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Abstract In design and manufacturing, mesh segmentation
is required for FACE construction in boundary representation
(B-Rep), which in turn is central for feature-based design,
machining, parametric CAD and reverse engineering, among
others. Although mesh segmentation is dictated by geometry
and topology, this article focuses on the topological aspect
(graph spectrum), as we consider that this tool has not been
fully exploited. We pre-process the mesh to obtain a edge-
length homogeneous triangle set and its Graph Laplacian is
calculated. We then produce a monotonically increasing per-
mutation of the Fiedler vector (2nd eigenvector of Graph
Laplacian) for encoding the connectivity among part fea-
ture sub-meshes. Within the mutated vector, discontinuities
larger than a threshold (interactively set by a human) deter-
mine the partition of the original mesh. We present tests of
our method on large complex meshes, which show results
which mostly adjust to B-Rep FACE partition. The achieved
segmentations properly locate most manufacturing features,
although it requires human interaction to avoid over segmen-
tation. Future work includes an iterative application of this
algorithm to progressively sever features of the mesh left
from previous sub-mesh removals.
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Abbreviations

M Triangular mesh of a connected 2-manifold
embedded inR3 composed by the set of points
X = {x1, x2, . . . , xn} and the set of triangles
T = {τ1, τ2, . . . , τp}.

E Set of the edges {e1, e2, . . . , en} of all the tri-
angles T describing the connectivity of M .

G Graph representation of M consisting of the
pair (X, E).

W Weighted adjacency matrix of G of size n× n.
D n × n diagonal matrix where Dii is equal to

the degree (weighted neighborhood size) of the
vertex xi .

L Laplacian matrix of G defined as L = D−W .
λi i th eigenvalue of the matrix L (sorted in

ascending order).
ui Corresponding eigenvector of λi .
u′
2 Second eigenvector of L sorted in ascending

order.
V Indices of the vertices of G in concordance

with u′
2 (re-labeling).

d Second differences of u′
2 with respect to V .

d′ Filtered version of d.
ti i th local maximum of the set of all local max-

ima of d ′ sorted in descending order.
M A connected and oriented Riemannian

2-manifold embedded in R
3.

∂
∂ yi

Tangent vectors defining a local coordinate
system at a point p ∈ M.

g Metric tensor which defines an inner product
on M where gi j is the local inner product
between the coordinates ∂

∂ yi
and ∂

∂ y j at a point
p ∈ M.
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∇ Gradient operator acting on the surface defined
byM.

div Divergence operator acting on the surface
defined by M.

Δ Laplace-Beltrami operator onmanifolds defined
as Δ = −(div ◦ ∇).

1 Introduction

Mesh segmentation has become an important task in many
CADCAMCAEareas. Its applications rangewidely in topics
such asmesh animation [1,2], surface parameterization [3,4],
mesh compression [5,6] and shape processing [7,8].

The problem is as follows: given the mesh of a (con-
nected) surface, break it up into a set of smaller sub-meshes
which together compose the initial mesh. Solving this prob-
lem becomes crucial when some procedure must be carried
on surfaces with particular properties, such as developability
for parameterization or decomposition into primitive shapes
for shape processing or mesh animation.

Usually a geometric approach is followed to face this prob-
lem as geometric constraints can be easily defined on the
surface based on the user desired result. However, there are
cases in which geometry transitions are not strong enough
to trigger a mesh partition, while the topology of the mesh
indicates a clear discontinuity, that should result in a mesh
partition.

Since a mesh can be seen as an undirected graph, study
of graph topology and methods of graph partitioning can
be almost immediately extrapolated to mesh segmentation.
Graph and mesh Laplacians have been a topic of extensive
research and their spectra have shown to be a powerful tool
for segmentation [9–12].

Finally, mixed approaches have also been proposed.
Mixed approaches define schemes based on graph theory,
but including geometric data. For example, finite elements
schemes of the Laplace-Beltrami operator lead to the cotan-
gent weights method [13]. These schemes are strong in terms
of both geometric and topologic information which makes
them so reliable for mesh processing.

Despite the advantages that mixed schemes may have, we
believe that there should be first a deep understanding of
relevant topological information for mesh segmentation.

Since there are voids in the understanding of Topologi-
cal and Geometrical mesh properties, human interaction is
still required to supervise these automatic mesh segmenta-
tion methods. In this article we illustrate how the second
eigenvector of the Laplacian (Fiedler vector) carries impor-
tant features for graph and mesh segmentation. We use the
monotonically increasing permutation of theFiedler vector to
re-label the mesh nodes. This re-labeling reflects strength of
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Fig. 1 Scenarios of mesh segmentation

connectivity among graph components and therefore deter-
mines a partition of the mesh.

Figure 1 shows 3 scenarios of application of our mesh
partition algorithm. Figure 1a presents a fully automatic sce-
nario. Figure 1b displays our algorithm steered by a human
operator, via direct setting of themesh separation parameters.
Figure 1c depicts our algorithm parameters being controlled
via a Graphic User Interface (GUI) whichwould set themesh
separation parameters. In all 3 cases, some sub-meshes are
removed from the source mesh in iteration i . The remaining
mesh becomes the source mesh for iteration i + 1. The iter-
ations proceed until the input mesh is null or should not be
split further.

The remainder of this article is organized as follows:
Sect. 2 reviews the relevant literature. Section 3 presents our
segmentation approach. Section 4 discusses results for many
datasets. Section 5 concludes the article and introduces what
remains for future work.

2 Literature review

Mesh segmentation has been an important research topic
for computer design. Different algorithms have been pro-
posed for segmentation based on different foundations of
many areas such as statistics, optimization, graph theory
and many others. An algorithm lies in one of the following
classes depending on which data is relevant for segmenta-
tion: (i) geometry-based segmentation, (ii) topology-based
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segmentation and (iii)mixed-approach segmentation. A brief
discussion of current state of the art methods is presented
below following the proposed classification.

2.1 Geometry-based segmentation

Geometry-based methods extract geometric data from the
mesh such as euclidean and geodesic distances or curvatures.
Then, a clustering algorithm is usually applied assuming that
geometrically similar points likely belong to the same cluster.
In [6] a k-means algorithm is directly applied to the geom-
etry data of the mesh and therefore needs a post-processing
algorithm (which they call multiple principal plane analysis)
for smooth definition of boundaries between sub-meshes. In
[4] tangent curvatures are computed by curve fitting before
clustering. In [14] curvatures and normals are computed and
then a Student-t mixture model is used for the partition.

Region-growing methods are expansive clustering tech-
niques that define seed points or faces on the mesh and as
their name suggest, expand until some geometric constraint
is violated. In [15] an angle variation threshold between faces
is defined for the algorithm and in [16] a variational formula-
tion is proposed for segmentation by fitting quadric surfaces.

Other statistical techniques have been applied for mesh
segmentation. By generating some random field on a mesh,
the distribution of some objective function can be used for
partitioning. In [17] several segmentation algorithms gener-
ate random fields on the surface which are later evaluated by
their cost function. In [18] an energy function is first defined
and random fields are applied to the mesh. The distribution
of the energy field in terms of the random fields is then used
to divide the surface.

For these algorithms, we remark two potential drawbacks:
(i) most of them are not fully deterministic which does not
guarantee the same results for the same surface and (ii) as we
mentioned before, topology information is usually discarded
which might be important in several cases.

Learning approaches try to replicate shapes from previ-
ously learned geometries. This in fact requires the algorithm
to be calibrated first using already segmented meshes as can
be seen in [19–21]. However, these methods require lots of
datasets for training that must be similar to the mesh which
limits the algorithm and as can be noted, training meshes
must be segmented somehow.

2.2 Topology-based segmentation

Topology-based algorithms on the other hand, rely on the fea-
tures lying on the structure of the mesh without considering
geometric features. Recall that a mesh has a graph represen-
tation and the topologic properties of this graph can be used
for segmentation. However, some assumptions must be first

made on the mesh sampling since the same surface may be
represented by different connectivities.

The motorcycle algorithm first proposed by Eppstein et
al. [22] consists of following a particle across straight paths
that start at what they define an extraordinary vertex and end
at vertices visited by other particles. Gunpinar et al. [23,24]
have presented several approaches based on this idea though,
this method is currently limited to quadrilateral meshes.

In [17] segmentation is achieved by simultaneous cluster-
ing of similar meshes. However, this task requires maximum
correspondence between faces which is not usual in CAD
models due tomeshing procedures and refinements. In [8] the
authors propose a segmentation by labeling vertices based on
convexity flags.

Graph cuts have been successfully used for mesh seg-
mentation as seen in [25], where an interactive approach is
followed by letting the user to draw strokes on areas where
he wants the partition.

Reeb graphs have been also explored for mesh segmen-
tation. After a field is defined on the mesh graph, the reeb
graph is computed. Correct choice of the field is critical for an
adequate segmentation. For example, in [26,27] the authors
propose geodesic-based fields, while in [28] eigenvectors are
used instead.

Algorithms that rely solely on the mesh topology are less
common in the literature due to the sampling constraints and
the lack of geometric features which might be important in
many applications leading to the next class of algorithms.

2.3 Mixed-approach segmentation

A mixed approach can be followed by extracting features
from both topology and geometry. For example, in [29] an
improvement of the motorcycle algorithm is presented. By
assigning different velocities to particles the geometry of
the surface is taken into account however, the limitation of
quadrilateral meshes is still present.

In [7] slippage analysis is used for mesh segmentation.
Localities of points are used to compute somemeasures such
as slippage and curvature. Depending on the measured fea-
tures, primitive shapes such as planes, spheres and cylinders
are recognized. The problem with this method is that some
surfaces may present complex shapes not recognized by the
algorithm. Additionally, since the method is presented for
clouds of points, the algorithm is very sensitive to neighbor
sizes.

An important operator has been widely used for mesh
segmentation: the Laplacian operator. The definition of most
mesh Laplacian follow classic graph Laplacian definitions
naturally which strongly encodes topologic features. Geo-
metric features are also considered by weighting schemes
defined on the graph of the mesh. In [12] and [30] interactive
approaches are presented where eigenvectors of the Lapla-
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cian are chosen for the segmentation and in [9] eigenvectors
are automatically chosen by an empirical criteria and a k-
means algorithm is then applied on the selected subset of
eigenvectors.

Harmonic functions of the Laplacian operator have been
also used. After some region is selected, dirichlet conditions
are introduced to the operator and a linear systemof equations
arises. In [31] an interactive algorithm is presented where
the user draws strokes across desired boundaries and in [32]
a similar algorithm is presented for segmentation of den-
tal meshes. Heat kernels have been also explored for mesh
segmentation [33,34] where dirac delta initial conditions are
imposed.

2.4 Conclusions of the literature review

Significant uncertainty currently exists about how the topol-
ogy of the mesh encodes relevant features for segmentation.
This uncertainty usually leads most researchers to address
the mesh segmentation problem from the geometry-based
approach. In contrast, we consider that spectral analysis
presents large potential for segmentation [9,12]. However,
heavy user-interactivity is required and parameterizations of
the algorithms are based on empirical results. Figure 2 shows
the result of application of state-of-art software byGeoMagic
TM for geometry-based segmentation and parameterization at
the same time. To obtain this result, a significant amount of
user actions is required, to correct non-manifold situations
and to eliminate patches with extreme shape factor. We con-
tend that by separating segmentation from parameterization,
it is possible to obtain larger sub-meshes. In addition, we

Fig. 2 Result of mesh segmentation/parameterization with GeoMagic
TM. Intensive user editing is required to correct non-manifold situations
and patches with extreme shape factor

will show that using topologic over of geometric segmenta-
tion would better highlight functional features of the object.

In this article we illustrate how the Fiedler parame-
ters encode connectedness properties of the graph mesh.
Based on these results, an intuitive method is presented for
exploiting these properties. A topology-based algorithm is
introduced by constructing the classic graph Laplacian with
constant weights and successful segmentation of homoge-
neous meshes is achieved. The limitation to homogeneous
meshes can be partially overcome by extending the scheme
to amixed approach but the pure topologic nature of the algo-
rithm gives faster and computationally stable results. Also,
since the method follows an intuitive result from spectral
analysis, a deeper understanding of topology-based implic-
itly arises and opens the doors for further research.

Our proposed algorithmproduces segmentations that obey
the connectivity of a homogeneously connected mesh (i.e.
with quasi-uniform triangle edge length). Notice that such an
algorithm requires a human steering (likely to be interactive),
to reject over-fragmentation, or to set the threshold of Fiedler
vector discontinuity, that triggers split of a sub-mesh from the
source mesh.

3 Methodology

We consider triangular meshes M which are connected, 2-
manifolds embedded inR3. M is defined by a set points X =
{x1, x2, . . . , xn} which together describe the geometry of M
and a set of triangles T = {τ1, τ2, . . . , τp}. Each triangle is a
sequence of edges τi = (ea, eb, ec)where each e j belongs to
a set of edges E = {e1, e2, . . . , em}. This structure describes
the connectivity on M .

G = (X, E) is therefore the (undirected) graph represen-
tation of M where X is seen as the set of vertices of the graph
and E is the set of edges. Since M is connected, so is G.

The problem ofmesh segmentation consists of dividingM
into k disconnected components. For solving this problemwe
propose an algorithm that re-labels the vertices of the graph
based on the Fiedler vector. Figure 3 presents the steps of the
algorithm. Some preliminary key results of spectral theory
are briefly discussed first.

3.1 Graph Laplacian

In spectral graph theory, the adjacency matrix W of G is
defined as:

Wi j =
{

wi j if (xi , x j ) ∈ E

0 otherwise
(1)
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Fig. 3 Diagram of the algorithm

where wi j is the adjacency weight between xi and x j . For
our algorithm we take wi j = 1 guaranteeing that only the
topology of the graph mesh is considered.

If D is a diagonal matrix with entries Dii = ∑
j wi j , then

D is the degree matrix of G. The Laplacian matrix of G is
therefore defined as L = D − W . Let f : X → R with
f (xi ) = fi be a field defined on the vertices of the graph,
then L f acts locally on each vertex in the following manner:

(L f )i =
∑
j

wi j
(
fi − f j

)
(2)

Equation (2) defines another field L f on the vertices of the
graph where each xi gets assigned the weighted differences
between fi and its neighboring field i.e. all f j such that x j ∈
N (xi ).

3.2 Fiedler vector

We consider the set of eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn
of L and their corresponding eigenvectors u1, u2, . . . , un.
There are some important results from graph theory on these
eigenvalues and eigenvectors [35,36]:

1. The first eigenvalue λ1 is equal to 0 and its corresponding
eigenvector u1 is the constant vector i.e. u1(xi ) = 1.

2. The second eigenvalue λ2 is known as the Fiedler value
(or algebraic connectivity) and its corresponding eigen-
vector u2 is known as the Fiedler vector.

3. Since G is connected, λ2 > 0 and therefore u2 is orthog-
onal to the constant vector i.e. 〈u1, 1〉 = 0.

4. The Fiedler vector solves the following optimization
problem:

u2 = argmin
u⊥1

uT Lu
uT u

(3)

The algebraic connectivity is highly related to the con-
nectedness of the graph. Figure 4 illustrates how the second
eigenvalue of the Laplacian matrix can give us an idea of
such connectedness. The loop graph presents less algebraic
connectivity than the full graph since it requires less cuts to
divide the graph. However, the two full graphs connected by
a single edge show the smallest algebraic connectivity since
cutting that edge is enough to split the graph despite the high
connectedness of both graphs.

Figure 5 shows the Fiedler vector for the connected full
graphs (Fig. 4c). Here the Fiedler vector is a positive function
in terms of the current vertex labeling. Also, low connectiv-
ity regions [edge (v10, v11)] show high changes in the Fiedler
vector compared with high connectivity regions (other ver-
tices). This behaviour is expected since Eq. (3) will see less
penalization in low connectivity regions, and motivates our
algorithm: by re-labeling the vertices of the graph such that
the Fiedler vector becomes a positive function in terms of
the re-labeled vertices, we can find low and high connec-
tivity regions based on this intuition and set a segmentation
criterion.

3.3 Laplace-Beltrami operator

Let M be an oriented Riemannian 2-manifold embedded
in R

3. M is connected. The Laplace-Beltrami operator Δ :
L2(M) → L2(M) on M is defined as [37]:
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Fig. 4 Some graphs and their algebraic connectivity: a loop graphwith
ten vertices, b full graph with ten vertices and c two full graphs of ten
vertices connected by an edge

Δφ = −(div ◦ ∇)φ (4)

where φ ∈ L2(M), ∇ is the gradient operator onM defined
as:

∇φ =
∑
i

gi j
∂φ

∂ yi
∂

∂ y j
(5)

and div is the divergence operator defined as:

divY = 1

det(g)

∑
i

∂

∂ yi

(
Y i

√
det(g)

)
(6)

Fig. 5 Fiedler vector for the two full graphs (Fig. 4c). Vertices labeled
from 1 to 10 belong to the first full graph and vertices labeled from 11
to 20 belong to the second full graph. The vertices 10 and 11 connect
the graphs

Fig. 6 Homogeneous triangular mesh of the iron model

g is the metric tensor of M, gi j = (gi j )−1 are the com-
ponents of the inverse of the metric tensor, Y ∈ T M is a
vectorial field defined on the manifold (local tangent planes)
and Y i are its corresponding components in local coordinates
∂

∂ yi
.
The Laplace-Beltrami operator is a generalization of the

standard Laplacian taken to manifolds. From this point of
view, the differential equation Δφ = λφ on the manifold
can be seen as an analogue of the Helmhotz equation. The
Helmhotz equation models the time-independent compo-
nent of the wave equation on a given domain. Schemes for
discretization of such operator on triangular surfaces have
been presented in the literature [13,38] resulting in weighted
Laplacians of the given mesh graphs. This result motivates
our work since the consideration of an homogeneous mesh
leads to a scaled solution of Eq. (3).
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Fig. 7 Fiedler vector on the iron mesh: a the field goes from blue
(lower values) to red (higher values) and b isolines of such of field are
drawn in blue (colour figure online)

3.4 Algorithm description

The idea of our approach consists in dividing the mesh into
components with uniform connectivity. As we illustrated in
Fig. 5, low connectivity areas present higher changes of the
Fiedler vector with respect to some labeling of the vertices of
the graph. These changes can be described by discrete differ-
ences on the Fiedler vector. Also, components with uniform
connectivity have uniform differences and high changes in
the discrete differences imply relevant topologic changes in
the mesh graph. Therefore, high absolute differences of sec-
ondorder on theFiedler vectorwith respect to a specific label-
ing of the vertices define good cut points for segmentation.

The vertices of the mesh must be re-labeled such that the
Fiedler vector is an increasing function in terms of the re-
labeling since the segmentation will be defined by cutting
thresholds on the Fiedler vector. Below the proposed algo-
rithm (Fig. 3) is described:

Fig. 8 Re-labeling of the vertices (x axis) and corresponding function
on the iron mesh: a Fiedler vector, b second differences and c filtered
second differences. Lines in red show the cut points for segmentation
(colour figure online)

1. Construction of the Laplacianmatrix:Build the sparse
Laplacian matrix L of the graph representation G of the
connected mesh M as defined in Sect. 3.1.
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Fig. 9 Segmentation of the iron mesh

2. Computation of the Fiedler vector: Compute the
Fiedler vector u2 of L by using some eigensolver.

3. Sorting of the Fiedler vector: Compute u′
2 as a sorting

of u2 in ascending order.
4. Re-labeling of the vertices of the mesh: Compute V

where V = {v1, v2, . . . , vn} is a re-labeling of X such
that vi = xk , u′

2(vi ) ≤ u′
2(vi+1) and vi �= v j ,∀i �= j .

5. Computation of the Fiedler second differences: Com-
pute the absolute second differences d(v′) of u′

2 with
respect to v′. This is equivalent to compute di =
|2u′

2(v
′
i ) − u′

2(v
′
i−1) − u′

2(v
′
i+1)|.

6. Application of a filter:A low-pass filter must be applied
to d since the sampling of the mesh can lead to noise in
the computed second differences. Compute the filtered
second differences d ′.

7. Finding local maxima: Compute t1, t2, . . . , tk−1 where
t1 is the global maximum of d ′(v′) and each ti is a sub-
sequent (local) maximum (recall that k is the desired
number of components to partition the mesh).

8. Setting the segmentation thresholds: The segmenta-
tion of the mesh is achieved by setting the thresholds
u′
2((d

′)−1(ti )) on the Fiedler vector.

4 Results

We now present some results of our algorithm applied to
several datasets. In each case theFiedler vectorwas computed
by the Implicitly RestartedArnoldi Iteration algorithmwhich
comes implemented in the ARPACK package [39]. Also,
a moving average was implemented for the filtering of the
second order differences with window sizes ranging between
1–10 %.

Figure 6 shows the triangular mesh of the ironmodel. This
mesh consists of 35,582 points and 71,164 triangles. Figure 7
shows the Fiedler vector of the iron mesh. Topology of the

Fig. 10 Segmentation of a non-homogeneous mesh of the iron model

graph of such (homogeneous) mesh still preservesmany geo-
metric properties of the surface. Isolines of the Fiedler vector
(Fig. 7b) show how the highly connected areas present low
changes in the Fiedler vector with respect to geometry while
the lower ones present high changes.
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Table 1 Appraisal of the results
of the segmentation algorithm
applied to several datasets

Figure Dataset # of points Commentary

Figure 11a Box 31945 The segmentation correctly finds high topological
changes but segmentation boundaries are not
aligned with sharp edges

Figure 11b Gears 24624 The algorithm achieves an intuitive segmentation
given the fact that high topological changes happen
at sharp edges

Figure 11c Pliers 14250 The segmentation separates the grip from the jaws.
Each jaw is also separated as well as the grip

Figures 11d, e Flange yoke 16522 A segmentation of the mesh into four sub-meshes is
enough to capture the topological changes.
Segmenting into more sub-meshes may present
irrelevant information

Figure 11f Crankshaft 45185 Some of the segmentation boundaries are not aligned
with the sharp edges of the surface given the fact
that only topological information is taken into
account

Figure 11g Sheep 68741 The base and the head are separated from the rest of
the body

Figure 11h Horse 99463 The body is separated into two pieces and the head is
separated from the whole body. A leg is separated
from the rest of the body since it represents a high
topological change in the direction of the Fiedler
vector

Figure 11i Elephant 32707 Alike the horse dataset, a leg is separated as well as
the head from the body. Additionally, The
algorithm separates the ears from the rest of the
head

The Fiedler vector is then sorted as described in Sect. 3.4
and re-labeling of the vertices is made. Figure 8 shows the
re-labeling results for the iron. As we pointed in Sect. 3
the sorted Fiedler vector shows higher changes in specific
regions (Fig. 8a) which correspond to relative changes of
the Fiedler isolines in Fig. 7b. The second differences plot
(Fig. 8b) shows a concentration of several peaks near desired
cut points. Selecting thresholds from this signal would lead
to several disconnected components near the same isoline
which is not desired. Therefore this signal must be fil-
tered first as described in Sect. 3.4. The filtered signal is
presented in Fig. 8c. Such filtering allows the algorithm
to automatically detect good cutting isolines. By setting
k = 3, global maxima are computed in the filtered differ-
ences resulting in two thresholds (red lines) for the Fiedler
vector which will divide the surface by the corresponding
isolines. These thresholds coincide with high changes in the
slope of the sorted Fiedler vector as seen in Fig. 8a. The
resulting segmentation is presented in Fig. 9. Notice how the
resulting partition divided the mesh into two high connec-
tivity regions (blue and red) and a low connectivity region
(green).

In contrastwith the segmentation of a homogeneousmesh,
Fig. 10 presents results for a non-homogeneous mesh of the
same model. The Fiedler vector of the graph mesh does not

follow adequately the geometry of the surface (Fig. 10a) due
to the non-homogeneous sampling as seen in Fig. 10a and
as a consequence, the connectivity of the graph does not
follow correctly our intuition of the geometry of the mesh
anymore.Additionally, isolines present undesired behaviours
along the surface which would result into components with
more irregular boundaries. The segmentation of this mesh
under our approach is presented in Fig. 10c. Notice that the
segmentation is less intuitive since the topology of the mesh
graph is more discordant with the geometry of the ironmodel
and boundaries of disconnected components are located at
more geometrically random places. These results illustrate
the importance of the homogeneity of the mesh for adequate
results of the proposed algorithm.

Table 1 presents the results of our algorithm applied to
several datasets usually used in CAD applications or Com-
puter Graphics. Since the algorithm only takes into account
the topology of the mesh, it is not expected to partition the
mesh by its sharp edges. However, the achieved segmenta-
tion agrees with some of these sharp edges as can be seen in
the gears and crankshaft datasets showing the importance of
the topology even in these cases. It is important to emphasize
the importance of the user interaction since different results
can arise depending on the selection of the parameter k as
seen in the flange yoke dataset. The segmentation of the rest
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Fig. 11 Results of our algorithm for several datasets. Princeton datasets [11 (a), 11 (b), 11 (c)]. Laboratorio de CADCAMCAEU. EAFIT datasets
[11 (g), 11 (h), 11(i)]

of the meshes presents intuitive results which illustrates the
fact that high changes in the Fiedler vector can be used as
boundaries between different shapes.

5 Conclusions

We illustrated how the Fiedler vector encodes some fea-
tures of the surface concerning to the connectivity of
the mesh graph. These features allowed us to develop a
simple algorithm for automatic segmentation of homoge-
neous meshes. Keeping the discussion at the topologic
level allowed us to intuitively show several important char-
acteristics of the second eigenvector of the mesh graph
Laplacian.

For the segmentation a re-labeling of the vertices of the
mesh is made in such a way the vector Fiedler is increas-
ing in terms of the re-labeled vertices. The algorithm is still

applicable to general graphs given the fact that geometry is
not taken into account while using constant weights makes
the algorithm faster and more stable computationally. How-
ever, this advantage comes with a cost requiring the mesh to
be homogeneous aswe illustrated in Sect. 4. Adequate results
were presented formany complex datasets usually used in the
context of CAD CAM CAE and Computer Graphics appli-
cations. These results proved to be in concordance with user
intuitive partitions which is very important since only topo-
logic aspects are considered. Possible future work could be
the adaptation of the method to non-homogeneous meshes.
Also, future consideration of the geometry could lead to bet-
ter results.

The algorithm presented by us would typically work
within a Divide— and—Conquer or Iterative scheme. In this
manner, each run would subtract some sub-meshes of the
source mesh, gradually reducing the size of the problem.
Each iteration would take the input of a human user to steer
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each removal iteration and/or to set the values of discontinu-
ities in the Fiedler vector permutation, which would in turn
cause mesh-fragmentation.
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