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Abstract Experience-based design is a recently emerging
method used to capture the emotional content of customer
experiences. Both the engineer’s experiences and customer’s
experiences for dual experiences are important in deliver-
ing high quality user-centred product design. To assess dual
experiential design optimization, fuzzy decision tree and
fuzzy cognitivemap are integrated in engineering design per-
spectives. This study aims at optimizing complex interactions
and experiential design system with imprecise relationships
while quantifying the performance impact of engineering
design efficiency on customer satisfaction. The experiment
is conducted by utilizing sensitivity analysis of the three
degrees of fuzzy membership function using a product
mix-experience problem. The evaluation results show that
this dual experience-based design approach can help R&D
design, deliver highquality product development experiences
and co-create value with customers to yield a high perfor-
mance engineering design.

Keywords Dual experiential design · Fuzzy decision tree ·
Fuzzy cognitive map · Engineering design ·
Interactive design

1 Introduction

Within the user-centered product exploration that typifies
modern product development, engineering design faces a
number of challenges. Confronted with these challenges,
interaction and experience design has become a key issue.
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Some previous studies have already purposed experience-
centred design (ECD) to increase customer loyalty and thus
maximize profits [5,36,47]. Experience-based design is a
recently emerging method used to capture the emotional
content of customer experiences [26]. When these customer
experience methods assist designers to improve the customer
satisfaction, they do not consider the consistence of cus-
tomer’s emotional experiential needs and product engineer’s
experiences. However, both the engineer’s experiences and
customer’s experiences for dual experiences are important
in delivering quality user-centered product design. Com-
plementing ECD by considering both customer experience
requirements and also engineer’s experience factors is a
complex and difficult issue, both from engineering design
perspectives and from customer responses.

This paper adopts engineering design perspectives from
[31], which consist of two perspectives: designer perspec-
tive (robust design, design optimisation, design cognition)
and customer-centre design (requirements management,
ergonomic design). From customer responses’ perspectives,
customer-centre design represents the front end of the cus-
tomer requirements and is directly associated with the
consumption behaviour. Luh et al. [33] proposed a system-
atic empathic design method (SEDM) based on participant
observation, laddering interviews, implication matrix, hier-
archical value maps and mind mapping, in order to develop
customer-centered products. Chen et al. [13] explored the
possibility and new procedure of applying environment-
based design (EBD) to constructing evaluation criteria in
AHP. In a product design environment, there is a lack of
research considering both engineer’s and customer’s expe-
rience. In other words, the approach links experience and
response design with customer satisfaction to ensure high
quality product delivery via the design of appropriate interac-
tive activities between engineer’s experience and customer’s
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experience. Both engineer’s experience and customer’s expe-
rience (dual experiences) stimulate customers with good
expectation and enhance customer loyalty through con-
sumption behaviour, then improve customer responses and
increase product provider’s profitability. Thus, this article
adopts two measure metrics: product usability and consump-
tion behavior. The product usability adopts usefulness of
a product by [42]. The consumption behaviour adopts the
RFM measure. The RFM incorporates three variable val-
ues: consumption recent interval (R), frequency (F), and
money amount (M). Thus, the product design and customer–
engineer interactions have evolved from usability and RFM
method to optimize both from engineering design perspec-
tives and customer responses.

The fuzzy decision tree (FDT) and fuzzy cognitive map
(FCM) are integrated into dual experienced design optimiza-
tion. Why FCM and FDT methods are adopted? Because
dual experienced design needs structured data of histori-
cal cases to support experiential design optimization due to
complex decision problems for the dual experience-based
design approach. These experiences are representations of a
historical decision case that includes the original consump-
tion behaviour, usability attributes of product function from
engineering design perspectives. The FDT decision is well
suited to develop a forecasting model for generating decision
rules in experiential design decisions due to the structure
by which experience and new cases are represented. The
engineering design perspectives integrate the customer and
engineer factors such as designer perspective (robust design,
design optimisation, design cognition) and customer-centre
design (requirements management, ergonomic design), due
to these factors related to experiential design. The uncertainty
imposed on these factors to identify the causal relationships
among them. For such uncertainty situations, fuzzy cognitive
maps (FCM) can deal with complex system [45]. This article
proposes the utilization of the fuzzy casual characteristics of
FCM and inference mechanism as the underlying approach
in order to generate engineering perspectives of design per-
formance impact.

According to the above-mentioned integration between
dual experiences and engineering design perspectives, this
article proposes a novel approach combining FDT into FCM.
This approach concludes that the dual experiences in experi-
ential design create compelling customer responses and aid in
the product design of high quality interactions. An increasing
efficiency in enhancing customer and engineer interac-
tions with product usability and consumption behaviour has
prompted engineering design research that focuses on the
importance of the experiential design optimization. In a
word, this study accordingly presents a new dual experience-
based design approach by using FDT with FCM based
on engineering design perspectives and customer responses
for optimization. It aims at optimizing complex interaction

and experiential design system with imprecise relationships
while quantifying the performance impact of engineering
design efficiency for customer satisfaction. To evaluate the
proposed approach, this article addresses a linear program-
mingmodel of the productmix-experienceproblemconsider-
ing the proposed approach performance with total profit. The
purpose of this evaluation is to help the proposed approach
validate the total performance mode selection problem.

More recently, interactive design focuses on users’ pref-
erences for product features by product usability, experience
and aesthetic quality that they let product influences con-
sumers’ attitudes. According to [34] literature, they indicate
inactive design needs the “user experience” and aesthetic in
interaction because of inconsistency. Thus, experience-based
design has made it crucial to apply experience design in the
interactive product design. The interactive product design
process is developed for a user experience in product design.
So that experiential design match the users’ activities and
needs. The experience-based design method appears to be
crucially well suited to the design of products in which the
experience of innovation and usability are critical to the
product. The usability aims to easy to learn, effective to
use according to user experience. Thus, this proposed paper
adopts original consumption behaviour, usability attributes
of product function from engineering design perspectives.
These perspectives involve in the design of all the interactive
concepts of a product. Accordingly, this paper approach is
really interactive that is concernedwith how tomatch product
design quality based on user experiences.

Industrial 4.0 design is an integrated in engineering design
perspectives. It applied to user-centered product exploration
that is to be improved for the customer satisfaction through
techniques of internet of things (IoT). Through emerging IoT,
between consumer experiences and products design is close
relationship interactions. The emerging IoT in user-centered
design has stimulated a shift of focus from designer perspec-
tive’s customer experience and customer- centered design
perspective’s engineer experience. According, industrial 4.0
design is an interactive process of design with aesthetics,
human perception for customer and usability principles. In
this proposed approach, the dual experiences in experiential
design aid the product design of high quality interactions of
industry 4.0 design and create a new focus in the research
area of engineering design. This proposed evaluation solu-
tion comparing the present solution from usual publication
of interactive product engineering is described as follows.

Schütte [43], applied Kansei engineering method to find
relationships between product experience and product prop-
erties based on industrial design. The Institute of Ergonomics
and Human Factors at TU Darmstadt explores future smart-
based user centered design process (UCDP) to develop
concepts for cyber physical system in industry 4.0 topic. The
industry 4.0 is an ambient intelligence by detecting the con-
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text of the user centered design process based on artificial
intelligence [20].

Comparing with these previous works, the proposed
approach has attracted the attention in various disciplines
involved in interactive product design research such as prod-
uct usability, customer behavioral humanperception. Product
usability is the dimension of the user-centered interactions
that is affected by the customer’s experience. RFM relies
on three customer behavioral variables to find valuable
customers and further develop customer experience. From
industry 4.0 design perspective, this proposed approach also
explores the above-mentioned five factors based on both
customer experience and engineer experience consideration.
The exploration can be improved industry 4.0 design perfor-
mance because of its high interactive design. Furthermore,
this proposed approachprovides evaluation solution for prod-
uct design performance. The purpose of this evaluation is to
help this proposed approach validates the total performance
mode selection problem using optimization problem in the
product-mix of dual experiences.

This paper is organized as follows: Sect. 2 introduces
related work such as FCM, FDT, and experience-based
design. Section 3 presents the proposed approach, a new
dual experience-based design approach by using FDT with
FCMbased on engineering design perspectives and customer
responses for optimization. Section 4 presents the case study
and numerical example for consumer electronic product such
as notebook computer or smart phone. Section 5 presents
evaluated experiments using product mix-experience prob-
lems that are conducted by utilizing sensitivity analysis of the
three degrees of fuzzy membership function as low, medium
and high among the influence of each perspective in the case
study. Section 6 concludes the work and describes future
research.

2 Related works

2.1 Experience-based design and user-centered design

User experience (UX) is a human-computer interaction
(HCI) with important emotional significance from experi-
ential aspects of usability. The HCI focused on UX aspects
beyond the product usability [22]. Tesar [46] explored the
ability of the discipline of mechanical engineering to satisfy
a spectrum of human needs. Furthermore, it is crucial that
UX combines product design to capture insights from which
engineers can identify and co-design procedure for improve-
ment by capturing the customer experience. Hudspith (1997)
indicated that engineer experience supports howpeople inter-
act with their products using a theoretical UX model to help
product design.

Wright et al. [48] presented an interactionmodel usingUX
from a design perspective. Experience-based design (EBD)
method is discussed in some industrial field. Experience-
based design is a recently emerging method to construct
cognitive models with a product. Russ et al. [39] pro-
posed experience-based design questionnaire to identify and
evaluate an experience-based design that can be used to
incorporate patient and emotional experience into healthcare
redesign. Thus, EBD can enhance product design quality
to design better healthcare services using patient and staff
experience in healthcare field. Hsieh et al. [25] proposed ser-
vice experience design approach that explores quality service
experiences and co-create value with customers in the ser-
vice industry. Accordingly, this article uses EBD to evaluate
design quality based on both engineering design and cus-
tomer responses.

User-centered design (UCD) plays a critical role in the
interactive design for product design process. The UCDmay
works effectively from an engineering perspective, it is often
at the integration of both the customer experience and engi-
neer experience. The goal of interaction design is to estimate
this evaluation by bringing usability into the engineering
perspective. Thus, this paper own definition for interactive
design describes that the dual experiences in experiential
design create compelling customer responses and aid in the
product design of high quality interactions.

Some literatures discussion were described as follows
from usual literature about interactive design. Fischer and
Nadeau [49] present an in-depth study of new product design
methods namely research in interactive design by demon-
strations of real industrial problem-solving. An interactive
motion planning framework drives the interaction between
users and automatic path planners [51]. Poirson et al. [35]
presented genetic algorithms for a user-centered design of
products to solve the multi-objective optimization problem.
Dilip et al. [16] proposed an overall sentiment rating algo-
rithm for customer sentiment appraisal from user-generated
product reviews using opinion mining techniques. User-
centered design (UCD) plays a critical role in the interactive
design process. The user-centred design (UCD) provides an
excellent framework to foster brain-computer interface (BCI)
development together [2]. Gregory and Shana [21] proposed
a new conceptual UCD approach namely latent semantic
engineering (LSE) to improve product quality, customer sat-
isfaction, and product success.

Accordingly, I have a look on interactive design to position
the proposed approach from these literatures. This posi-
tion is a new field of study, namely, dual experience based
design (DEBD).TheDEBDexplores a newexperience-based
interactive design by both the customer experience and engi-
neer experience through emotional mapping and customer
responses.
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2.2 Fuzzy cognitive maps

Fuzzy cognitive maps (FCM) by Kosko [27] is a modelling
methodology to formulate the adjacency matrix using casual
chaining information for complex decision-making systems.
FCM is a casual relationship links component to each other
in a graphical illustration and seems to be a signed directed
graph with multiple maps, loops, cycles, etc. The reachable
adjacency matrices use vague degrees for causality degree.
A FCM consists of nodes and weighted arcs (denoted Cij).
Nodes represent concepts that are characterized by variables
Vi and its weighted arcs represent causality between pairs
of concepts. A FCM is composed of concept node (C) of a
problem, signed directed arrows, and causality value (eir of
Cij) among the other nodes.Meanwhile, theweighted arcsCij
are formed by the influence of causal concept Vi on concept
Vj. TheCij take care value in the fuzzy interval [−1, 1]. Cij=0
indicates no relationship. Cij > 0 defines positive causality
(increase). Cij < 0 indicates negative causality (decrease).

Agood reviewof recent applications and advances inFCM
modelling can be found in Glykas [18]. FCMs have been
commonly used in the field of industry application but a few
discussed in engineering design field. Salmeron and Gutier-
rez [41] proposed fuzzy grey cognitive map with a reliability
analysis of a transformer active part in order to assist elec-
tric power system decision-making. Lee et al. [29] proposed
feedback-basedFCMfor feedbackdesign in product problem
and also indicated “feedback” applied into FCM evalua-
tion. Cheah et al. [12] proposed FCM constructor to verify
product design decisionmaking problems formodelling, rep-
resenting, and reasoning about causal design knowledge [19].
According to the above-mentioned, the FCM was adopted
to evaluating value of engineering design perspectives for
product design process. However, they almost used expert’s
knowledge to collect factors’ value. They rarely took into
consideration fuzzy decision tree for collecting fuzzy data. It
is crucial for decision-making based on decision tree induc-
tion with fuzzy data, because fuzzy decision tree can produce
the inference that carried out the optimized efficiency by
using fuzzy membership function. Lee et al. [30] proposed
a method of constructing a web-based decision making sys-
tem based on an expert’s knowledge and experience for some
patients by preference data using fuzzy cognitive map and
fuzzy membership function.

2.3 Fuzzy decision tree (FDT)

Decision trees have been successful in classifications and
prediction to classify data by sorting them with the tree from
the root to the leaf nodes. Fuzzy sets defining the fuzzy terms
used for building the tree are imposed on the algorithm. On
the other hand, fuzzy decision trees are extensions of the clas-
sical decision tree algorithms and allow data to follow down

simultaneously multiple branches of a node with different
satisfaction degrees at [0, 1]. A fuzzy decision tree is a gen-
eralization of the crisp case. For capability of representing
vague and unclassified data, the fuzzy decision tree com-
bines the fuzzy set with the decision tree. One of the main
objectives of the fuzzy decision tree induction is to gener-
ate a tree with high accuracy of classification for unknown
cases such as ID3 by Quinlan [37]. There are many studies
trying to improve classifying efficiency. Chang and Liu [11]
and Carvalho and Freitas [8] applied decision tree for other
method such as K-mean, fuzzy C mean. Chandra and Vargh-
ese [10] proposed a binary decision tree algorithm using the
Gini index as a split measure. Accordingly, given the theo-
retical developments presented fuzzy concept, the decision
trees classification systems are referred to as fuzzy decision
tree algorithm.

Experimental results show that the selection of attributes
is an important factor to influence the accuracy of classifica-
tion [7]. The construction method for the fuzzy decision tree
is designed for a classification problem with attributes and
classes represented in fuzzy linguistic terms [50]. According
to the above literature, the fuzzy representation is becom-
ing more and more popular in dealing with problems of
uncertainty, noise, and inexact data [15]. It has been success-
fully applied to problems in many industrial areas. Horng
et al. [24] proposed a hierarchical fuzzy clustering decision
tree (HFCDT) for classifying recipes of the working wafers
with the entropy-based C4.5 decision tree algorithm in an
ion implanter. Liu et al. [32] proposed a method to con-
struct the axiomatic fuzzy set (AFS) theory with a fuzzy
rule-based classifier using coherence membership functions.
Aydin et al. [4] proposed a boundary detection algorithm
using fuzzy decision tree that has been designed to detect
broken rotor bars and broken connector faults. Aurup and
Akgunduz [3] proposed a unique methodology to capture
user preferences from biological signals. Accordingly, the
preference experience data is uncertain or fuzzy if the engi-
neer explores product function with customer needs. Thus,
this article applies FDT for experience data classification.

2.4 User-centered design with user preference

Several points can be made about this proposed approach
and user preferences integration in the usual design process
as follows.

From the user-centered design viewpoint, a user model
with user preferences has been predicted using so-called
interactive human-centered approach. The human-centered
interaction design can produce a representation of the user
preferences using adaptive concept. The adaptive concept
can adjust user preferences to user requirement, but there
is not yet sufficient experience data about the user’s per-
sonal interests available. Thus, the user preferences need

123



Int J Interact Des Manuf (2016) 10:439–458 443

involving user experience in interactive design. Interactive
design applies artificial intelligence algorithm for prefer-
ences approaches with respect to reasoning among the user
experiences. The user experiences hencemay result in higher
usability of the product through recommendations, because
recommendations are based on the users’ previous prefer-
ences with interactions. The recommendation has to rely on
the past experiences of the users such as collaborative filter-
ing and content based filtering system. Collaborative filtering
focuses on make personalized predictions. The content-
based filtering methods focuses on information retrieval
systems using user-focused intelligent. For example, Netflix
or Amazon.com includes recommender systems by eliciting
preferences from the user model.

The user model with artificial intelligence predicts rele-
vance more accurately when the user preferences consist of
both new product design experience and new users expe-
rience. Accordingly, some literatures were discussed as
follows Serena et al. [44] proposed interactive mechani-
cal design that can be captured from the customers into
new quantitative specifications by user’s perceptual prefer-
ences. Kyriacos et al. [28] applied a data mining approach
to the investigation of users’ preferences in using inter-
active multimedia learning systems. The human-centered
interaction can apply into product design in enhancing
customer and engineer interactions with product usability.
But it may be time-consuming and complex, so it needs
integrate experience-based design that focuses on the impor-
tance of the experiential design optimization in order to
enhance human-centered interaction. In this paper approach,
dual experience-based design is based on both engineering
design and customer responses. The general framework for
dual experience-based design that applies to all customer
responses that can be experienced in user-centred design
through interaction.

Three elements of dual experience-based design are dis-
cussed: aesthetic experience, product usability experience,
and emotional experience. It explores both the customer
experience and engineer experience through emotional map-
ping and customer responses. The criteria of these experi-
ences fall into relationship between designer perspective (S)
and customer-centre design perspective (c) using the fuzzy
accuracy probability of the classification using S(S, C) algo-
rithm. Those in the classification make a direct contribution
to the user and designer experiences. Each attribute has three
values using RFM values in designer perspective (S). For
example: was the product easy to satisfy customer require-
ment?The criteria also concerns the product usability used by
the product’s designers, which directly affect the user experi-
ence. Product usability is the dimension of the user-centered
interactions that is affected by the customer’s experience.

Furthermore, the user’s preferences that are reasoned by a
recommendation can be user-centred interaction. It is neces-

sary to think carefully aboutwhat a user preference is andhow
to involve user preferences in the interactive design process
for product problem. To achieve the above-mentioned needs,
user preference elicitation is available method that extracts
preferences of a user experience in a product problem of
interactive design. Chen and Pu [14] proposed an overview
of existing systems that elicit user preferences. A user’s pref-
erences are user-centered design of preference elicitation
which is needed to create customer responses that are adapted
to dual experience-based design. Thus, this article proposes
a novel approach combining FDT into FCM as preference
elicitation in artificial intelligence method. The goal of pro-
posed approach is to explore a user’s preference in such a
way as to optimize product design experience for solving the
product problem. Our aim is intended to shed light on the
product mix-experience optimization for firm performance
using the relationship among engineering design perspective.
Thus, this paper proposes a dual experience-based interaction
for reasoning user preferences using product mix-experience
problems in product design.

Afshari and Peng [1] proposed innovative application
of big data analytics (BDA) to quantify the changes of
customers’ preferences during the life time of a product.
Uncertainty is inevitable in product design process.However,
dual experience-based design with the above-mentioned
these factors is uncertainty to identify the causal relationships
among them. Then, it aims at optimizing complex interaction
and experiential design system with imprecise relationships
while quantifying the performance impact of engineering
design efficiency for customer satisfaction. Thus, it is cru-
cial to enhance the accuracy of the user preference and dual
experiences.

By comparing customer-centre design perspective’s engi-
neer experience and designer perspective’s customer expe-
rience, this article explores two methods such as usability
algorithm, the normalized RFM.By evaluating value of engi-
neering design perspectives using AHP, we aim to evaluate
the relative importance of the casual impact in the FCM-
based system for engineering design perspectives. Then, by
constructing the inference process for engineer experience
and customer experience, we can predict new preferences for
a user with imprecise relationships to develop good quality
product design to both satisfy novelty design and customer
needs. It is well-thought out and well-executed interactive
design process

3 Fuzzy dual experience-based design approach

In this article, engineering design perspective is divided into
five factors by Liu and Boyle [31]: robust design, design
optimisation, design cognition factors (designer perspective)
and requirements management, and ergonomic design fac-
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Fig. 1 The procedure of fuzzy dual experience-based design approach

tors (customer-centre design perspective). Dual experience
based design (DEBD) is a new field of study. It explores both
the customer experience and engineer experience through
emotional mapping and customer responses. In such dual
experiences thinking, this article proposes two key-points as
follows. The first point aims at designer perspective’s cus-
tomer experience and customer-centre design perspective’s
engineer experience. The second point explores each value
of five factors based on both customer experience and engi-
neer experience consideration. The following paragraphs
describe six steps from these two key-points in the fuzzy dual
experience-based design process for integrating engineering
design perspectives with customer responses as shown in
Fig. 1. Furthermore, the case study and numerical example
will be demonstrated in Sect. 4. Then, the sensitivity analysis
will be proposed in Sect. 5.

The first step explores relationship between designer per-
spective and customer-centre design perspective using the

fuzzy accuracy probability of the classification. It is used to
form relationship among factors for constructingFCMgraph.
The next step is to formulate designer perspective’s customer
experience using RFM and then act on attributes’ value from
designer’s perspective on fuzzy accuracy probability of the
classification. The RFM represents customer behavior based
on designer perspective. Furthermore, theRFMcan be shown
in the relationship with engineer experience. The third step
is to formulate customer-centre design perspective’s engi-
neer experience using usability algorithm and then act on
class value of customer-centre design perspective in fuzzy
accuracy probability of the classification. The usability rep-
resents the user-centered interaction that is affected by the
customer’s experience. RFMand usability are composed into
customer responses. According to step 2 and step 3 of the
algorithm, this article obtains the casual relationship among
five factors and shows on S(S, C) (see Eq. (1)). The forth step
is to calculate values of five factors in engineering design
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Fig. 2 The generalization of
fuzzy sets

perspectives using AHP underlying two alternatives such as
engineer experience and customer experience. These values
act on input vector. Furthermore, the adjacency matrix of
FCMwill be constructed by S(S, C) and value of five factors
in fifth step. After constructing of the FCM, the sixth step is
used to simulate the inference process in order to improve
the performance impact of decision-making efficiency for
engineering design perspective using the numerical analy-
sis of FCM. After calculating in the sixth step, the output
vector will produce a change that affect these factors. These
effects can assess engineering design perspectives and cus-
tomer responses in dual experiential designoptimization.The
dual experiential design optimization result produces finally
fuzzy inference using the fuzzy membership function.

A fuzzy membership function method is a generalization
of the crisp values and fuzzy sets and is illustrated in Fig. 2.
As shown in Fig. 2, they are fed to construct fuzzy decision
trees.
The following steps describe six steps in detail:

Step 1. The relationship using fuzzy accuracy probability of
the classification and S(S, C) algorithm

In this article, engineering design perspective is incor-
porated using a composite measure of design dimensions
such as Designer perspective (robust design, design opti-
misation, design cognition) and customer-centre design
perspective (requirements management, ergonomic design).
More specifically, the designer perspective has not been fully
addressed in customer-centre design perspective studies.
Accordingly, the relationship between designer perspective
and customer-centre design perspective is to address to what
extent designer perspective impacts upon the various fac-
tors of customer-centre design perspective. In this article,
I defined a fuzzy classification accuracy rate (S(S, C)) as
the degree of relationship between designer perspective and
customer-centre design perspective, which attributes to the
relationship among factors for constructing FCM graph in
the step 5. The engineering design perspective served as the
dependent variables. The engineering design perspective per-
ception was measured by fuzzy data. Zadeh [52] introduced

fuzzy set theory to illustrate the fuzzy phenomena occurring
in cognitive process.

We define a fuzzy classification accuracy rate (S(S, C)) as
the good degree of engineering perspective in Eq. (1), which
is attributed to a composite measure of design dimensions
[50].

Definition 1 Given the fuzzy data, the accuracy probability
of the classification can be defined as

S (S,C) = M (S ∩ C)

M (S)
=

∑
x∈U min (US (x) ,UC (x))

∑
x∈U (US (x))

(1)

The accuracy probability of the classification method is
designed for classification problem with attributes and
classes represented in fuzzy linguistic terms. It uses fuzzy
linguistic method. The fuzzy subset hood S(S, C) measures
the degree with the accuracy probability of the classification
in which S (attribute) is a subset of C (class). Before giving
the definition, we denote the following symbols:

U (X) is the family of all fuzzy subsets defined on X , and
the cardinality measure of a fuzzy subset. X is given finite
data of U (X).

S = Designer perspective, C = Customer-centre design
perspective

S is defined by themembership of a fuzzy subsetUS which
takes values in the interval [1, 0] in a universe of U (X). For
x ∈ U, US (x) = 1 means that x is definitely a member of
S andUS (x) = 0 means that x is definitely not a member of
S, S is a crisp set.

M (S) = ∑
x∈U S (x), probability summation for S

M (S ∩ C) =
∑

x∈U
min (US (x) ,UC (x)) (2)

The intersection S ∩ C is defined by probability summation
for S and C .

Step 2. Designer perspective’s customer experience using
RFM
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The RFM values are defined as follows: R measures how
long since customers use products. F measures how fre-
quently they use products; andM measures howmuchmoney
they spend. RFM relies on three customer behavioral vari-
ables tofindvaluable customers and further develop customer
experience. The customer experience consists of how long
since the last purchase by a customer, how often the customer
purchases and howmuch the customer has bought. Thus, this
research builds customer responses models using RFM vari-
ables integrated with the fuzzy decision tree model. Owing
to consideration of both engineer experience and customer
experience, RFM would be involved into designer perspec-
tive in fuzzy decision tree model. RFM also becomes values
of the attribute for designer perspective and is described as
follows.

The good degree of engineering design perspective (EDj )

is described by a collection of the attributes of designer
perspective for product

(
sq

)
. This attribute gets one of the

mutually exclusive values Vq = {
Vq1, . . . , Vqz

}
from the

product design experience, and each process node is clas-
sified into only one of the mutually exclusive data C j ={
C j1, . . . , C jm

}
from customer perspective data. The engi-

neering design perspective formulation could be represented
as follows:

EDj : the good degree of engineering design perspective
for product j

Sq = {
S j1, . . . , S jq

}
: attribute of the good degree of

Designer perspective for product, where q is the attribute
of the product j

Vq = {
Vq1, . . . , Vqz

}
: values of the attribute, where Z is

the value of the attribute item q
C j = {

C j1, . . . ,C jm
}
: customer perspective class for

engineering perspective, wherem is the customer experience
of the product j

The vague data expressions in the good degree of engi-
neering perspective from Eq. (1) are illustrated in Table 1.
For example, the probability ascertained for the attribute
“Robust design” is between 0 and 1 of fuzzy values. It lists
the Designer perspective (S) for customer perspective.

Designer perspective (S) has three attributes:

S = {Robust design, Design optimisation, Design cognition},

Each attribute has three values using RFM values. The RFM
valueswere normalized as follows fromprofit-oriented view-
point separately in Eq. (3). The RFM values of each cluster
were normalized, and denoted as R′, F ′, M ′.

R′ = (
R−Rs) /

(
RL−RS

)
, R′ = (

R − Rs) /
(
RL−RS

)
,

R′ = (
R − Rs) /

(
RL − RS

)
(3)

where R′ and R represent the normalized and original values,
RL represents the largest value of all numbers, RS represents
the smallest value of all numbers.

Their superscripts of the F and M are the same as for the
definitions of R.

They can be numbered as one Eq. (4).

(
Vq1

)
Robust design = {

recent
(
R′) , frequency

(
F ′) ,

money
(
M ′)} ,

(
Vq2

)
Design optimization = {

recent
(
R′) ,

frequency
(
F ′) , money

(
M ′)} ,

(
Vq3

)
Design cognition = {

recent
(
R′) ,

frequency
(
F ′) , money

(
M ′)} (4)

The customer perspective has twoclasses including “Require-
ments management,” and “Ergonomic design” as follows.

(
C jm

)
customer perspective

= {Requirements management, Ergonomic design}

Their values act as sources of data in attribute of the good
degree of Designer perspective within Eq. (1).

Step 3. Customer-centre design perspective’s engineer expe-
rience using usability algorithm

Some studies already discussed product usability as fol-
lows. The techniques of product usability did not aim to
appeal to the user’s emotional or experiential needs [6].
Chamorro-Koc et al. [9] proposed principles addressing dif-
ferences between users’ and designers’ concepts of product
usability. Product usability is the dimension of the user-
centered interactions that is affected by the customer’s
experience. Thus, considering some parameters by Sarkar
and Chakrabarti [42] in this article, the modified usefulness
item assessment is shown in Eq. (5):

Usefulness (U) = Level of importance (Lu)

∗ Rate of popularity of use (Ru)

∗ Frequency of usage (F1)

∗ Duration of use per usage (Du)

∗ Benefit of use (Bu) (5)

In this Eq. (5), this article adds “Benefit of use” usefulness
item assessment. Indications about the purpose of usabil-
ity connected to user–product interaction are presented in
Table 1.

These usefulness items assessments are described as
follows:

Level of importance (Lu): The level of importance
constructs a decision-making method with weight values
to generate the relative importance of different priority
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Table 1 Indications of usability

Indicator Usefulness item Formulation

The number of times used Rate of popularity of use (Ru) Ru = Useful times of use/the number of times used

Useful times of use

Duration of use Frequency of usage (F1) F1 = The number of times used/duration of use

The number of times used

Duration of use Duration of use per usage (Du) Du = Duration of use/large period of use

Large period of use

Degree of ease of use Benefit of use (Bu) Bu = Degree of efficiency of use/degree of ease of use

Degree of efficiency of use

mixes. This determines the weight of each decision element
using eigenvalue computations to derive the weights of the
level of importance using AHP (analytic hierarchy process).
AHP could solve complex decision-making system prob-
lem involving multiple attributes by constructing hierarchy
to the goal, attribute and alternatives [40]. These variables
are expressed in the form of a pair-wise comparison matrix
by expert choice software. The Expert Choice (http://www.
expertchoice.com) is used to obtain the decision into criteria
and alternatives by a computer software package for AHP
method. By applying Romijn and Albaladejo [38] method,
this article uses a five-point scale to represent the degree of
novelty of product innovations asweight values for AHP pro-
cedure. They act as values of the level of importance and are
described as follows:

I5: Fundamentally new to the world (disruptive degree of
novelty)
I4: Similar innovations adopted in other industries (high
degree of novelty)
I3: Similar innovations adopted in firm’s own industry
(competitive degree of novelty)
I2: Same or very similar innovations adopted by competi-
tors (normal degree of novelty)
I1: No major innovations at all (low degree of novelty)

The AHP method was used to determine the relative
importance of the degree of novelty of product innovations
variables, I1 ∼ I5 in Fig. 3. The AHP data was gathered
by interviewing the evaluators using a questionnaire with the
scale importance such as 1 (equally), 3 (weak), 5 (strong) and
7 (extreme). This determines the weight of each decision ele-
ment using eigenvalue computations to derive the weights of
the I1 ∼ I5. As to how important the use of a product depends
on the impact of RFM for this article. Thus, three alternatives
were invited to evaluate the relative importance of the R, F,
and M variables.

Rate of popularity of use (Ru): It should be considered
more useful than those that are used by less number of people.

Frequency of usage (Fu): Frequency of usage of a prod-
uct is the number of times the product is used in duration.

Duration of use per usage (Du): Products that are used
for a larger period should be considered more useful to the
usability,

Benefit of use (Bu): Products that are used for degree of
ease usability should be included degree of efficiency. Effi-
ciency of usemeans that product uses less resource to provide
the same service. The ease of use is the ability of usability
to easily perform a function with a product. Its measurement
degree value is assigned to 1–10. The higher value of degree
is, the better the benefit of use is.

The above-mentioned usability should be considered inte-
grated into customer-centre design perspective in fuzzy
decision tree method. Their values act on source of data
for requirements management and ergonomic design class
within Eq. (1). Furthermore, after calculating values from
steps 2 to 3, we can obtain S(S, C) using Eqs. (1) and
(2). For example, it used Eqs. (1) and (2) with data of
Table 2, S(Robust design = R′, Requirements management)
= P(Robust design = R′ ∩ Requirements management)/
P(Robust design = R′) = 0.3+0.2+0.3

0.3+0.5+0.6 = 0.57.
As result using averagemethod for data no#1: S (S1, C1)=

S(Robust design, Requirements management)= (0.57 +
0.89 + 0.67)/3 = 0.71.

Step 4. Evaluating value of engineering design perspectives
using AHP

The engineering design perspective is particularly atten-
tive to decision models that rely on the trade-off based on
weighted criteria to determine a relative ranking. This deter-
mines the weight of each decision element using eigenvalue
computations to derive theweights of these variables byAHP
method. The AHP is relatively subjective-based important
assessment among the alternative approaches. The relatively
important assessment among the alternative creates the pair-
wise comparison matrix.

This article constructs three levels for evaluating the best
value of each perspective in engineering design perspec-
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Fig. 3 The degree of novelty of
product

Table 2 The fuzzy data for product #1(j = 1)

Data no. S = Designer perspective (attributes) C = Customer-centre design perspective (classes)

Robust design Design optimization Design cognition

R′ F ′ M ′ R′ F ′ M ′ R′ F ′ M ′ Requirements management Ergonomic design

1 0.3 0.4 0.6 0.7 0.6 0.5 0.5 0.4 0.6 0.5 0.3

2 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.2 0.4

3 0.6 0.2 0.4 0.7 0.4 0.5 0.5 0.7 0.6 0.3 0.3

Fig. 4 AHP for engineering
design perspectives

tives in the Fig. 4. Level 1 is the goal of engineering design
perspectives to decide the best value of each perspective.
Level 2 is divided into two domains (designer perspective
and customer-centre design perspective) consisting of five
attributes (factors) according to engineering design perspec-
tives. Level 3 contains of two decision alternatives such as
engineer experience and customer experience that affect the
best selection of the goal. The five attributes were invited to
evaluate the relative importance of the casual impact in the
FCM-based system for engineering design perspectives.

According to calculated value of level 2 attributes using
Expert Choice software,we obtain these values of factors that
they were used to act on initial value for designer perspective
and customer-centre design perspective in FCM. These val-
ues of factors also form input vector. In order to describe the
fuzzy degree of these factors, it is possible to use fuzzy lin-
guistic terms using fuzzy membership function. It is applied
for measuring the value and categorizing the priority such as
H (high), M (medium) and L (low) in the Fig. 5.

Step 5. Construct FCM graph
In this article, systematic approach for inference process

using FCM is evaluated with casual relationship impact
on decision making. The FCM illustrates inference process
on how to construct dual experience-based design model
and integrate design perspectives into customer responses
with fuzzy casual relationship for the linkages among engi-
neering perspective factors such as designer perspective
(robust design, design optimisation, design cognition) and
customer-centre design perspective (requirements manage-
ment, ergonomic design). Fuzzy casual relationships link
factors to each other and they formulate the adjacency matrix
from S(S, C) according to steps 1, 2 and 3.

This step exploited the adjacency matrix representation of
fuzzy cognitive maps. To identify the factors relevant to the
dual experience-based design model, S(S, C) should be built
and then analysed. Furthermore, a fuzzy casual model based
on the factor data elicited from RFM and product usability
algorithm includes dual experiences for engineer and cus-
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H x<b 0 
b<x<c y=dx-e
x>c 1

M x<a 0 
a<x<b y=fx-g 
b<x<c y=-hx+i 
x>c 0 

L x<a 1
a<x<b y=-jx+k 
x>b 0 

0 a b          c        x

L M H 
1

y

Fig. 5 Fuzzy membership function

tomer using FCM,which describes the relationships between
these factors. Based on this result of interrelationship matrix
by this above-mentioned result from S(S, C), we can build
the fuzzy causal relationship to gain initial version adja-
cencymatrix of FCM. The initial version of adjacencymatrix
can be converted into following refined values between 0
and 1.

Step 6. The inference process for engineer experience and
customer experience

After constructing the FCM, this step is used to simu-
late the inference process underlying two alternatives such
as engineer experience and customer experience in order to
improve the performance impact of decision-making effi-
ciency for engineering design perspective using the numer-
ical analysis of FCM. Based on the five factors of both
designer perspective and customer-centre design perspec-
tive, it describes the input vectors separately from the two
alternatives (see step 4). Based on the S(S, C), it describes
the adjacency matrix of FCM (see step 5). In addition, the
adjacency matrix can be used usefully for changes of mul-
tiple factors. Therefore multiplying this input vector with
adjacency matrix, the inference process can obtain out-
put vector. Once the factor values of the input vector are
changed, the output vector may result in changes of per-
spective value. The factors affect each other. In a word,
each value of perspective in engineering design perspective
will affect other value of perspective through the relation-
ships between these perspectives. This effect indicates how
to explore dual experience-based design approach through
understanding relationship among engineering design per-
spectives based on customer responses. It aims to develop
good quality product design to both satisfy novelty design
and customer needs through dual experiences such as engi-
neer and customer experiences.

4 Case study and numerical example

Case study and numerical examples are presented to illus-
trate the proposed model and the sensitivity analysis with
five perspectives in the optimal solutions with respect to
parameters of the system is also carried out. A case study
concerns product design using a consumer electronic prod-
uct such as notebook computer or smart phone. Experience
observations, interviews, and questionnaires were conducted
to complete dual experience decision case that provides
really valuable response to capturing consumer behavior
and feelings. With a decision case solved, it is then cap-
tured as a training case and subsequently stored to the
experience decision database. To validate the applicability
for the proposed model, historical product design and cus-
tomer responses cases were identified for each perspective
to support the evaluation process, for simplicity the cases
use ten datasets under five evaluated measure KPIs (key per-
formance index). These KPIs includes robustness for robust
design, repurchase for design optimization, RMA for design
cognition, accepted function item for requirements manage-
ment, customized function item for ergonomic design. The
robustness is to represent the ability of product reliability
under reducing performance variability based on the same
environment. Thus, its measurement was defined as “used
numbers successfully based on total used numbers” fromcus-
tomer experience. Design optimization is early considered
trade-offs between product resources such as cost, function,
manufacturability and quality for performance in the prod-
uct design process. Thus, its measurement was defined as
“re-purchase quantity based on product duration” from cus-
tomer experience. Design cognition focuses on the cognitive
behaviour of designers behind design problems and how they
are solved. Thus, its measurement was defined as “RMA
quantity based on produced order” from customer experi-
ence. Requirements management is the transformation that
it transfers customer requirements into functional require-
ments to guide the development of the design solutions.
Thus, its measurement was defined as “accepted function
item based on all product function item” from engineer expe-
rience. Ergonomic design is recognized as human needs in
order to optimize their well-being and overall system per-
formance [17]. It aims to support effectively the customized
design of products in higher customer satisfaction according
to the design engineer’s judgment. Thus, its measurement
was defined as “customized function item based on all prod-
uct function item” from engineer experience. According to
the above-mentioned five evaluated measure groups with ten
datasets, this section presents numerical analysis and appli-
cation evaluation according to six steps in Fig. 1 as follows.
Step1.Define relationship amongperspectives using S (S,C)

According to Eq. (1), it measures the classification prob-
ability of the mapping attributes (design perspectives) which
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belong to a certain class (customer-centred design perspec-
tive), and it replaces the traditional decision tree entropy
with the accuracy probability of classification. The result is
described as follows.

Sq = {
S j1, . . . , S jq

} = {Robust design (q = 1), Design
optimization (q = 2) , Design cognition (q = 3)}

C jm = {
C j1, . . . ,C jm

} = {Requirements manage-
ment (m = 1) , Ergonomic design (m = 2)}

S (S1, C1) = {S(Robust design = R′, Requirements
management) + S(Robust design = F ′, Requirements man-
agement) + S(Robust design = M ′, Requirements manage-
ment)}/3

S (S1, C2) ={S(Robust design = R′, Ergonomic design)
+ S(Robust design = F ′, Ergonomic design) + S(Robust
design = M ′, Ergonomic design)}/3

S (S2, C1) = {S(Design optimization = R′, Requirements
management) + S(Design optimization = F ′, Requirements
management) + S(Design optimization =M ′, Requirements
management)}/3

S (S2, C2) = {S(Design optimization = R′, Ergonomic
design) + S(Design optimization = F ′, Ergonomic design)+
S(Design optimization = M ′„ Ergonomic design)}/3

S (S3, C1) = {S(Design cognition =R′, Requirements
management) + S(Design cognition =F ′, Requirementsman-
agement)+ S(Design cognition = M ′„ Requirements man-
agement)}/3

S (S3, C2) = {S(Design cognition = R′, Ergonomic
design) + S(Design cognition = F ′, Ergonomic design)+
S(Design cognition = M ′„ Ergonomic design)}/3

Step 2. Calculate values of designer perspective using nor-
malized RFM

According to these results from step 1 of Sect. 4, this step
2 will calculate R′, F ′, M ′. Before calculating these results,
this case study collected RFM data in Table 3 according to
three evaluatedmeasure groups [robustness for robust design,
repurchase for design optimization, RMA (return materials
authorization) for design cognition]. The Table 3 comes from
simulated consumption of notebook computer product by
referring to commerce transaction records. These raw data
in Table 3 were divided into 10 sets. Each set has different
sales number of product to represent different consumption
groups. The case study adopts three different design roles
according to the above-mentioned five KPIs. Thus, the three
designers allocated the largest and smallest RFM values into
three groups by expert experience method according to these
KPIs. The three groups also decide largest and smallest RFM
values according to design perspective, respectively. Table 3
presents the ten sets with the corresponding number of con-
sumer electronic product usage for R, F and M values from
customer responses. The last row also shows the overall aver-
age for all numbers.
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Table 4 The normalized RFM
Sets Robust design Design optimisation Design cognition

R′ F′ M′ R′ F′ M′ R′ F′ M′

1 0.43 0.50 0.08 0.71 0.67 0.05 0.57 0.60 0.01

2 0.18 0.25 0.60 0.50 0.33 0.32 0.53 0.60 0.58

3 0.50 0.75 0.79 0.50 0.50 0.57 0.35 0.50 0.54

4 0.82 0.67 0.14 0.44 0.33 0.13 0.50 0.43 0.40

5 0.50 0.10 0.51 0.44 0.22 0.54 0.91 0.50 0.51

6 0.50 0.64 0.62 0.50 0.29 0.38 0.69 0.58 0.72

7 0.83 0.11 0.20 0.58 0.38 0.53 0.90 0.44 0.83

8 0.50 0.60 0.68 0.33 0.40 0.21 0.35 0.40 0.64

9 0.33 0.46 0.33 0.50 0.50 0.45 0.57 0.57 0.74

10 0.63 0.40 0.38 0.55 0.33 0.31 −0.70 0.13 0.87

Fig. 6 Calculated ∼ result

Next, the normalized RFM values of each set are calcu-
lated and shown on Table 4 according to Eq. (3) and Table 3
for R′, F ′, and M ′.

Step 3. Calculated values of customer-centred design per-
spective using usability algorithm

According to step 3 of Sect. 3, this step will calculate val-
ues of customer-centred design perspective based on Eq. (5)
and Table 4 from case study data. Firstly, Level of importance
(Lu) is calculated by AHP in Fig. 3. The study distributed a
total of 3 copies of the questionnaire according to this AHP
for the degree of novelty of product with RFM alternatives.
Figure 6 is the result calculated by performed Expert choice
software.

Secondly, this step calculated values of customer-centre
design perspective for requirements management and
ergonomic design using usability algorithmaccording to case
study data. The data of level of importance (Lu) in Table 5
was assumed by AHP calculated result in Fig. 6. Thus, the
data of U in Table 5 was calculated by Eq. (3).

The I1 ∼ I5 result are adopted by different level of impor-
tance (Lu). Their values in Table 5 act as source of data
for requirements management and ergonomic design class
within Eq. (1). Finally, after calculated values from step 2
and step 3 of this section, we can obtain S(S, C) in Table 6
using Eqs. (1) and (2).

Step 4. Evaluating own value of engineering design per-
spectives

According to step 4 of Sect. 3, this step calculated value
of level 2 attributes for Fig. 4. These values are adopted by
FCM graph and initial input vector. The study defined and
distributed a total of 30 copies of the questionnaire according
to Fig. 5. The 28 copies were valid because of the other 2
copies caused data missing. Figure 7 is the result calculated
by level 2 attributes of AHP in Fig. 4. Then, Fig. 7 is the result
calculated by performed Expert choice software. According
to the result of the calculation in Fig. 7 using expert choice
software, the AHP objective of the relative weights of the
two alternatives in Fig. 4 is 0.833 (customer experience) and
0.167 (engineer experience), respectively.

Step 5. The adjacency matrix for FCM
According to the result of Table 6, Fig. 8 shows fuzzy

casual relationships represented FCM graphic and forms ini-
tial version of adjacency matrix W .

Step 6. The inference for engineering design perspective
According to step 4 of Sect. 3, these values of factors

also form input vector. I assume an inference vector which
is defined as a vector showing a set of input or output values.
By referring to Fig. 8, the adjacency matrix can be used for
clearly measuring the effects resulting from change of multi-
ple factors. Suppose that some factors are changed based on
the value of level 2 attributes for Fig. 4, the input vector may
be obtained as follows:

Input vector: [0.244, 0.121, 0.268, 0.146, 0.221]
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Table 5 Values of
customer-centre design
perspective

Sets Requirements management Ergonomic design

(Lu) (Ru) (F1) (Du) (Bu) (U) (Lu) (Ru) (F1) (Du) (Bu) (U)

1 0.015 0.86 0.65 0.67 9.00 0.05 0.181 0.71 0.68 0.73 8.00 0.51

2 0.181 0.87 0.82 0.73 7.00 0.66 0.221 0.89 0.80 0.73 5.00 0.57

3 0.221 0.93 0.83 0.80 6.00 0.81 0.221 0.90 0.77 0.67 4.00 0.41

4 0.181 0.62 0.88 0.73 5.00 0.36 0.354 0.72 0.81 0.80 5.00 0.83

5 0.181 0.74 0.61 0.83 7.00 0.47 0.23 0.42 0.72 0.80 6.00 0.33

6 0.181 0.61 0.52 0.73 9.00 0.38 0.23 0.84 0.64 0.80 8.00 0.80

7 0.221 0.60 0.45 0.87 9.00 0.46 0.221 0.85 0.88 0.67 5.00 0.55

8 0.354 0.49 0.57 0.77 8.00 0.60 0.23 0.73 0.74 0.77 3.00 0.44

9 0.181 0.85 0.67 0.80 7.00 0.58 0.181 0.78 0.76 0.87 6.00 0.56

10 0.230 0.91 0.79 0.80 5.00 0.66 0.221 0.59 0.85 0.87 6.00 0.60

Table 6 Values of S(S, C)
Values Requirements management (m = 1) Ergonomic design (m = 2)

Robust design (q = 1) S (S1, C1) = 0.808 S (S1, C2) = 0.858

Design optimization (q = 2) S (S2, C1) = 0.871 S (S2, C2) = 0.915

Design cognition (q = 3) S (S3, C1) = 0.768 S (S3, C2) = 0.840

Fig. 7 Values of engineering design perspectives

Fig. 8 FCM for engineering design perspective

Therefore multiplying this input vector with adjacency
matrix, we can obtain an output vector as follows:

Output vector: [0, 0, 0, 0.51, 0.55]
The values of output vector have no range. According to

FCM algorithm, we define the values were favorable when

they are larger than 0.5. In a word, the higher the values of
output vector, the better the effectiveness. From the above
calculated result, the output vector may be interpreted such
that change in those factors including engineering design
perspective affect requirements management by 0.51 and
ergonomic design by 0.55. Therefore, we can conclude that
changes of five factors may affect the requirements manage-
ment and ergonomic design most favorably (> 0.5) for this
case study. Furthermore, this result presents effectiveness of
engineering design perspective both using customer expe-
rience and engineer experience by adjacency matrix. The
adjacency matrix shows that the variation of some factors
causes an effect on other factors with regarding to the effec-
tiveness of engineering design perspective.

In order to describe the degree of these factors, it is pos-
sible to use fuzzy linguistic terms with fuzzy membership
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function in Table 7. It is applied for measuring the value and
categorizing the priority such as H (high), M (medium) and
L (low) in the Fig. 5. It is possible to find the input vector
that leads to the highest effectiveness of engineering design
perspective in Table 7. As an example of the five KPIs, H
(high), M (medium) and L (low) were generated as shown
in Table 7. According to the selected KPIs in Table 7, we
calculate H, M and L by formula in Fig. 5 using the survey
data of this case study.

By referring to Table 7, the three input vector categories
such as H, M and L may be obtained as follows:

Input vector (H): [0, 0.43, 0.16, 0, 0]
Input vector (M): [0.2, 0.56, 0.85, 0.5, 0.25]
Input vector (L): [0.2, 0, 0, 0.5, 0.75]

Therefore multiplying this input vector with adjacency
matrix, we can obtain an output vector as follows:

Output vector (H): [0, 0, 0, 0.5, 0.53]
Output vector (M): [0, 0, 0, 1.3, 1.4]
Output vector (L): [0, 0, 0, 0.16, 0.17]

From the above calculated result, the output vector may be
interpreted such that change in those factors including H
degree, M degree, L degree affect requirements manage-
ment by 0.5, 1.3, 0.16 and ergonomic design by 0.53, 1.4,
0.17. Therefore, we can conclude that changes of fuzzy lin-
guistic terms may affect the requirements management and
ergonomic design in M degree (1.3 and 1.4 > 0.5) most
favorably. This result leads to the great effectiveness of engi-
neering design perspective when it focuses on the priority
of medium degree based on five evaluated measure KPIs for
this case study.

5 Evaluation and sensitivity analysis

However, there are fewmodels considering not only ambigu-
ous situations but also customer experience and engineer
experience, simultaneously. Therefore, in this section, we
consider product mix problems to take several fuzzy logic
and engineering design perspective into account. This eval-
uation addresses a linear programming model of the product
mix-experience problem considering the proposed approach
performance. The purpose of this evaluation is to help the
proposed approach validate the total performance mode
selection problem. Maximizing the total profit and fully
utilizing the relationship among engineering design per-
spective are a key optimization problem in the product-mix
of dual experiences. In the same time, another major dif-
ficulty is how to optimize the total revenue for selling
product values and experience’s values within the influence Ta
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of each perspective for engineering design perspective. The
experience’s values by customer-centred design perspective
indicate value-added product to add sale revenue. Accord-
ing to the above-mentioned two optimization results in the
product mix optimization problem, fuzzy dual experience-
based design involves the relative importance of the influence
of each perspective and dual experiences to meet customer
needs and the best total profit. This section discusses how
R&D cost, design quality, and market capital should affect
market share. The market share should affect profitability
using measures of economic returns such as total profit. In
design quality, this proposed approach adopts the influence
value of designer perspective to evaluate its performance.
The total profit is constructed using a methodology that
maximizes the relationships among engineering design per-
spectives.

5.1 The formulation of product mix-experience
problems considering engineering design perspective

Here, we describe the non-linear programming (non-LP) for-
mulation for the product mix-experience problem.

Firstly, we introduce the following decision variables and
parameters

x j : amount of production to new product j
q j : market price of new product j
r j : experience’s value of new product j with each per-
spective
akj : coefficient of product j in constraint k; i.e., capacity
constraint,
bk : maximum values of right hand side in constraint k
Dj : maximum demand of all new product j

Secondly, we mainly focus on maximizing the total revenue
of market and value of experience under several constraints
in production processes and new product development. This
problem is equivalent to a non-linear programming problem
inmathematical programming. The non-linear programming
problemwill be transferred into linear programmingwhen r j
is constant. Therefore, we efficiently find an optimal solution
by using linear programming approaches such as Simplex
method. Generally, a basic model of product mix-experience
problemmaximizing total revenue (TR) and experience value
is formulated as follows:

(T R) Maximize
n∑

j=1

(
r j + q j

)
x j (6)

subject to
∑n

j=1 akj x j ≤ bk, k = 1, 2, . . . ,m, j =
1, 2, . . . , n, 0 ≤ x j ≤ Dj

where, r j = f (RMi ) = ci + di ln(RMi ), i=low, medium,
high

RMi is the influence value of requirement management
perspective for different fuzzy membership function with
low, medium, high from output vector.

Then, TR for all products will be obtained as:

(T R) Maximize
n∑

j=1

(
(ci + di ln (RMi )) + q j

)
x j (7)

where ci and di are the constants
Thirdly, a significant void exists in current models of

market share because of the market capital incorporates
constructs related to product design. Total cost (TC) is by
defining and discussing the links between R&D cost, market
capital, and design quality formarket share in Eq. (8).Market
share can be gained by attracting customers with preferences
more distant from the target market.

TCt = R&D cost + market capital + design quality (8)

By using themethods ofHayashi and Inoue [23], it is possible
to show that themarket and R&Dvalue for capital aggregator
can be written as follows in Eq. (9):

R&D cost + market capital = �
(
A jt , K jt

)

= A jt + γ j K jt (9)

where A jt is the jth market capital on the time t ,
where K jt is the jth R&D capital on the time t ,
where γ j is a premium or discount for the R&D K jt .

The capital aggregator is regarded as correlation with
R&D cost and market price as shown in Eq. (10):

γ j = f (ED) = gi + hi ln (EDi ) , i = low,medium, high

(10)

where gi and hi are the constants.
EDi is the influence value of engineering design per-

spective for different fuzzy membership function with low,
medium, high from output vector.

Fourthly, after discussing above-mentioned R&Dcost and
market capital, we will further describe design quality as fol-
lowing. Of particular interest in this study is the extent to
which various dimensions of the product mix may interact to
produce differential impacts on design quality using design
perspective. Design quality (DQi j ) is defined as the extent to
which quality is designed into the product mix. Design qual-
ity affects the competitiveness of a product mix to decrease
design time and cost. Therefore, it is important to get new
products to market faster for capturing larger market share.
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In this section, design quality is incorporated using a com-
posite measure of design perspective such as robust design,
Design optimisation and Design cognition. After discussing
above-mentioned design quality, we will gain total cost as in
Eq. (11).

TCt =
n∑

j=1

�
(
A jt , K jt

)/
DQi j , i = low, medium, high

(11)

where, DQi j = the influence summary value of Robust
design, Design optimisation andDesign cognition from input
vector for low, medium, high.

Finally, calculate total profit: TR-TC.

5.2 Numerical analysis

Numerical examples are presented to illustrate the proposed
model and the sensitivity analysis for three cases with H, M
and L mode in the optimal solutions with respect to parame-
ters of the system is also carried out. We consider numerical
examples adopted from the data in the study of consumer
electronic product firms. The example of Tables 8 and 9
for three products attempts to show how results are brought
for solving various cases in product mix-experience decision
problems in multiple-critical case according to Eqs. (5)–(9).
In this case study, we collect that three product types #1,
#2 and #3 that are produced in seven different production
capacity (k = 1, 2, 3) from b1 to b3, each resource of which
has 180, 300 and 240 upper capacity. From Tables 8 and 9,
the basic product mix-experience decision problem of linear
programming model is given as the following.

Maximize (2.93 + 3)x1 + (1.45 + 3.5)x2 + (1.98 + 2)x3

subject to 2 ∗ x1 + 1 ∗ x2 + 1 ∗ x3 ≤ 180

1 ∗ x1 + 3 ∗ x2 + 2 ∗ x3 ≤ 300

2 ∗ x1 + 1 ∗ x2 + 2 ∗ x3 ≤ 240

Once finished the above-mentioned EDi , we can calcu-
late TCt ($461,970.51) from Eq. (10). Finally, we solve this
product mix-experience problem and obtain its optimal solu-
tion and the maximum level of total profit ($246,029.49).

5.3 Sensitivity analysis

There are three alternatives feasible optimal solutions of the
proposed model in product mix-experience based on differ-
ent assumption of variables. Sensitive experiment analyses
the results for three different cases based on fuzzy member-
ship function for engineering design perspective. The results
are analysed illustrating the most likely profit, design quality Ta
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Table 9 Assumed production
capacity

(k,j) akj

(1,1) 2

(1,2) 1

(1,3) 1

(2,1) 1

(2,2) 3

(2,3) 2

(3,1) 2

(3,2) 1

(3,3) 2

and the influence of engineering design perspective. Next,
we study the sensitivity of the optimal solution by chang-
ing the values of the different parameters such as RMi and
EDi associated with the proposedmodel on the optimal total
profit. Applying the fuzzy product mix-experience with pro-
posed approach yields the results in Table 10. The results
obtained for illustrative three different cases provide certain
insights about the product mix-experience problem studies.
Some of them are described as in Table 10.

(a) Increasing the degree of fuzzy membership function
will result in an increase in the optimal total profit for design
quality. For example, total profit of case 2 is larger than case
1 and 3 because of the higher degree of fuzzy membership
function such as both H (0.86) and M (1.33) degree. In case
3, the negative total profit is produced because that L value of
design quality is too small (0.1). In this proposed approach,
design quality is incorporated using a composite measure
of designer perspective such as robust design, design opti-
misation and design cognition. Thus, we find that designer
perspective affects total profit.

(b) Increasing the sum value of r j will result in an increase
in the optimal total profit. For example, case 3 has the larger
total profit because of the larger sumvalue of r j (7.56). In this
articles, r j is experience’s value of new product j within the
determined the influence of engineering design perspective.
Thus, we find that dual experiences affect total profit. If the

0
0.5

1
1.5

2
2.5

H M L H M L H M L

NT$0.00
NT$100,000.00
NT$200,000.00
NT$300,000.00
NT$400,000.00
NT$500,000.00
NT$600,000.00
NT$700,000.00
NT$800,000.00
NT$900,000.00

case1 case2 case3

-NT$100,000.00
NT$0.00

NT$100,000.00
NT$200,000.00
NT$300,000.00
NT$400,000.00
NT$500,000.00
NT$600,000.00

1 2 3

RM
ED
DQ

TC
TR

TP

Fig. 9 TP with respect to engineering design perspective for cases #1,
2, and 3

dual experiences have good design quality, then it obtains
higher total profit.

(c) The influence of RMi and EDi are very sensitive to
DQi j when the degree of fuzzy membership function fluc-
tuates based on the optimal total profit.

The relevant values and relevant costs after considering
different degree H, M, L and design quality are shown in
Fig. 9. In summary, the rank of total profit will be case 2,
case 1 and case 3, respectively. The design quality for the
sum of degree H, M, and L for all case will be 2.25, 5.03, and
1.2, respectively. Thus,wefind that degreeMhas larger effect
for total profit in this numerical analysis. The product mix-
experience for case #2 should be emphasized by expected
producing total cost of $223,724 and resulting in the total
profit of $541,035. The degree L for case #1, #2 and degree

Table 10 the sensitivity of the optimal solution

Case#(t) Degree i #1 H #1 M #1 L #2 H #2 M #2 L #3 H #3 M #3 L

RMi 0. 5 1.3 0.16 0.74 1.08 0.61 0.65 1.71 0.08

EDi 0.53 1.4 0.23 0.78 1.15 0.67 0.69 1.83 0.08

r j $2.93 $1.45 $1.98 $2.97 $1.13 $3.46 $2.96 $1.91 $1.22

DQi j 0.59 1.61 0.2 0.86 1.33 0.8 0.8 2.09 0.1

TCt $461,970.51 $223,724 $735,529.77

T Rt $708,000 $764,760 $667,440

Total profit (TP) $246,029.49 (sum of r j=6.36) $541,035.00(sum of r j=7.56) −$680, 89.77(sum of r j = 6.09)

Rank of total profit for all 2 1 3
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H for case #1 may not be beneficial for having the dual expe-
riences design efficiency in product mix-experience solution.

6 Conclusion

Both the engineer’s experience and customer’s experience
for dual experiences are important in delivering quality
user-centred product design. This article proposes a new
novelty method combining FDT into FCM. The sensitivity
analysis concluded that the dual experiences in experiential
design create a compelling customer responses and aid in
the product design of a high quality interaction. This article
proposes the utilization of the fuzzy causal characteristics of
FCM and inference mechanism as the underlying approach
in order to generate an engineering perspective of interac-
tion performance impact. Furthermore, an evaluation for the
design quality to help defining a product mix-experience
was presented. This evaluation considers the degree of fuzzy
membership function used for influence value of engineer-
ing design perspective. It was used to define a product
mix-experience problemwith dual experiences and each per-
spective. For practical purposes, this problem can find the
optimal total profit of the design quality of product design
considering the relationship between market price and expe-
rience’s value of new product for production. Our findings
also provide a preliminary indication of trade-offs between
engineering design perspective and market share. We find
that the degree of fuzzy membership function of each per-
spective actuallymay enhance asmarket share increases. Our
aim is intended to shed light on the product mix-experience
optimization for firm performance using the relationship
among engineering design perspective. This evaluation result
shows that dual experience-based design approach can help
R&D design delivering quality product development experi-
ences and creating value with customers for yielding a high
performance engineering design.
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