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Abstract The Moving Particle Semi-implicit (MPS)
method is a Lagrangian particle method based on the
prediction–correction calculation of the velocity field and
the Helmhotz–Hodge decomposition. Initially the predicted
velocity is calculated with the viscous and external forces
terms and then corrected by the gradient of the pressurewhich
is obtained by the solution of the Poisson Pressure’s equa-
tion. The MPS was developed for non-compressible bodies
and it is adequate for free surface problems. However, when
used to simulate fluid structure interaction problems, like ship
resistance, the original formulation of the method can not
accurately compute the pressure distribution over the bodies.
This paper proposes a modified MPS method for modelling
immerse bodies in an free surface flow. It was found that
small variations in the source term of the Poisson Pressure’s
equation can destabilise simulations. Therefore, a reformu-
lation of the Poisson pressure equation was developed. The
results show that the proposed variation produced numeri-
cal stabilisation. The free surface particles behave in a good
agreement with experimental observations. Also, although
pressure fluctuations were still present, satisfactory results
were obtained when comparing the drag coefficient with
those reported values in the literature.
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1 Introduction

Free surface flows occur in a wide variety of physical phe-
nomena, such as flooding, spillways, jets, gravity waves.
They involve two fluids in two different states liquid and gas.
Traditional methods like the Finite Volume method [3], and
the finite element method [2], solving the Reynolds average
Navier–Stokes’ equations, have the following issues when
modelling a free surface flow: As a grid is necessary to
calculate spatial derivatives, mesh independence studies are
necessary and time consuming, large deformations of the
elements causes bad mesh qualities, numerical diffusion is
originated on the advection term in the momentum equation,
the initial free surface has to be defined and the mesh refined
on the corresponding part of the domain. If the volume of
fluid method is used [7], then at the post processing stage the
free surface is not clearly defined as it changes depending
on the volume fraction of air and water defined by the user.
Sophisticated methods like using two different meshes have
been developed to track the free surface [1,23].

Meshfree methods have emerged as a simulation alter-
native to mesh dependent Eulerian methods. A review of
meshfree methods can be found in [21]. According to the
physical modelling employed by the method, they can be
classified in two classes: those based on probabilistic models
such as lattice Boltzmann andmolecular dynamics, and those
based on deterministic models such as Smoothed Particle
Hydrodynamics (SPH) and Moving Particle Semi-implicit
methods [18]. The first methods represent macroscopic prop-
erties as statistical behaviour of microscopic particles. The
second ones represent the fluid as a group of particle interac-
tions. Themain idea of a deterministic or Lagrangianmethod
is to replace the fluid by a set of mathematical points named
particles which follow the motion and carry fluid properties
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with them such as mass, momentum and pressure. The fluid
dynamic equations are numerically solved for those particles.

One of the first Lagrangian mesh free particle methods
was the Smoothed Particle Hydrodynamics, SPH, proposed
by Gingold and Monaghan in 1977 [5] to determine the fluid
dynamics in astrophysics. The term smooth refers to the use
of a continuous weight function derivative to prevent large
fluctuation in the calculated force [20]. Similarly, by the same
time, Lucy in 1977 [22] proposed and experimented with an
analogous method for gas dynamic problems in astronomy.
The original method was thought for a compressible inviscid
fluid and hence the reason for the derivation of the pres-
sure from the equation of state. Monagham [25] showed its
extension to simulation of free surface incompressible flows,
presenting examples for the evolution of a drop, the dam
break and the propagation of waves towards a beach.

The SPH method has been used in computer graphics
to add realism to interactive simulations of fluids with free
surface. The main focus of the interactive SPH simulation
has been rendering realistic scenes rather than computing
accurate engineering variables as velocities and pressures
[6,26,27,38]. On the other hand, interactive CFD envi-
ronments have been developed using different numerical
methods as the lattice Boltzmann method [37] and the finite
volume method [4]. MPS method have been applied to
a variety of engineering problems as nuclear engineering
[16], Environmental Hydraulics [28], bioengineering [34].
Although MPS has also been used for rendering purposes,
like rendering of breaking waves [36], it was originally
designed for accurate solution of incompressible fluids. This
work aim to compute accurate solution of surface forces over
submerged bodies.

The MPS method was originally proposed by Koshizuka
and Oka [18] and it has been actively developed in the last
years. For instance,Khayyer andGotoh [9,10] proposedwhat
they had named Corrected MPS, which consist of forcing
the gradient to obey the linear momentum conservation by
making forces between particles symmetric, this is, equal
in magnitude and opposite in direction. Nonetheless, they
have stated in 2011 [12] that non-exact momentum conser-
vation give less numerical errors than those corresponding to
approximation of the pressure gradient, and turn back to the
original MPS gradient calculation with an additional Gradi-
ent Correction (GC). Further in 2013, Tsuruta, Khayyer and
Gotoh [14] state clearly that previous corrections on the gra-
dient implemented by themselves in 2011, referring to GC,
do not resolve the maldistribution of particles and it requires
a careful setting of calculation conditions. Thus, they pro-
posed a Dynamically Stabilised (DS) gradient operator as a
repulsive force to stabilise the calculation.

Moreover, in 2014, Hwang with Khayer, Gotoh and Park
[8], did not use the DS gradient operator. Instead, they used
the GC matrix for the Poisson Pressure Equation (PPE) and

adopted the source term proposed by Tanaka and Masunaga
[33]. This source termhas two components: the divergence of
the intermediate velocity plus the fraction of the particle num-
ber density deviation with a relaxation factor needed in order
to stabilise the simulation. However, this source term was
already criticised by Khayyer and Gotoh [12] because due
to the discretisation of the source term, and the use of relax-
ation factors, simulations like the dam break still revealed
considerable numerical noise and unrealistic flow behaviour.
Hwang et al. [8] quoted Lee et al. [19] summarising that the
particle method is not considered mature enough and fully
reliable computational method due to non-physical pressure
fluctuations and long computing time. The last issue is being
compensated with nowadays parallel computing.

In the sameway,Khayyer andGotoh [12] criticised the use
of unknowncoefficients in the three components of the source
term of the PPE proposed by Kondo and Koshizuka [15] as
those coefficients were obtained by hydrostatic pressure cal-
culations. Thus, Khayyer and Gotoh [12,14] used a three
terms source for the PPE and called the Error Compensation
Source term. The first term is a high source term proposed
in 2009 [10] and the other two terms are dynamic instanta-
neous flow coefficients. However, Tamai and Koshizuka [32]
reject their source term arguing that its accuracy is less than
zero “since they adopted non-renormalised SPH divergence
operator to approximate time derivative of particle number
density.” Hence, there have been different approaches to
obtain a stable method. They work for specific situations if
simulation parameters are carefully chosen. Therefore, there
is a need for robust procedures that guarantee stability and
improve the convergence of the method.

2 The MPS method

TheMPSmethod uses themass andmomentum conservation
laws. The following governing equations in Lagrangian form
are considered respectively,

Dρ

Dt
= 0 (1)

Du
Dt

= − 1

ρ
∇P + ν∇2u + g (2)

where ρ is fluid density, t is time, u is the velocity field, P is
pressure, ν is the kinematic viscosity and g is the gravity as
external body force.

The domain Ω is discretized as a set of particles located
at points ri . Each particle transport its mass and momentum.
Let φ = φ(r) be a scalar function defined over Ω . Then
φ(ri ) = φi is the function evaluated at the particle located
at ri . The gradient vector of a scalar quantity between two
particles i and j can be approximated by the product of the
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variation of a physical quantity φ divided the distance times
the unit direction, that is,

(
∂φ

∂r

)
r j−ri

∼= φ j − φi

| r j − ri |2 (r j − ri ) (3)

In MPS, the gradient vector is approximated by a local
weighted average of gradients between two particles. There-
fore, for a particle located at xi the gradient is defined as

∇φi = d

no
∑
j �=i

φ j − φ̂i

| rj − ri |2 (rj − ri)W (| rj − ri |) (4)

where d is the number of space dimension, W (r) is the
weight function and φ̂i is taken as the minimum value of
φ j within the interaction ratio. The latter option improves
numerical stability because the forces between particles are
always repulsive as φ j − φ̂i is always positive [17]. The
Laplacian operator is modelled using a transient diffusion
equation, where part of the quantity φ in particle i is distrib-
uted to its neighbours particles j using a weight function as
follows,

∇2φi = 2d

λno
∑
j �=i

(φ j − φi )W (| rj − ri |) (5)

where λ is a parameter to ensure that the variance increase is
equal to the analytical solution [17,18], and it is defined by

λ =
∑

j �=i | r j − ri |2 W (| r j − ri |)∑
j �=i W (| r j − ri |) (6)

Equation (5) is used to model and discretise not only the
Laplacian of the velocities from the Navier stokes equation
(2) but also the Poisson Pressure Equation (PPE). This PPE
can be obtained from the Navier–Stokes equations and it is
used to enforce continuity [3].

2.1 The weight or kernel function

Interactions between particles are limited to a finite distance
with the following weight function,

W (r) =
⎧⎨
⎩
re
r

− 1 0 ≤ r ≤ re

0 re ≤ r
(7)

where r is the distance between two particles and re is the
radius of interaction or cut-off radius. The weight function
is infinite at r = 0 which is good for avoiding clustering
particles [17]. However, according to Kondo and Koshizuka
[15], this singularity is one of the causes of theMPS instabili-
ties and they had adopted a different weight function without

singularity. Nonetheless, the original weight function is still
used in several studies as those published by Shibata and
Koshizuka [29], Sueyoshi et al. [31], Khayyer and Gotoh [9–
14], Shibata et al. [29,30], Tanaka andMasunaga [33], Tamai
and Khoshizuka [32], Hwang et al. [8].

2.2 Particle number density

The particle number density, pnd, of a particle at point ri is
defined in terms of the weight function as,

ni =
∑
j �=i

W (| rj − ri |) (8)

Thefluid density is proportional to the pnd and the continuity
equation is satisfied if the particle number density is constant.
Otherwise, if the pnd of a particle i , ni , is less than a constant
β times the initial pnd no, then the particle is identified as
one on the free surface.

ni < βno (9)

and 0 < β < 1.

2.3 Pressure Poisson’s equation

As a difference to other particle methods as Smooth particle
hydrodynamics (SPH), the pressure is solved implicitly by
means of the pressure Poisson’s equation as,

∇2Pi = ρ

�t2
n∗
i − no

no
(10)

where ρ is the fluid density, n∗
i and n

o are the pnd of a particle
i at intermediate and the initial position respectively. Solving
the Poisson pressure’s equation in the original MPS method
causes negative pressures as the particle number densities
near the free surface is smaller than the one for inner par-
ticles. Those negative pressure values cause instability and
they must be replaced by zero [15].

3 Free surface stabilisation

Stabilization was obtained via reformulating the Poisson
pressure equation and by computing the pressure gradient
for non free surface particles only.

3.1 Pressure Poisson’s equation

The mathematical model on the calculation of the Poisson
pressure’s equation has been proposed similarly as in multi-
stepmethods. It consists in a linear combination of the source
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term with information of previous time steps. The first term
is the variation of the particle number density respect to the
time from a higher order accurate time differentiation of par-
ticle number density which considers the standard Weight
function [10,12]. The second term, is the instantaneous time
variation of the particle number density from the previous
time step and the third term, is the deviation from the initial
particle number density. That is,

�t

ρ
∇2Pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
1

no

(
Dn

Dt

)∗

i

+ β1

∣∣∣∣∣
(
nki − no

no

)∣∣∣∣∣
[
1

no

(
nki − nk−1

i

�t

)]

+ β2

∣∣∣∣∣
(
nki − nk−1

i

no

)∣∣∣∣∣
[
1

no

(
nki − no

�t

)]
,

if nki > γ no.

α
1

no

(
Dn

Dt

)∗

i

+ β1

∣∣∣∣∣
(
nki − nos

nos

)∣∣∣∣∣
[
1

no

(
nki − nk−1

i

�t

)]

+ β2

∣∣∣∣∣
(
nki − nk−1

i

nos

)∣∣∣∣∣
[
1

no

(
nki − nos

�t

)]
,

if nki ≤ γ no.

(11)

where α, β1 and β2 are relaxation factors, no and nos are the
initial particle number density of a particle inside the domain
and a particle which is located on the free surface respec-
tively, γ can be the same free surface criterion β fromEq. (9).
The upper Eq. (11) is used for inner particles and the lower
Eq. (11) is used for free surface particles. When the fluid is
being compressed the instantaneous variation of the particle
number density is positive, on the contrary when the fluid is
being expanded the instantaneous variation is negative. In the
same way, when the fluid has already been compressed the
deviation from the initial particle number density is positive,
on the contrary when the fluid has already being expanded
the deviation is negative. In this way when the fluid is being
expanded and it has already been compressed the source term
leads just to the first term.

3.2 Gradient condition

As the particle number density near to the free surface tends to
be smaller than the one of inner particles, the source term and
pressure values after solving the Poisson Pressure equation
are calculated as negative ones in the traditional MPS which
causes instabilities. Hence, those negative pressures must set
to zero in order to avoid that issue [15]. This was clearly

Fig. 1 Initial configuration of the dam break

experienced when negative pressures were allowed causing
particle disorders and the simulation crashes in early stages of
the computation. The following condition has been imposed
over the particles to calculate the gradient,

ni > βno (12)

with β equals to 0.95, otherwise the gradient is zero. This
means, particles near to the free surface do not have gradient
pressure and it was taken only on inner particles.

4 Results

The dam break is a common benchmark used to validate
computations with free surface due to its quick evolution of
fluid walls in time. It consists on a fluid column initially at
rest that collapses, hence the height of the column falls and
the fluid spreads out. In this case, the dam break was tested
for 648 fluid particles, the same number as the original MPS
method proposed by Koshizuka and Oka [18]. The initial
configuration is a rectangular particle array of a = 0.216 m
width by twice a, 2a = 0.432 m height. Also, the domain
width is 4 times a, 4a = 0.864m, and the domain height is just
important to keep particles inside it. Particles are separated
by a distance from their centres by 0.012 meters and the time
step used was 1 × 10−3 s. The initial configuration and the
main parameters are shown in Fig. 1 and Table 1 respectively.
The equations used here were the original MPS ones and
the condition of zero pressure was imposed to free surface
particles which reached the condition of the Eq. 9.

Figure 2 shows snapshots of particles performance at 0.5
and 1.0 seconds. Also, the advance of the right bottom end
of the column of water was tracked. In order to compare with
data on the literature it was convenient to present the results
in units of the non-dimensional quantities. Figure 3 shows
the evolution of the non-dimensional right bottom end of the
column compared with experimental data from Moyce [24].
It can be observed that computational results are in good
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Table 1 Calculation parameters for the dam break

Parameter Value

Initial particle spacing lo = 0.012 m

Time step 1 × 10−3 s

Free surface criteria β = 0.97

Fluid density 1000 kg/m3

Kinematic viscosity 1 × 10−6 m2/s

Fig. 2 Snapshots of the dam break at t = 0.5 s on the left and 1.0 s on
the right

Fig. 3 Non-dimensional right edge advance versus dimensionless time
for the dam break test. Comparison of MPS with experimental results.
Here a is the width of the liquid column base and x is the horizontal
edge of advance of the water [24]

agreement with experimental ones. Hence the MPS method
was verified and validated for a closed domain.

4.1 A square cylinder in free surface flow

TheMPSmethodwith the free surface stabilisation proposed
in Sect. 3 was implemented in Python 3.2. The method was
tested with a 2D solid square with side length L = 0.1 m
which was introduced into a free surface rectangular domain
with dimensions 0.6 m long × 0.3 m height. A total of 2281
fluid particles were generated to represent the fluid domain,
see Fig. 4. The following parameters were used in the sim-
ulation: time step = 1 × 10−4 s, initial particle distance
lo = 8.3 × 10−3 m, cut-off radius re = 2.1lo, velocity at

Fig. 4 Fluid particles domain. The red particles correspond to the
boundary of the solid square. Dimensions are given in meters

Pressure
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Fig. 5 Particle evolution in time of the floe around the 2d square for
2281 fluid particles. a 250 ms, b 500 ms, c 750 ms, d 1 s

inlet v = 1.0405 m/s, and a Reynolds number Re ≈ 100,000.
The solid domain was modelled as a set of rigid particles.
Fluid particles were allowed to leave the domain when they
reached the outlet on the left end and new fluid particles were
created and introduced on the right side in order to keep a
continuous fluid flow.

Figure 5 shows the particle evolution in time of the flow
over the 2D body. The colour corresponds to pressure values.
The fluid particles move forwards softly from the inlet on the
left hand side to the outlet on the right hand side. It can be
observed well defined areas of high and low pressure. The
transition between those pressure areas is done in a smooth
manner. The spaces inside the fluid particles are regarded
as proper interactions between the solid and the fluid. The
free surface is clearly identifiable and there are not solid
penetration.

In order to validate the computational data, a squared
cylinder was assembled on an open channel flow. The dimen-
sion of the base of the squared cylinder was 10 cm by 10 cm,
the same dimension as in the simulations. The dimension of
the channel was 30 cm width by 50 cm high by 4.5 m long.

123



638 Int J Interact Des Manuf (2017) 11:633–640

Fig. 6 Squared cylinder in the open channel used to validate the sim-
ulations

Fig. 7 Fluid flow over the squared cylinder used for experimental val-
idation

The maximum flow capacity of the channel is 28 l/s. Fig-
ure 6 shows the assembly of the squared cylinder in the open
channel.

The channel was filled of water until the desired free sur-
face levelwith an averagevelocity inlet of 1m/s.This velocity
was calculated based on the volumetric flowmeasurements in
the pipe that provides water to the channel. Then, the squared
cylinder was immersed and few seconds afterwards the evo-
lution of the free surfacewas recorder with a high speed, high
resolution camera. Figure 7 shows a lateral view of the fluid
flow over the squared cylinder.

The experiment exhibit some differences with the sim-
ulation as the squared cylinder assembled had a couple of
vertical guides to move it into place. The images obtained
with the camera were processed in order to recover the free
surface at different times. The results can be seen in Fig. 8.
The cyan, or light blue, is the experimental free surface and
the navy, or dark blue, is the computational free surface. It
can be observed that the computed surface on top of the solid
is in agreement with the experimental free surface. However,

(a) (b)

(c) (d)

Fig. 8 Free surface comparison. The cyan or light blue is the experi-
mental and the navy or dark blue is the computational free surface. a
250 ms, b 500 ms, c 750 ms, d 1 s

it can be observed that after the flow passes the square the
computational free surface falls downwhile the experimental
surface goes up again reaching the height of the initial free
surface.

Differences in the results can be explained by the differ-
ences between the experimental and computational domain:
the experiment was carried out in a 3D channel flow mean-
while the computational simulation was done considering
just two dimensions, The computational domain was smaller
than the experimental. The supporting structure of the cylin-
der was not taken into account in the simulation. The
experimental channel was closed at the end so a drop in the
level of the channel was controlled. Hence, it can be said that
the second half of the free surface differ due to the outlet
condition in the simulation. In the simulation, when particles
reached the left hand side of the domain they were simply
deleted. In the water channel, there is a static pressure of
the rest of the fluid flow which causes a damming of flow
downstream. The cylinder squared was restricted on the side
direction so the drag resistance was not measured.

In addition, for immersed bodies with free surface,
Venougopal [35] reports an experimental drag resistance
coefficient of Cd = 2.15 for rectangular cylinders at
Reynolds number in a range from 1 × 104 to 1 × 105. In
this study a computational calculation of the average drag
resistance coefficient was calculated according to the for-
mula Cd = 2F/ρV 2A. For the total run simulation it gives
an average value of the Cd = 2.1 for a Reynolds number
Re ≈ 1 × 105 which is in a good agreement with the litera-
ture.

5 Conclusions

This article proposed amodel for the flow around a 2D object
where the pressure given by the solution of the Poisson Pres-
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sure’s equation can take negative values and there is no need
to modify those values to zero as it happened with the orig-
inal MPS method. First, in the source term of the Poisson
Pressure’s equation has been conceived as a linear combina-
tion of particle number densities of previous steps and the
initial setup. Also there is a different treatment if particles
are on the free surface. This gives more numerical stability.
The pressure gradient is only calculated for inner particles
and not for particles on to the free surface. This condition
improved considerably the fluid flow behaviour. Meanwhile,
in the original MPS, the gradient was calculated over the
whole domain and particles on the free surface tended to rise
up. As fluid particles do not enter the solid and free surface
particles do not rise up it can be concluded that the fluid
particles flow appears to obey better a physical behaviour.
The previous variants of the method reported on the litera-
ture were tested and the following issues were found: when
the time step was as high as 1 × 10−3 s, solid penetration
was observed and the simulation did not capture the physics
observed experimentally. On the other hand, when the time
step was as low as 1 × 10−4 s, some particles escape from
the initial domain. This was correctly solved implementing
the above-mentioned modifications and the final simulations
were finished with no issues.
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