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Abstract
This paper proposes a guide to help designer to formulate the optimization under uncertainty in mechanical design problem.
An efficient tool based on the necessary conditions for each optimization under uncertainty type is introduced here. This tool
is capable to guide the designer to choose between different types of optimization under uncertainty, the suitable method for
a given problem. The problematic of the antagonism between the performance and its stability is studied. We also identify
the importance of the evaluation of this antagonism before solving the design problem in robustness formulation. An efficient
general method is developed for this evaluation. This method is very useful to save computational time and to give to the
designer an early information about the stability of performance under uncertainties of his design.

Keywords Mechanical Design · Optimization · Uncertainty · Robustness · Reliability

1 Introduction

In engineering design, the designer have to take decision in
order to meet the customers and manufactures requirements.
The best decision is achieved using design optimization
methods. Design optimization is widely used in mechani-
cal engineering, khoury et al. [26] develop an optimization
methodology of a rough forged part. In [29] multi-objective
structure dynamic optimization is studied. Optimization of
composite structure is treated in [18,22]. In [34] an opti-
mization method is used to find the best “belleville” spring
for the designer requirement. The hybrid reconfigurable sys-
tem design and optimization for a top class car aluminum
chassis is studied in [2].

Deterministic optimization (DO) is the most frequently
used in engineering design. However, in recent years, design
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optimization under uncertainty or optimization under uncer-
tainty (OU) has widely evolved in mechanical engineering.
OU is highly demanded due to the irreducible sources of
uncertainties in mechanics, like tolerances, material densi-
ties, environmental temperature, etc. OU is employed, when
DO fails to product high reliable and (or) robust design. In
[49], the reliability is defined by the likelihood that a compo-
nent (or a system) will perform its intended function without
failure for a specified period of time under stated operat-
ing conditions. And the robustness is defined by The degree
of tolerance of the system to be insensitive to variations in
both the system itself and the environment. In most practical
design problems, we cannot ensure a fully reliable or robust
design. However we can obtain a high reliable design when
it performs its intended function with a very low probabil-
ity of failure. And we can obtain a robust one, when it is
less sensible to the inputs uncertainties. OU is highly expen-
sive, especially when costly numerical simulations are used
to evaluate the response of the design. In reliability case,
the cost is related to the evaluation of the constraints vio-
lation probability, which demands the estimation of design
response not only on its deterministic configurations but
also in their neighbors. In robust case, the cost is related to
the multi-objective problem formulation, by taking both the
performance and its stability as objective functions. These
costs added to the cost of numerical simulations and the cost
of optimization algorithm is the major challenge of OU in
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mechanical design [10]. Whereas, this cost can be reduced
by the designer when he chooses well the suitable OU for-
mulation for his design problem. In some problems, design
performance and its stability are not conflicted, in this case,
robust formulation is not needed. The choice of suitable OU
formulation is related to the necessary conditions for each
one, and how theses conditions are respected in a design
problem.

In the literature, no tools is developed to help designer to
choose which OU formulation is required to his problem. In
addition, none of the authors has approached the question of
the antagonism between the performance and its stability.

In this work, we propose a new methodology to help the
designer to test the influence of the uncertainties to the per-
formance and the robustness of his design. This interactive
method implements the numerical optimization tools like
(R,Scilab,ACTrESS or Matlab,. . .) in order to guide the
designer in the formulation of OU problems and to help him
to find the solution for the suitable formulation.

In addition, we highlights the necessary conditions for
each OU formulation and we classify OU based on these
conditions, we study the existence of performance-stability
antagonism and we propose a new method to help designer
to choose the suitable formulation for a given design prob-
lem, with a minor computational cost. Several case study are
presented to illustrate our proposal: a two bars design prob-
lem [20], a Bracket structure design [44] and the design of a
welded beam [37].

This paper is divided into five sections. Firstly, in Sect.
2, a state of the art of multi-objective optimization and OU
is presented. Section 3 discusses the different types and for-
mulations of OU and their necessary conditions. The general
method is described in Sect. 4. The mechanical applications
are treated in Sect. 5. Finally, the conclusions of this paper
and some perspectives are outlined in Sect. 6.

2 State of the art

In this section, we treat the state of the art of OU and the
conception of antagonism in multi-objective optimization.

2.1 State of the art of OU

As mentioned in the introduction, OU has widely used in
mechanical engineering. For example, OU of automobile
structures for crash-worthiness is studied in [1,31]. Reli-
ability modeling and optimization of die-casting existing
epistemic uncertainty is studied in [50]. In [36], the variabil-
ities in functioning, manufacturing and modeling phases are
taken into account in multi-objective optimization. Baudoui
et al. [5,6], propose a method for robust design optimization
and apply it to aircraft design system. Composite panels are

optimized under uncertainties in [4,12]. In [42], reliability
based optimization in aeroelastic stability problems is stud-
ied.

In some works, unsuitable problems are studied with
robustness OU formulation. Such as, in [35], the two-bars
problem is used as an example of robustness OU formula-
tion. Similarly, Lelievre et al. [28], treat the bracket structure
problem in robustOUformulation. InSect. 5,wedemonstrate
the absence of the antagonism between the performance and
its stability in these works.

2.2 Antagonism inmulti-objective problems

Multi-objective optimization design involves simultaneous
optimization of several conflicting objectives, all objective
functions are to be optimized. Conflicted objective functions
means that neither solution can be found where every objec-
tive function attains its optimum [30].

Multi-objective optimization is often used in engineering
design, to take into consideration several design criteria or
objective functions simultaneously. For example, khodaygan
et al. [25], use multi-objective optimization to find the best
part orientation that ensure higher quality at the lower time in
additivemanufacturing. In [40],multi-objective optimization
is used tomaximize both the efficiency and the recovered heat
rate of the transparent transpired collectors. In [32], multi-
objective optimization algorithm has been used to optimize
a wood plastic composite for decking application.

In multi-objective problems, a necessary condition to
obtain Pareto front is the presence of antagonism between
the objective functions in their optimum zones included in
the domain of definition. If the antagonism exists outside
these zones, Pareto front is reduced to one point. In this case,
the problem could be studied in mono-objective optimiza-
tion. To illustrate this situation, we consider the Schaffer’s
bi-objective optimization problem [39]. In this problem, the
two objective functions to be minimized are f1(x) = x2 + 2
and f2(x) = (x − 2)2, where x ∈ R. These functions are
studied in the domain of definition D where x ∈ [−2, 4]
as shown in Fig. 1a. For x ∈ D, this bi-objective problem
has a Pareto front which is plotted in blue in Fig. 1b and the
two functions f1(x) and f2(x) are minimized in two distinct
points at x = 0 and x = 2 respectively. In this case, the
Pareto front exists because these functions are antagonistic
in their optimum zones (between their minimums in the cor-
responding domain of definition). If we change the domain
of definition to x ∈ [2, 4] or x ∈ [−2, 0], the Pareto front
disappears and the optimum of this problem is obtained at
x = 2 and x = 0 respectively. The absence of the Pareto
front is due to the fact that the functions are not antagonistic
in these two domains of definition. The condition of Pareto
front existence is used to determine the necessary conditions
to define RDO and RBRDO problems in the next section.
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(a)

(b)

Fig. 1 Antagonism existence between f1(x) and f2(x) of the Schaf-
fer’s bi-objective optimization problem a Schaffer’s functions f1(x)
and f2(x). b Pareto front f1(x) versus f2(x)

3 Types of optimization under uncertainty

Optimization problems can be divided into two main cat-
egories: deterministic optimization and optimization under
uncertainty.

3.1 Deterministic optimization

DO is the classical optimization category, its minimization
formulation for mono-objective function is presented in Eq.
1. The objective function is represented by f (x), x is a vec-
tor of n variables bounded by the lower and upper vectors
xl and xu respectively, h(x) and g(x) are the vectors of l
equality constraints and s inequality constraints respectively.
DO produces optimumswithout taking environmental uncer-
tainties into consideration. Ignoring these uncertainties risks
obtaining results that are sensitive to variables and parame-
ters uncertainties and have low reliability degree.

Minimize: f (x)

Subject to: h(x) = 0

g(x) ≤ 0

xl ≤ x ≤ xu
Where: x = {x1, x2, . . . , xn}

h(x) = {h1(x), h2(x), . . . , hl(x)}
g(x) = {g1(x), g2(x), . . . , gs(x)}

(1)

3.2 Optimization under uncertainty

Optimization under uncertainty is used to overcome DO
risks. In OU, uncertainties in input variables and parame-
ters are considered in the process. From the literature[28],
we can identify three main types of OU.

– Reliability based design optimization (RBDO).
– Robust design optimization (RDO).
– Reliability-based robust design optimization (RBRDO).

3.2.1 Reliability based design optimization

RBDO is the optimization type that produces high-reliable
results, due to the evaluation of the problem constraints
under uncertainty. Many papers have studied RBDO like
[3,19,23,45]. RBDO formulation for mono-objective prob-
lem is presented in Eq. 2, where E

[
f (x̃, p̃)

]
is the expected

value of f . In order to model uncertainties, x̃ and p̃ are the
vectors of the random variables and the random environ-
mental parameters respectively. The vector of deterministic
parameters is represented by p which contains m compo-
nents. The uncertainties associated to the variables and the
parameters of the problem are χ̃ x and χ̃ p respectively, the
deterministic constraints h and g are replaced by their quan-
tiles Qα[h] and Qα[g], where α is the desired reliability
degree. It is sufficient to convert only one deterministic
constraint into probabilistic to define RBDO problem. The
objective function can be replaced by its mean or evaluated
deterministically.

Minimize: E
[
f (x̃, p̃)

]

Subject to: Qα[h(x̃, p̃)] = 0

Qα[g(x̃, p̃)] ≤ 0

xl ≤ x ≤ xu
Where: x̃ = x + χ̃ x

p̃ = p + χ̃ p

x = {x1, x2, . . . , xn}
p = {p1, p2, . . . , pm}
h(x) = {h1(x), h2(x), . . . , hl(x)}
g(x) = {g1(x), g2(x), . . . , gs(x)}

(2)
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They exists other formulations for RBDO, such as worth
case formulation which is a special formulation of 2 and is
obtained by taking α = 100%. In this paper we use this
general formulation based on the probability theory. Other
RBDO formulations are referred to [49].

3.2.2 Robust design optimization

The robust design concept is introduced by the Japanese
engineer Genichi Taguchi, who develops a Taguchi method
to improve the quality of the product and make it insensi-
tive to the variables variations [33,43]. RDO is discussed in
[7–9,14,17]. RDO targets to produce results which are less
sensitive to inputs uncertainties. Severals metrics are used in
the literature to measure the robustness of a design, Gohler et
al. [21] identify 38 differentmetrics. In this paperwe used the
classical formulation for RDO by implementing a dispersion
or stability measure of the function f to the objectives of the
problem, whereas the constraint functions remain determin-
istic. This implantation can be realized by adding a second
objective function to the problem or by a simple aggrega-
tion with the performance measure (e.g.[28,49]). Variance,
standard deviation or difference of quantile could be used
as stability measure. RDO formulation based on the mean
and variance quantity is used in this paper, and presented
in Eq. 3, where V

[
f (x̃, p̃)

]
is the variance of f . Notice

that an aggregation formulation lead to a single point on the
performance-stability Pareto front.Whereas this formulation
is capable to obtain the entire Pareto front which gives the
designer multiple options and choices.

Minimize: E
[
f (x̃, p̃)

] ; V
[
f (x̃, p̃)

]

Subject to: h(x) = 0

g(x) ≤ 0

xl ≤ x ≤ xu
Where: x̃ = x + χ̃ x

p̃ = p + χ̃ p

x = {x1, x2, . . . , xn}
p = {p1, p2, . . . , pm}
h(x) = {h1(x), h2(x), . . . , hl(x)}
g(x) = {g1(x), g2(x), . . . , gs(x)}

(3)

3.2.3 Reliability-based robust design optimization

RBRDO is the OU type that combines RDO and RBDO. It
has been studied in [27,38,41,47]. This type is used when
stable results with high reliability degree are demanded. The
function f is represented by its two measures performance
and stability, while the problem constraints are replaced by
their quantiles. Despite the capability of RBRDO to produce

results that contain all design requirements, it stills the more
complex type and requires a huge computational cost. This
cost is very significant in mechanical problems especially
when numerical simulations are demanded to evaluate prob-
lem objectives and constraints. The formulation of RBRDO
is shown in Eq. 4.

Minimize: E
[
f (x̃, p̃)

] ; V
[
f (x̃, p̃)

]

Subject to: Qα[h(x̃, p̃)] = 0

Qα[g(x̃, p̃)] ≤ 0

xl ≤ x ≤ xu
Where: x̃ = x + χ̃ x

p̃ = p + χ̃ p

x = {x1, x2, . . . , xn}
p = {p1, p2, . . . , pm}
h(x) = {h1(x), h2(x), . . . , hl(x)}
g(x) = {g1(x), g2(x), . . . , gs(x)}

(4)

3.3 Necessary conditions for OU types

The challenge for the designer is to choose what OU type is
required to make a design decision. let us identify the neces-
sary condition for each type of OU.

Firstly, RBDO problem cannot be defined without the
existence of problem constraint, this necessary condition
for RBDO can be checked explicitly. However for RDO
which is a bi-objective problem, the necessary condition
is the antagonism between the performance and its sta-
bility in the optimum zones. In a mean-variance problem,
E

[
f (x̃, p̃)

]
and V

[
f (x̃, p̃)

]
should be antagonist at their

Pareto front. But this condition is more difficult to test than
that of RBDO. By the way, we can define the necessary con-
dition for RBRDOproblem by the existence of the two above
conditions for RDO and RBDO.Many questions can be arise
here.

– Does this performance-stability antagonism exist sys-
tematically?

– If no, can this antagonism be detected explicitly?
– Howcan this antagonismbe detected before the construc-
tion of the entire Pareto front?

Performance-stability antagonism does not exist systemati-
cally. None of the previous works has treated the problematic
of the performance-stability antagonism. Usually, an aggre-
gation of the performance and stability is used to solve
RBRDO problem due to the huge computational time of
multi-objective (performance-stability) RBRDO formula-
tion [49]. This aggregation hides the non-existence of this
antagonism, and the authors believe that exists systemati-
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Table 1 The suitable OU type for each design case

Constraints existence Performance-stability antagonism

Does not exist Exists

No PDOU RDO

Yes RBDO RBRDO

cally. However we will demonstrate the non-existence of this
antagonism in several design problems in Sect. 5.

The evaluation of the antagonism condition explicitly
or before construction of the entire Pareto front reduces
the computational time significantly. If performance-stability
problem does not have any antagonism, RDO and RBRDO
can be replaced by mono-objective problems, RBRDO can
be replaced by RBDO and RDO can be replaced by the mini-
mization of the performance. For that we propose a forth type
for OU called performance design optimization under uncer-
tainty (PDOU), which aims to optimize only the performance
measure. Notice that when the performance measure is very
close to the deterministic measure, RDO can be replaced by
DO. The formulation of PDOU is given in Eq. 5, problems
in PDOU are treated without constraints or with only deter-
ministic constraints. Based on these conditions, we identify
in Table 1, the suitable OU type for each design case.

Minimize: E
[
f (x̃, p̃)

]

Subject to: h(x) = 0

g(x) ≤ 0

xl ≤ x ≤ xu
Where: x̃ = x + χ̃ x

p̃ = p + χ̃ p

x = {x1, x2, . . . , xn}
p = {p1, p2, . . . , pm}
h(x) = {h1(x), h2(x), . . . , hl(x)}
g(x) = {g1(x), g2(x), . . . , gs(x)}

(5)

The existence of performance-stability antagonism can be
checked explicitly in some instance. Such as in two bars
problem, which is treated in Sect. 5.1, or with our proposed
general method in other instances. The general method is
detailed in the following section.

4 General method

The performance-stability antagonism cannot be evaluated
explicitly in all mechanical design problems. In addition,
exploring solutions domain by sampling method is not effi-
cient for high dimensional problems, especially when the
uncertainty propagation is performed using Monte-Carlo

simulation (MCs) (see [13]) . In Sect. 5.1, this sampling
method is employed in the two-bars problem which has
only two design variables and uncertainty propagation is
calculated analytically. But, when the number of variables
increases, the number of sampling points needed to maintain
the same density of points increases exponentially. The total
evaluated points is the product of the number of sampling
points by the number of MCs sampling points, which entails
an enormous computational cost.

To overcome these difficulties, a new general method is
introduced here to evaluate this antagonism without losing
time by constructing the entire Pareto front. Besides evalu-
ation of the antagonism, the proposed method evaluates the
amelioration in the results stability if the problem is treated in
RDO or RBRDO instead of PDOU or RBDO. These pieces
of information help the designer to decide which OU type is
required to its design problem. To describe the method we
use the mean and variance as measures of performance and
stability respectively. Note that this method can be employed
for any two othermeasures. Themethodmeasures the lengths
of Pareto front of mean-variance problem in objectives and
variables spaces. At first, the anchor points of the problem
are calculated, these points are obtained byminimizingE [ f ]
andV [ f ] separately under the same problem constraints and
variables domain of the bi-objective problem. The obtained
points are named AE (EE , VE ) and AV (EV , VV ) respec-
tively, where E and V are their coordinates in the objectives
space. Likewise, they are represented in the variables space
by their coordinates x̃E and x̃V respectively. If AE and AV

are the same point, the obtained minimum is the best design.
While, if one of these points dominates the other, this dom-
inant point is the optimum design. In these two situations,
no additional calculation is required. If these two points are
different, and no point is dominated by the other, the antag-
onism exists. But it is important to evaluate the lengths of
the Pareto front and know if the calculation of anchor points
is sufficient, or the construction of the entire Pareto front is
needed. At second, the distances DE and DV between these
points in mean-variance space along each axes are evaluated.
After that, two dispersion measures δE and δV are calculated
by Eq. 6. Finally, δE and δV should be compared respectively
to the basic measures ΔE , ΔV , which are predetermined by
the designer. If at least one of δE and δV is bigger than its cor-
responding basic measure, the bi-objective problem should
be solved, and more points of Pareto front must be generated
to find a trade-off design. If both δE and δV are less than their
basic measures, the Pareto length in variables space must
be evaluated to taking design decision. For it, the euclidean
distance Dx between AE and AV in variables spaces is calcu-
lated. Thereby, a dispersion measure δx which is obtained by
Eq. 7 must be compared to a basic measure Δx . If δx is less
than Δx , there is no need for RDO or RBRDO, the designer
can choose one of the anchor points as optimum design. If
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δx is greater than Δx , the bi-objective problem should be
run to discover more design configurations. This method is
summarized in Algorithm 1.

DE = EV − EE

DV = VE − EV

δE = DE

max{|EE |, |EV |}
δV = DE

VE
(6)

δx = ‖x̃E − x̃V ‖
max{‖x̃E‖, ‖x̃V ‖} (7)

Algorithm 1 General method
Inputs ΔE , ΔV and Δx .
Calculate AE and AV
if AE ≡ AV or AE ≺ AV (AE dominates AV ) then

AE is the best design
end if
if AV ≺ AE then

AV is the best design
end if
if AE ⊀ AV and AV ⊀ AE then

Calculate DE , DV , δE , δV
if δE > ΔE or δV > ΔV then

More points in the Pareto front must be generated
else

Calculateδx
if δx ≤ Δx then

AE & AV are the optimum design
else

More points in the Pareto front must be generated
end if

end if
end if

5 Applications

In this section, we study three applications that are treated
in the literature. The first is the two-bars problem which is
introduced by [20] and is studied in [24,35]. In this prob-
lem the existence of performance-stability antagonism is
evaluated analyticallywithout any optimization run. The sec-
ond application is the bracket structure, it is introduced by
[44] and used an example for robust design optimization
in [28]. The third application is the welded beam prob-
lem that is introduced by [37] and studied in [16]. In the
last two problems, the general method is applied to evalu-
ate the performance-stability antagonism. In all optimization
problems, theMatlab function “fmincon”, with multi-start
option, is used to perform optimization, this function is a
gradient based algorithm. The Pareto fronts are constructed

Fig. 2 Two-bars structure

Table 2 Variable bounds in the two-bars problem

Variable Lower bound Upper bound

d (mm) 20 80

l (mm) 800 1200

using the Normal boundary intersection (NBI) method [15].
Uncertainty propagation is performed analytically in the
two-bars problem using Eq. 13 [46]. However, in the other
problems, it is performed using Monte-Carlo simulation,
with a sampling number ns = 1 × 106. MCs method is
performed using common random number (CRN) technique
[48], which allow us to use gradient based algorithm for opti-
mization.

5.1 Two-bars problem

The two-bars structure is a design problem that aims to min-
imize the volume fv of the structure shown in Fig. 2. In this
problem, the design variables are d and l, an accepted design
should respect that its normal stress s should be less than
normal stress limit smax and the buckling stress scri t . Deter-
ministic formulation of the problem is given in Eq. 11, the
upper and lower bounds of d and l are presented in Table
2. This problem is studied in two cases, which differ by the
modeling of uncertainties associated to the design variables
d̃ and l̃, as described in Table 3. While, uncertainties asso-
ciated to environmental parameters do not change between
these cases. The distribution types and their parameters used
for design variables and environmental parameters for both
cases are given in Table 3, where the mean value of each
parameter and variable is used in the deterministic case. To
evaluate the necessary condition for RBRDO formulation,
the mean-variance antagonism for this problem is tested ana-
lytically by calculating the relation betweenE [ fv] andV [ fv]
in both cases based on the Eq. 8. For the first case, where the
standard deviations of the variables are constant, if we con-
sider that V

[
d̃
]

= c21 and V

[
l̃
]

= c22, where c1, c2 ∈ R
2∗+,
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Table 3 Distributions of
variables and parameters in the
two-bars problem

Variable or parameter Type of distribution Mean Standard deviation

d̃ (mm) (case 1) Normal d 1

l̃ (mm) (case 1) Normal l 5

d̃ (mm) (case 2) Normal d 0.05d

l̃ (mm) (case 2) Normal l 0.01l

T̃ (mm) Normal 2.5 0.1

B̃ (mm) Normal 750 5

Ẽ (N/mm2) Normal 21 × 104 21 × 103

F̃ (N) Normal 15 × 104 3 × 103

smax (N/mm2) Deterministic 400 −

we obtain the Eq. 9, which is a family of parabolic curves,
in this case the antagonism can be exist and it depends
on the domain of definition. For the second case, we con-

sider that V

[
d̃
]

= β2
1E

[
d̃
]2

and V

[
l̃
]

= β2
2E

[
l̃
]2
, where

β1, β2 ∈ R
2∗+. We obtain Eq. 10, which is the equation of

a single parabolic curve, which means that the antagonism
does not exist

E

[
fv(d̃, l̃)

]
= 2πE

[
T̃

]
E

[
d̃
]

E

[
l̃
]

V

[
fv(d̃, l̃)

]
= 4π2

E

[
fv(d̃, l̃)

]2
�(d̃, l̃)

�(d̃, l̃) =
V

[
d̃
]

E

[
d̃
]2 +

V

[
l̃
]

E

[
l̃
]2 +

V

[
T̃

]

E

[
T̃

]2 +
V

[
d̃
]

V

[
l̃
]

E

[
d̃
]2

E

[
l̃
]2

+
V

[
d̃
]

V

[
T̃

]

E

[
d̃
]2

E

[
T̃

]2 +
V

[
T̃

]
V

[
l̃
]

E

[
T̃

]2
E

[
l̃
]2

+
V

[
d̃
]

V

[
l̃
]

V

[
T̃

]

E

[
d̃
]2

E

[
l̃
]2

E

[
T̃

]2 (8)

V

[
fv(d̃, l̃)

]
= 4π2

E [ fv]
2 �(d, l)

�(d, l) = 1.6 × 10−3

{

1 + c21
d2

+ c22
l2

+ c21c
2
2

d2l2

}

+ c21
d2

+ c22
l2

+ c21c
2
2

d2l2
(9)

V

[
fv(d̃, l̃)

]
= 4π2

E [ fv]
2 �(d, l)

�(d, l) =1.6 × 10−3
{
1 + β2

1 + β2
2 + β2

1β
2
2

}

+ β2
1 + β2

2 + β2
1β

2
2 = constant > 0. (10)

Secondly, the solution domains for both cases are explored in
the objectives space, E [ fv] and V [ fv] are calculated in 400
points which are equally distributed along the entire domain.
The calculations are performed using Eq. 13 and the obtained

Fig. 3 E [ fv] versusV [ fv] for two-bars problem treated in case 1which
corresponds to constant variance. The points A and B are the anchor
points of the RBRDO problem

results for both cases are shown in Figs. 3 and 4. The results
corresponding to case 2 illustrate the analytic demonstration
presented in Eq. 10, a parabolic form is obtained in Fig. 4,
which confirms the absence of antagonism in all points. On
the other side, the results shown in Fig. 3 form a family of
curves. In this case, the existence of antagonism depends on
problem constraints which can affect the domain of defini-
tion. This situation is like that one identified in the Schaffer
example treated in Sect. 2.2 where the Pareto front is affected
by the domain of definition.

The RBRDO problem is formulated in Eq. 12, and is
solved in both cases. For the first one, the corresponding
anchor points are shown in Table 4, the value of the corre-
sponding dispersions measures are shown in Table 5. These
values reflect the short distance between the anchor points
in the objectives and variables spaces. The necessity of con-
structing the entire Pareto front is depended on the choice
of the basic measures, we consider that the basic measures
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Fig. 4 E [ fv] versusV [ fv] for two-bars problem treated in case 2which
corresponds to proportional variance. The point O is the optimum point
for the RBRDO problem

are equal 1%. Therefore, the corresponding Pareto front is
shown in Fig. 5. In the case 2 no Pareto front is found, the
two anchor points are coincident, the obtained optimumpoint
is presented in Table 6. These results show the influence of
uncertainties modeling on the existence of Pareto front. This
influence is studied in [11]. The deterministic optimum is
calculated, and the values of the objectives functions in this
point are estimated for the first case of uncertainties model-
ing. The results are given in Table 7. The results show that
this point dominate all Pareto front points, whereas it is not a
feasible point due the low degree of reliability which are 0.5
for both constraints. This reveals the importance of RBRDO
formulation and the failure of DO to produce reliable and
robust design.

Minimize: fv(x) = 2πTdl

Subject to: g1(x) = s(x) − smax ≤ 0

g2(x) = s(x) − scri t ≤ 0

Where: x = {d, l}
s(x) = Fl

2πTd
√
l2 − B2

scri t (x) = π2E(T 2 + d2)

8l2
(11)

Minimize: E
[
fv(x̃, p̃)

] ; V
[
fv(x̃, p̃)

]

Subject to: Qα[g j (x̃, p̃)] ≤ 0 j = 1, 2

xl ≤ x ≤ xu

Where: x̃ = {d̃, l̃}
p̃ = {B̃, Ẽ, F̃, T̃ }
α = 0.95 (12)

Table 4 Optimum points for RBRDO two-bars problem (case 1)

E [d] (mm) E [l] (mm) E [ fv] (mm3) V [ fv] (mm6)

45.4 1060.5 7.5612 × 105 1.2054 × 109

48.16 1005.9 7.6087 × 105 1.1907 × 109

Table 5 Dispersion measures for two-bars problem (case 1)

Dispersion measures δE (%) δV (%) δx (%)

Values 0.6 1.2 5.4

Fig. 5 Pareto front for RBRDO two-bars problem treated in case 1
which corresponds to constant variance

Table 6 Optimum point for RBRDO two-bars problem (case 2)

E [d] (mm) E [l] (mm) E [ fv] (mm3) V [ fv] (mm6)

45.8 1061.9 7.6445 × 105 2.457 × 109

f (x̃) = K
n∏

i=1

x̃aii where K , ai ∈ R
2

E
[
f (x̃)

] = K
n∏

i=1

E
[
x̃aii

]

V
[
f (x̃)

] = K 2

{
n∏

i=1

E

[
x̃2aii

]
−

n∏

i=1

E
[
x̃aii

]2
}

(13)

5.2 Bracket structure

The bracket structure is used in the literature as an appli-
cation of optimization under uncertainty and robust design
optimization, it is illustrated in Fig. 6. The problem aims to
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Table 7 The deterministic optimum for the two bars problem

d (mm) l (mm) E [ fv] (mm3) V [ fv] (mm6)

37.88 966.05 5.7476 × 105 7.6807 × 108

Fig. 6 Bracket structure

Table 8 Variable bounds in the bracket problem

Variable Lower bound Upper bound

wAB (mm) 50 300

wCD (mm) 50 300

t (mm) 50 300

θ(◦) 45 80

Table 9 Distributions of variables and parameters in the bracket prob-
lem

Variable or parameter Type of distribution Mean Standard
deviation

w̃AB (mm) Normal wAB 0.05wAB

w̃CD (mm) Normal wCD 0.05wCD

t̃ (mm) Normal t 0.05t

θ̃ (◦) Normal θ 0.1θ

P̃ (kN) Gumbel 100 14

Ẽ (GPa) Gumbel 200 16

σ̃y (MPa) Lognormal 225 18

ρ̃ (kg/m3) Weibull 7860 786

L̃ (mm) Normal 5000 250

g (ms2) – 9.81 –

design the lightest structure that respects themechanical con-
straints, the deterministic problem is formulated in Eq. 14.
Let consider that, fw is the weight of the structure, σy and
σB are the yield strength and the maximum bending stress

in the CD beam respectively. As well, FAB and FBk are the
maximumaxial load in the barAB andEuler critical buckling
load respectively. Variables bounds are shown in Table 8, and
the problem is formulated in RBRDO in Eq. 15. In RBRDO,
the deterministic variables and parameters are converted into
random variables, the type of distributions and their parame-
ters are shown in Table 9, where the deterministic values are
used as mean values for all random variables. The general
method is applied to this problem to evaluate the necessary
condition for RBRDO, the corresponding anchor points AE

and AV are presented in Table 10. They are two different
points , and no point dominates the other. The, the disper-
sion measures are calculated, their values are presented in
Table 11. They are very small and less than 1% which is
taken as a value for the basic measures. This problem does
not require a RBRDO optimization. Both obtained anchor
points can be considered as best design. The problem is also
resolved in DO and the optimum point and the corresponding
estimated E

[
fw(x̃, p̃)

]
and V

[
fw(x̃, p̃)

]
are given in Table

12. Similarly to the two bars problem, the deterministic opti-
mum point has better values for the objective functions than
that for the RBRDO optimums, however its corresponding
reliability degree are 0.52 for g1 and 0.47 for g2.

Minimize: fw(x) = 2ρt L

(
2wAB

3 sin(θ)
+ WCD

)

Subject to: g1(x) = σB(x) − σy ≤ 0

g2(x) = FAB(x) − FBk(x) ≤ 0

Where: x = {wAB, wCD, t, θ}
σB(x) = 6MB

wCDt2

MB(x) = PL

3

ρgwCDt L2

18

FBk(x) = 9π2Etw3
AB sin2 θ

48L2

FAB(x) = 1

cos θ

(
3P

2
+ 3ρgwCDt L

4

)
(14)

Minimize: E
[
fw(x̃, p̃)

] ; V
[
fw(x̃, p̃)

]

Subject to: Qα[g j (x̃, p̃)] ≤ 0 j = 1, 2

Where: x̃ = {w̃AB, w̃CD, t̃, θ̃}
p̃ = {P̃, Ẽ, σ̃y, ρ̃, L̃}
α = 0.977 (15)

Table 10 Anchor points for
RBRDO bracket problem Points E

[
w̃AB

]
(mm) E

[
w̃CD

]
(mm) E

[
t̃
]

(mm) E

[
θ̃
]

(◦) E [ fw] (kg) V [ fw]

AE 55.4 75.6 300 60.68 1394.4 32832

AV 56.0 75.6 300 61.62 1395.3 32830
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Table 11 Dispersion measures for the bracket problem

Dispersion measures δE (%) δV (%) δx (%)

Values 6.5 × 10−2 6.1 × 10−3 3.5 × 10−1

Table 12 Deterministic optimum for the bracket problem

E
[
w̃AB

]

(mm)

E
[
w̃CD

]

(mm)

E
[
t̃
]

(mm) E

[
θ̃
]

(◦) E [ fw] (kg) V [ fw]

50 50 300 72.1 1005 16818

Fig. 7 welded beam

Table 13 Variable bounds in welded beam problem

Variable Lower bound Upper bound

h (mm) 5 127

l (mm) 5 254

t (mm) 5 254

b (mm) 5 127

5.3 Welded beam

Welded beam problemwhich is shown in Fig. 7 is introduced
by Phillips et al. in [37] and used in [16] as an application to
introduce robustness in multi-objective optimization. In this
problem, the cost of the welded beam is to beminimized, this
cost dependson thegeometric variables of the bar and itsweld
joint. Deterministic and RBRDO problems are formulated in
Eqs. 16 and 17 respectively, where.

(1) fc: total cost including set up, welding labor costs and
material cost.

(2) τd : design shear stress of weld.
(3) τ(x): maximum shear stress in weld.
(4) σd : design normal stress for beam material.
(5) σ(x): maximum normal stress in beam.
(6) Pc(x): bar buckling load.
(7) λ(x): bar end deflection.
(8) E : Young’s modulus for beam material.
(9) G: Shearing modulus for beam material.

Upper and lower bounds of each variable are shown in Table
13, and the distribution types and their parameters associated

to each random variables are presented in Table 14. In this
problem we apply the general method, the obtained anchor
points are presented in Table 15. As in the bracket problem,
we obtain two different and non dominated anchor points.
We calculate the dispersion measures, and we compare these
measures to their corresponding basic measures which are
considered equal to 1%. It is clear in Table 16 that all dis-
persion measures have high values. This RBRDO problem
has an antagonism between their objective functions, and the
corresponding Pareto front is drawn in Fig. 8. The determin-
istic optimum obtained by solving the problem 16 and its
corresponding estimated E

[
fc(x̃, p̃)

]
and V

[
fc(x̃, p̃)

]
are

given in Table 17. As above, the deterministic optimum is
not an admissible point due to its low reliability degrees,
which equal to 0.499, 0.0, 0.4175 and 0.5 for the first four
constraints respectively, however for the last constraint the
probability degree is equal to 1. This RBRDO problem can
be converted into problem without antagonism between its
objective functions by changing the uncertaintiesmodeling in
design variables. To demonstrate that,we resolve the problem
after doing this change, in the new uncertainties modeling,
each variable has a standard deviation proportional to its
mean as shown in Table 18, and the optimum point found
is presented in Table 19.

Minimize: fc(x) = c1h
2l + c2tb(L + l)

Subject to: g1(x) = τ(x) − τd ≤ 0

g2(x) = σ(x) − σd ≤ 0

g3(x) = F − Pc(x) ≤ 0

g4(x) = h − b ≤ 0

g5(x) = λ(x) − λmax ≤ 0

Where: x = {h, l, t, b}
c1 = 6.74 × 104 $/m3

c2 = 2.94e3 × 103 $/m3

τ1 = F√
2hl

τ2 = MR

J
M = F[L + 0.5l]
R =

√
0.25[l2 + (t + h)2]

J = 2

{
0.707hl

[
l2

12
+ 0.25(t + h)2

]}

τ =
√

τ 21 + 2τ1τ2
l

2R
+ τ 22

σ(x) = 6FL

bt2

Pc(x) = 4.013
√
E Iα

L2

[

1 − t

2L

√
E I

α

]
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Table 14 Distributions of
variables and parameters in the
welded beam problem

Variable or parameter Type of distribution Mean Standard deviation

h̃ (mm) Normal h 1

l̃ (mm) Normal l 1

t̃ (mm) Normal t 1

b̃ (mm) Normal b 1

F̃ (kN) Gumbel 26.7 0.1E
[
F̃

]

Ẽ (MPa) Gumbel 2.07 × 105 0.08E
[
Ẽ

]

σ̃d (MPa) Lognormal 207 0.08E
[
σ̃d

]

τ̃d (MPa) Lognormal 94 0.08E
[
τ̃
]

L̃ (mm) Normal 356 1

G (MPa) Gumbel 8.3 × 104 0.08E
[
G̃

]

Table 15 Anchor points for
RBRDO welded beam problem Points E

[
h̃
]

(mm) E

[
l̃
]

(mm) E
[
t̃
]

(mm) E

[
b̃
]

(mm) E [ fc] ($) V [ fc]

AE 6.45 251.7 205.3 8.8 3.9 0.183

AV 30.65 39.9 136.8 33 7.77 0.06

Table 16 Dispersion measures for welded beam problem

Dispersion measures δE (%) δV (%) δx (%)

Values 49.9 67.2 54

Table 17 Deterministic optimum for the welded beam problem

h (mm) l (mm) t (mm) b (mm) E [ fc] ($) V [ fc]

6.2 158 210.9 6.2 2.38 0.12

I (x) = 1

12
tb3

α(x) = 1

3
Gtb3

λ(x) = 4FL3

Et3b
λmax = 6.35mm (maximum deflection) (16)

Minimize: E
[
fc(x̃, p̃)

] ; V
[
fc(x̃, p̃)

]

Subject to: Qα[g j (x̃, p̃)] ≤ 0 j = 1, . . . , 5

Where: x̃ = {h̃, l̃, t̃, b̃}
p̃ = {G̃, Ẽ, F̃, σ̃d , τ̃d , L̃}
α = 0.95 (17)

6 Conclusion and perspective

This paper identifies the necessary conditions for different
OU types. In addition, the subject of performance-stability

Fig. 8 Pareto front for RBRDO welded beam problem and determinis-
tic optimum

antagonism in mechanical design engineering is studied. A
new general method is proposed to evaluate the existence of
this antagonism inOUproblems. thismethod is very efficient
in helping the designer to choosewhatOU types is required to
his problem. The performance-stability Pareto front does not
exist systematically in RDOandRBRDOproblem.When the
Pareto front is absent,RDOandRBRDOformulations should
be replaced by PDOU and RBDO formulations respectively,
to save computational time and simplify the problem. In some
instance, absence of the Pareto front can be detected explic-
itly before optimization run. In other instance, this absence is
very difficult or impossible to detect explicitly. The proposed
method is efficient to identify the situation before calculation
of the entire Pareto front. The effectiveness of this method
is illustrated after its application on the bracket structure and
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Table 18 New uncertainties
modeling of design variables in
welded beam problem

Variable or parameter Type of distribution Mean Standard deviation

h̃ (mm) Normal h 0.1h

l̃ (mm) Normal l 0.1l

t̃ (mm) Normal t 0.1t

b̃ (mm) Normal b 0.1b

Table 19 Optimum point for
RBRDO welded beam problem
with the new uncertainties
modeling

E

[
h̃
]

(mm) E

[
l̃
]

(mm) E
[
t̃
]

(mm) E

[
b̃
]

(mm) E [ fc] ($) V [ fc]

5.3 251.1 254 6.7 3.5 0.22

welded beam problems. This method is applied to problem
with one objective function. It is possible to extend it to cover
multi objective problems by simply testing each function
individually and reformulate the multi-objective problem
under uncertainty, whereas the difficulty here is in the dimen-
sion of objective space and the presentation of hyper surface
Pareto fronts. The problem situation is affected by the objec-
tive functions, the problem constraints and the uncertainties
modeling, this influence is not sufficiently treated in the lit-
erature and in this work. Further works are needed to study
this influence, these works may lead to identify special cases
problemwhere the mean-variance antagonism could be eval-
uated explicitly.
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