0.38682865 502
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Tablf-} 2. Experimental and Specimen Exp. data Multiple Genetic Neural Support Random Whereask-
prediction data :
regression  program- network (P vector forest (P nearest
(P MR) ming (P NN) machine (P RF) neighbour
GP) SVM) (KNN)
Al 201 563 195 222 171 171 171
A2 171 410 138 146 201 201 201
A3 109 263 110 86 444 337 171
A4 76 69 93 101 270 109 109
AS 1320 933 1424 1319 553 553 992
A6 992 978 957 993 553 553 1320
A7 553 810 724 559 992 109 652
A8 652 914 584 650 992 270 553
A9 337 127 381 336 307 661 171
Al0 307 373 290 748 109 201 171
All 444 260 447 86 109 553 109
Al2 270 65 272 100 76 109 109
Al3 2350 1255 2342 1274 1330 1740 992
Al4 1900 1575 1382 822 502 759 992
Al5 661 578 693 558 553 502 652
Al6 759 1140 778 854 553 76 553
A17 183 374 24 80 201 502 201
Al18 1330 1312 24 470 2350 652 1320
A19 1740 2192 23 2279 1330 2350 992
A20 502 656 2463 135 307 661 171
Genetic programming Model
0.105902 x (X1 + X4) 1
Y=X4+ + — x 0.273702 x 28.328 + X1
0.273702(73‘65362+%) X1+ XL 5 X2
—56.6559 + 0.0289857 x X1 —— s + wa—odioes *+ X4
X1 X1+% X1 X4—3.65361 X1+ X4 X1+2 x X4
+ + +— — — +
28.328 + o XL___363361 © 944265+ X4 X4 X4 X1 944265 9.44265 + X4
3-9.44265 X4 X4
0.821106 x X4 x (X1 +2 x X4) x (2 x X4 — 3.65361) 3)

(X1+%) x (X1+%)

Table 2 highlights the experimental and predicted data
measured in nm. The first column includes the specimen
names, while the second column contains experimental data.
Prediction with multiple regressions is presented in the col-
umn P MR, genetic programming prediction is included in
the column P GP, neural network prediction is outlined in
the column P NN, support vector machine results are pro-
vided in the column P SVM, prediction with Random Forest
is disclosed in the column P RF, where ask-nearest neighbour
results are presented in the column kNN.

The measured and predicted surface roughness of (RLH)
specimens is shown in Fig. 9. The multiple regression model
sums up to a 53.91% deviation from the measured data. The
genetic programming model sums up to a 26.61% deviation
from the measured data. The neural network model sums
to a 36.14% deviation from the measured data. Parameters
of 0.1 learning rate, 0.9 moment, 0.01 training tolerance,
0.2 testing tolerance were used in 4 layer neural network.
Sigmoid function was used in neural network. The support
vector machine model presents a 67.95% deviation from the
measured data.
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Fig. 9 Measured and predicted
roughness of hardened
specimens
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Parameters presenting the following values: regression
constant 1.00, complexity bound 0.5, numerical tolerance
0.001, iteration limit 100, the polynomial kernel (xy +0.13)3
were used in support vector machine model. The random
forest model sums up to a 61.60% deviation from the mea-
sured data. Parameters containing 16 trees, 30 fixed seeds
for random generator and split subset 5 were used in ran-
dom forest model. The k-nearest neighbour model sums up
to a 35.30% deviation from the measured data. Parameter’s
2 neighbours, Chebyshev metric and uniform weight, were
used in k-nearest neighbour model. All in all, the genetic
programming prediction model provided the best result.

Many steel parts require heat treatment or surface hard-
ening to obtain additional wear resistance and the ability
to withstand significant loads. Unfortunately, high hard-
ness negatively affects the machinability of such parts.
Gear parts and various shafts and axes—typical hardened
parts, machined by turning, milling in hardenedform—are
subjected to stamping in dies and moulds. Heat-treated
parts—rolling elements, as a rule, require finishing, which
removes the shape errors and ensures the required accuracy
and quality of the surfaces. As for dies and moulds, now there
is atendency to process them in the quenched state. This leads
to a significant reduction in the time necessary for manufac-
turing the stamp. Surface roughness is extremely important
in material science. The paper is concerned with the parame-
ters of a robot laser cell which directly impact the roughness.
So, specimen A4 has minimal roughness. It means that opti-
mal parameters of robot laser cell are 1000 °C temperature
and 4 mm/s speed of laser beam. The roughness of RLH
specimens is analysed by means of a new pattern recognition
method. It can be concluded that surface roughness increases
after hardening between 76.3 nm and 2.35 pm.
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4 Conclusion

The present paper deals with a new method for pattern
recognition by using graph theory. Surface roughness is an
indicator that indicates a certain amount of data characteriz-
ing the state of surface irregularities measured by extremely
small segments. The question of the finishing treatment of
hardened steel is solved in modern production mainly by
roughness processing. Until recently, this was due to differ-
ent level of equipment used for grinding and blades. Lathes
could not guarantee the same precision as it was achieved
by grinding machines. But now modern CNC machines have
sufficient accuracy of movement and rigidity, therefore the
share of turning and milling of solid materials is constantly
expanding in many industries. Hardened turning has been
used in the automotive industry since the mid-1980s, but
today a new era begins in this kind of processing. High qual-
ity of RLH processing of details allows reducing the wear and
tear of surfaces. The fractal analysis of a series of digitized
surface microstructures from the robot laser surface modified
specimens indicate that useful correlations can be derived
between the fractal dimensions and the surface microstruc-
tural features such as surface roughness. A new approach
to pattern recognition by using graph theory was developed
for the determination of surface roughness depending on
parameters of the RLH cell which have an influence on the
topography of RLH specimens. The models that were here
studied can be applied in an interactive way during the stage
of laser hardening. The proposed method allows to deter-
mine, in the case of the RLH, a relationship between the
manufacturing parameters and the microstructural features
such as the surface roughness. Therefore it seems appropri-
ate for interactive applications to control the manufacturing
parameters which influence the surface roughness, thus con-
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tributing to the Interactive engineering development as it is
able to evaluate the operational properties of the products
through the surface roughness measurement. The utility of
this method can also be applied to other types of surface

machining.
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