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Abstract Simulation of complex phenomena is usually a
long computing process and it has been traditionally per-
formed in batch mode on large high performance computing
(HPC) systems. However, advances in computer processing
and networking capabilities can now be used to monitor and
alter simulation parameters whilst it is running. This process
is called computational steering. By combining this capabil-
ity with advanced communication tools, it is now possible for
a group of scientists located across the world to work collab-
oratively while visualising on-going simulations. This raise
the possibility that researches can now share their experience
and promote new ideas and solutions by exploring collabo-
ratively the solution space of a complex simulation. In this
paper, a collaborative computational steering environment
specialised to solve CFD problems is presented.
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1 Introduction

Computational steering has been an active area of research
since the 1980s. A survey of early developments in the area
can be found in [20]. It presents a comparation of scope,
architecture, and user interface of the systems reviewed.
A general computational steering environment that uses
high performance computing is presented in [19]. A frame-
work for structural design and optimisation can be found in
[10], where the fixed grid method is used to speed up the
simulation.

Applications to the study of fluid flow conditions around
virtual prototypes is not new for the engineering and acad-
emic communities. Early developments include the NASA’s
Virtual Wind tunnel at AMES Research Center [6] which pro-
vides a virtual reality environment for postprocessing CFD
analysis, and the Java Virtual wind Tunnel developed by
David OH at MIT [21]. Kreylos et al. [17] at UC Davis devel-
oped a system for visualization and manipulation of ongoing
CFD simulations. In their system the user can manipulate
visualization primitives such as isolines, streamlines, selec-
tively refine domain regions, and remesh in real time. The
system is designed for unsteady two and three-dimensional
incompressible flow.

The gViz is a UK e-Science project for visualization and
computational steering on the grid [5]. It is based on the
traditional dataflow model used by tools like IRIS explorer
[9] and VTK [23], and originally proposed by [14]. Besides
data flow turned into visualization the gViz model also take
care of physical resources from a Grid environment and adds
collaboration. Computational steering is treated as a one type
of visualization in the gViz platform.

Rank and its group at TU Munich have developed a col-
laborative computational steering platform based on a dis-
tributed architecture composed of a central collaboration
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server, an arbitrary number of simulation servers and an arbi-
trary number of clients [29]. Their system uses the lattice-
Boltzmann method as a simulation engine and has been tested
in several model scenarios including a collaborative layout
of a Heating Ventilation Air-Conditioning (HVAC) system
[4], and an indoor airflow simulation for a complex surgery
room [22].

Bordegoni et al. [3] developed an interactive system
for real time modification of the structure shape via a
haptic system. Their main point is to demonstrate that a
smooth and effective integration of modeling tools based
on haptic interfaces, fluid-dynamics analysis tools, and Vir-
tual Reality visualization systems is feasible in real-time
through the use of a proper data model exchange. Finally,
Bazilevs et al. [1] proposed a control strategy for Fluid
Structure Interaction (FSI) problems based on the infor-
mation provided by the solution of the adjoint FSI prob-
lem. Such control strategies are then used for computa-
tional steering in which the computational model is adjusted
to include the information coming from the measurement
data then the physical system is driven toward a desired
behavior.

The designer need to explore rapidly the property of new
designs is critical for a world where time-to-market is get-
ting shorter and shorter. This paper presents an overview
of a new computing architecture where an Interactive Com-
putational Fluid Dynamics (ICFD) environment is used to
optimize collaboratively the airflow around virtual proto-
types. The main idea is to constrain the design domain at the
early stages of a product development, where highly accu-
rate results are not as important as the fast estimation of
the influence of state variables on the design. This compu-
tational steering system uses an automated server respon-
sible for managing open-source CFD modules from which
the flow simulation is computed and where it is possible
to update the simulation parameters on the fly. Data and
user instructions are collected by a client applications that
connects to the server (located on the same computer or
on a High Performance Computing HPC facility) solutions
where they can be visualized over time as information arrives.
The user can then decide to abort a particular simulation
or restart a new one with other parameters. He can also
allow the system to continue the simulation until it is com-
pleted. Using a powerful HPC computer as a central server,
a group of designers can explore rapidly the various solu-
tion of a prototype design in parallel. In Sect. 2, a review
of the interactive needs and requirements for CFD are pre-
sented. Section 3 describes the proposed computational steer-
ing architecture and Sect. 4 its implementation for a sim-
ple CFD experiment. We will then conclude by describing
the pros and cons of the system and how the system can be
improved.

2 Interactive CFD needs and requirements

The main idea behind most of the CFD simulations is to
obtain a global and accurate model of the behaviour of a
fluid flow in contact with other fluids or with solids. These
flow are in most cases non-steady. The use of non-steady flow
simulations is one of the best ways to obtain an idea on the
behaviour of a specific virtual design.

ICFD is useful for understanding the physics of the sys-
tems and how it responds to variations of the design variables,
to optimise the design in terms of energy efficiency or to
improve the aerodynamic performance. For ICFD, the sim-
ulation parameters might be modified according to different
classes:

1. Geometrical: This parameters are mainly geometric and
include:

(a) Relative positioning of a body;
(b) Relative Orientation;
(c) Size (Scaling);
(d) Shape modification;
(e) Addition-Subtraction elements;

2. Physical: The nature of these variations is related to the
modifications on the physical parameters or phenom-
enon. The possibilities are:

(a) Fluid properties;
(b) Boundary conditions;
(c) Simulation timesteps.

3. State of the Simulation: Setting Start-Stop flags is neces-
sary to control the continuity of the process.

In ICFD all variation parameters are controllable by the
user. Most of the geometry changes require a recalculation of
the mesh used for the computations and may also introduce
other parameter variations such as changing the boundary
conditions of the domain. The possible effects of performing
parameter changes in the simulation are portrayed in Table 1,
as well as the possible chain of events these changes might
cause.

A single parameter variation may induce a chain of events
that may increase the computational cost, e.g. If a body is
added to the model, the whole mesh has to be recalculated,
new boundary conditions has to be set over the body (no-slip
wall conditions for example). Also, possible changes on the
flow regime might be induced and needed to be calculated,
etc.

The level of control the user might require to view the
solutions is only actualized at the post-processing stage, on
the other hand ICFD require a level of control and parameter
changes that need to be performed during calculation. This
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Table 1 Variations on the CFD scenario and their respective effects, the first four are geometric changes, the next three are changes to the physical
parameters and the last is related with the state of the simulation

Change Direct effects Possible induced changes

Positioning Mesh-recalculation Boundary conditions, Timestep

Orientation Mesh-recalculation Boundary conditions, Timestep

Size Mesh-recalculation Boundary conditions, Timestep

Shape modification Mesh-recalculation Boundary conditions, Timestep

Addition–subtraction Mesh-recalculation, Boundary conditions Timestep

Fluid properties Timestep, Mesh-recalculation, Fluid flow regime change

Boundary conditions Timestep, Mesh-recalculation, Fluid flow regime change

Timestep Mesh-recalculation

Continue the simulation? Start–stop

Control Stage

Preprocessing Solution Postprocessing

Real Time visualisation + Collaboration

- physical model definition. 
- numerical model definition 
- solver constrains 
- geometry definition 
- geometry discretisation 
- boundary conditions settings

Fig. 1 Flow diagram of a ICFD system. The blue lines show the feed-
back by the control stage (color figure online)

new level of control must guarantee simulation stability and
the adaptation of the simulation parameters to the current
conditions. The flow diagram for an ICFD system is shown
on Fig. 1. It consists of four stages:

1. Pre-processing stage Geometry discretization, physical
model definition, and boundary conditions definition;

2. Solution stageGiven a physical model and a suitable CFD
discrete mesh, a particular solver is selected and invoked;

3. Post-processing stage As the solver starts producing all
the results expected from the solution stage, all data is
interpreted and displayed to the user using a standard
graphic environment;

4. Control stage Parallel to the post-processing stage, the
control stage is performed from the results shown during
the post-processing stage and is refined by the user if any
change during the current CFD session needs to be done.
If a change to the ICFD is requested, the control structures
or the user itself must perform a feedback process to all
the other stages (Pre-process, Solution and Post-process)
of the CFD simulation, providing the necessary data to
continue the simulation.

The possibility to perform any of the system changes
shown in Table 1 suggest that the list of changes that arise
from an ICFD might be grouped into 2 sets:

1. Non Interactive CFD changes This set of changes are
mainly relating to the initial setup of the simulation;

(a) Pre-processing. Geometry definition setup, discretiza-
tion information, boundary conditions, physical
model, numerical methods, and selection of a solver
for these constrains.

(b) Post-processing.
– Selected data for displaying given the massive

amount of information the user can access after
solving an simulation, choosing which sets of
data are to be the best is necessary.

– Viewpoint and Scales.

2. ICFD needs set. This set of changes arises from the con-
dition of being interactive during the post-processing via
the control stage. This set of needs go hand by hand
with the possibilities of variations over the CFD scenario
described in Table 1.

(a) Geometric redefinition: This subset of changes is
mainly relating to the topology and geometry changes
of the prototype.

i. Body Re-positioning control: To have control
over the relative position between coordinate
systems attached to each models involved during
the simulation;

ii. Body Re-orientation control: To have control
over the relative orientation between coordinate
systems attached to each models involved during
the simulation;

iii. Body Re-sizing control: To have control over the
possible scalability of each models involved dur-
ing the simulation;

iv. Body addition-subtraction: To have control over
the possible addition or subtraction of new/old
geometry of the model, which will be positioned,
oriented and scaled via the controls described in
(i),(ii) and (iii).
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(b) Physical variables redefinition:This subset of changes
is mainly relating to the physical constrains in a CFD
simulation.

i. Fluid properties control: To have control over
the physical properties that define the fluid (vis-
cosity,specific weight, heat, and etc...);

ii. Time-step control: To have control over the time-
steps used to solve the simulation;

iii. Boundary conditions control: To have the ability
to modify the boundary conditions.

(c) Change the current state of the simulation: To have
control over the ability of stopping or continuing the
simulation.

2.1 CFD and collaborative workspace

Collaborative workspaces are virtual or real in nature depend-
ing on how different people work in a collaborative fashion
to achieve a common goal. Computer supported collabora-
tive workspaces (CSCCW) are increasingly being used to
enhance collaboration between people located at different
locations in the world.

The use of common tools such as 3D model navigation
and handling is a natural choice and even though the inte-
gration of video communication systems between clients is a
possibility to achieve a more direct and personal interaction,
the imminent appearance of gaps at conceptual expression
and transmission of the generated knowledge and ideas is
still difficult to avoid

Different schemas to achieve highly efficient collabora-
tive virtual workspaces have been proposed by Billinghurst
and Kato [2] and others. A common denominator is that
the communication pace can be used as means to minimise
the impacts of changing suddenly in a short matter of time the
conditions of the workspace. During the present research, a
synchronous interaction scheme will be used as default, given
the relative ease to control that the variations on the CFD sce-
nario are performed in a sequential order.

3 Computational steering architecture

3.1 Computational steering scheme

The goal of the environment is to develop interaction tech-
niques for users on remote locations using a high speed net-
work. As the users have different specifications of their avail-
able computational resources (operative system, computer
capabilities, etc.) a Client/Server schema where only some
specific data transactions and messages allowed becomes the
natural choice for development. Figure 2 shows the basic
architecture of the system. The main role of the server is
to guarantee a smooth interaction between the users and the

Client 
Tiled display

Client  
Stereo Display

Solution Server

Solver 
HPC facility

Client 
Workstation

Fig. 2 Global view of the architecture for the CFD computational
steering system

solver. The users are located at a local client machine and
the server and solver are both located on a remote machines.
Figure 3 presents the abstraction of the processes required to
guarantee an stable and smooth interaction between the user,
the server (simulation/user manager) and solver applications.
Three different process involved on the steering environment
are identified:

1. Data I/O and Steering: This process is handled by the
Client. The Client should be able to handle all the defined
user data requests and inputs, guaranteeing a fluent inter-
action and allowing the user to perform the steering of
the scenario he/she desires either defining from scratch a
new scenario or using a previously defined one.

2. Data distribution and Simulation triggering: This process
is handled by the Server (ruby script) that is able to han-
dle the user requests performed from remote locations.
The Server is multi-user oriented and the interactions pre-
sented on this diagram are only performed with a single
user (analogically, the same tasks are performed for the
interaction with any user).

3. CFD scenario solving: After the developments of the
Solver this is has become a straightforward process when
all the data is properly defined and set. The preproces-
sor/solver are programmed on C++ and can be used as
an independent tool when required

It is important to note that to start a new simulation the
user has to provide all the geometry files and scenario setup
(entry point number 1, Fig. 3). On the other hand, another user
might be interested on steer/watch the results of an already
defined simulation (entry point number 2 Fig. 3). Finally,
entry point number 3 refers to the need of steering an already
running simulation previously defined by another user. The
number of Client/Server communications and its size were
minimised in order to keep network data transfer as low
as possible, trying to avoid as many latency and bandwidth
related problems. The developed architecture allows several
users to steer/access the same datasets from their own clients,
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Fig. 3 CFD simulation steering
dataflow

providing the basic setup for collaborative design discussions
in between the clients via communication services.

3.2 Setting up of a new scenario (virtual wind tunnel
example)

Among the different types of fluid simulations, the external
flow analysis is one of the most popular due to its application
to aerodynamics and hydrodynamics. The main goal of these
studies is related with finding the forces acting of solid struc-
tures, pressure and velocity distributions around an object,
and computing the lift and drag coefficients.

These type of analysis can be made on wind tunnels, but
in these days CFD analysis replace much of the experimental
part, and experiments are only used to validate simulations.

A wind tunnel is basically a closed hall with an inlet and out-
let which allow a transversal flow of air across it. They are
used in academic and industrial research to test the aerody-
namic variables on a particular design case. The idea behind
this computational implementation is to be able to steer the
different variables and get immediate feedback from the sim-
ulation. The steering variables include inlet velocity, bound-
ary conditions, fluid properties, solid body shape, position
and orientation.

A transient-state/incompressible/newtonian flow will be
used as pilot. The aim of the following sections is to analyse
the data requirements to define a generic instance of a Virtual
Wind Tunnel (VWT) Scenario, and to estimate the nature of
the messages that should be passed from client to server and
vice versa.
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3.2.1 Fluid domain and bodies

To define a new VWT scenario, it is necessary to establish a
proper boundary for the wind tunnel itself, the bodies whose
aerodynamic features will be tested, the wind speed at the
inlet and other information.

The fluid in a VWT scenario is represented by a hexahedral
shaped (box shaped) domain and its orientation should be the
same of the cartesian axis of the world coordinate systems.
The size of the domain is given by its length × width
× height, and its location is given by the location of its
geometrical Center. They are required to properly define
the domain.

Once the VWT domain boundaries are set, the user can
start adding Bodies to the scenario. A Body is a solid object
and it is described by its boundary representation (B-REP).
Different approaches can be used to define a B-REP, being
piecewise planar representations the most commonly used.
The location of the geometric center or any fixed
reference point in terms of a triplet of numbers is
required as well to establish a reference frame for the body
position (Fig. 4).

After the body is located inside the boundaries of the tun-
nel, the a set of geometric transformations should be applied
over it to achieve a correct orientation. The selected approach
is to apply a set of Translations and Rotations of
the body respect to the world coordinate system reference
frame, using the center of gravity of the body as reference
point for the rotation operations.

For some cases, the study case might require to analyse the
interaction between variousBodies inside the tunnel. Follow-
ing the procedure presented beforehand, the same operations
should be performed to add more Bodies to the scenario as
presented on Fig. 4.

The geometric information to establish any CFD scenario
should be available initially on the client side and should

Fig. 4 VWT scenario with 2 bodies

be transferred and stored on the server side, for simulation,
reconstruction and distribution purposes among the clients
and the solver.

3.2.2 Initial and boundary conditions settings

For the present VWT scenario a basic set of boundary con-
ditions that reflect the problem conditions should be set and
parameterised.

For all the tunnel walls and all the faces belonging to the
body, a no-slip wall condition (zero velocity) will be set by
default. A pressure outlet condition will be used to set the
reference pressure at the outlet of the system (atmospheric
pressure) and for the inlet of the wind tunnel, a velocity inlet
will be used and its magnitude is required as an input para-
meter, named U0.

Zero velocity and the same reference pressure it is used
inside the whole domain as initial conditions. This implies
that the results from the initial timesteps will not reflect accu-
rately the fluid flow, but as time develops, the solution will
be more and more accurate.

3.3 Preprocessing

After all the conditions and parameters that define the sce-
nario are defined by the user, the data should be transmitted,
gathered and validated inside the solution server to recon-
struct the scenario and perform the required domain dis-
cretization. Geometry, boundary conditions, initial condi-
tions and physical parameters are adequately integrated by
the server and passed to the solution algorithm. The Finite
Volume Method (FVM) [7] relies on a mesh to represent
the physical domain and hence, a fast and reliable meshing
algorithm is required.

In order to speed up the meshing process a Fixed Grid (FG)
volumetric mesher was used to discretise the 3D domain. FG
meshing algorithms are used as an efficient link between
CAD systems and Finite Element/Finite Volume solvers
given their low computational cost and versatility [12]. The
current implementation uses an optimised parallel FG mesher
called Paravoxel. Details of its implementation can be found
in [11]. It is important to notice that Paravoxel uses a Convex
Hull approach to approximate the geometry of the elements
near the boundary of the object, leading to a defeaturing of the
model, which could be a problem when accurate calculations
are required. However, for early design stages where per-
forming fast-interactive testing to shorten the design domain,
this type of Fixed Grid approximation is not only suitable,
but an advantage.

The balance between the size of the Fixed Grid and the
smallest feature of the solid body will be determinant to
guarantee a proper representation of the boundary with the
convex-hull elements. An analogy to the Nyquist-Shannon
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Theorem for analog signal sampling [24,25] is evident during
this process: to achieve a close representation of the geome-
try by a fixed grid method, the largest size of an element in
the grid must be at least half the size of the smallest feature
of the solid body.

3.4 Solving

Following the preprocessing stage, the data is sent from the
client to the Server and from the Server to the Solver. All data
should be coupled in terms of the data structures the solver
requires for performing the simulation. This step should be
transparent to the final user to guarantee an streamlined inter-
active experience.

For the presented architecture with a VWT scenario, a
FVM solver for incompressible steady state newtonian flow
is integrated with the preprocessor. The OpenFOAM toolkit
[16,28], was used to create a customised solver that was
able to handle automatic remeshing with Paravoxel. Also the
solver program was designed to listen for any event and adapt
the simulation to a client request. Notice, that the basic archi-
tecture presented in the previous sections is method indepen-
dent, hence another solver which is suitable to solve the same
physical phenomenon is adaptable, by means of changing the
data structures passed on to the solver.

3.5 Postprocessing

During this stage the solution data is sent to the client
machines either as a complete dataset or as a simplified
video stream. The user must be able to control the view-
point, colormaps and the amount and nature of the informa-
tion produced during the solution of the given scenario. On
the present implementation the following criteria were taken
as reference:

– Basic Requirements: A set of basic filters such as glyphs,
stream tracers, contours, isosurfaces, colormaps and plots
should be available for the user.

– Environments: A 3D environment where the user is able
to travel around the scenario should be available for
users with high end computers/large bandwidth capa-
bilities. Given the heterogeneous nature of the clients,
a basic video stream using precomputed scenario view-
points should be available for users with reduced band-
width or computational resources.

– Tools: Interaction means such as haptic, 3D or multiple
axis interaction means should be available for the user to
get the most out of the interactive experience.

4 Computational steering implementation

The present section describes an implementation of the previ-
ously presented architecture for steering of CFD simulations.
The first parts presents the technical requirements and issues
faced during the implementation on the server, and clients,
and a description of the execution of the system. The final
part presents a discussion around the user experiences while
using the software.

4.1 Development requirements for the server

In agreement with Sect. 3, the following initial list of require-
ments for the Server was harvested, summarising the per-
ception and ideas that will be required for this development.
In front of each development requirement, the solution pro-
posed to suffice this need will be presented.

– Stability: an Unix based operative system was chosen to
be the host of the Server service. The stability of this
monolithic-type kernels allows an easy restart of the ser-
vice, if required, without having a huge impact on the
other processes of the operative system.

– Be able to run as a system service: The server, pro-
grammed as a ruby script can easily be set as a system
service which can be started or stopped at any time.

– TCP/IP communication oriented: The message passing
between server/client was programmed over an interna-
tionally known standard protocol supported by libraries
on many programming languages.

– Easy modification and maintainability: Being the code
written on a simple language as ruby, the level of abstrac-
tion required to modify it is relatively simpler than the
one required if the Server was written on other languages
where complex data structures and castings are required.

– Network file transfer optimised: The third party package
rsync was chosen due to its stability and optimality for
file transfer and keeping up to date copies of a source
folder over network systems.

4.2 Development requirements for the client

The following initial list of requirements for the Client sum-
marise the perception and ideas that will be required for this
development. In front of each requirement, the solution pro-
posed to suffice this need is presented.

– Stability: Programmed over C++ and running on an
extensively tested third party package called Paraview
[15], the client can guarantee if properly developed the
required stability levels for this kind of applications.

– Have a powerful graphical engine for different purposes:
ParaView, an open source third party package was cho-
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sen as the graphic engine for this client. Of relative easy
modification once its structure is understood, the plugin
programming option became a powerful tool for devel-
oping the client.

– TCP/IP communication oriented: The message passing
between server/client was programmed over an interna-
tionally known standard protocol supported by libraries
on many programming languages.

– Easy modification and maintainability: Paraview code
is supported by a large community which can provide
insight into adding further functionality and supporting
the code.

– Network file transfer optimised: The third party package
rsync was chosen due to its stability and optimality for
file transfer and keeping up to date copies of a source
folder over network systems.

– OS portable: The client was designed as a set of plug-
ging running under Paraview. Paraview is developed over
multiplatform packages. Running the client on Windows,
Mac or Linux based systems implies that the plugging
have to be compiled for each platform supported by Par-
aview.

– Compatible with different I/O Devices: The plugin archi-
tecture supports the usability of different I/O devices such
as wii-motes, gamepads, and others, through the imple-
mentation of different control structures using the VRPN
library embedded on a Paraview plugin compatible with
the client.

The client application should be able to perform the fol-
lowing operations for the user to interact with the server:

– Connect/Disconnect By means of this functionality,the
user can start/stop the communication with the VWT
server located at the a given machine through an estab-
lished port. The user should always identify himself using
an Username.

– List Simulations Lists the available simulations the user
can start interacting with. The status of each simula-
tion(currently running/stopped) should be available for
the user to query.

– Create Simulation This functionality allows the user to
create a new simulation on the server side.

– Get Online Users Lists the users currently logged on the
server.

– Get User Viewpoint allows to interactively obtain the
current view point of any user logged on the VWT appli-
cation for a given simulation.

4.3 Running the scenario

Once the scenario has been properly established, the user
must confirm this action and start the calculations. After the

solution processing begins, the Client/Server communication
and interaction described on Sect. 3 starts. The user must
explicitly confirm the scenario setup, ordering the server to
execute the desired command. In case the user desires to
perform any change on the scenario during the solution, he
is totally free to modify the scenario to his/her will and to
refresh the scenario inside the solver. To change the case
being solved, the user must explicitly once again tell the
server that there is a modification on the scenario.

4.4 Using an already existent Scenario

Any already existent simulation or VWT scenario can be
loaded by the client. To load an already existent simulation,
the user must first select a valid simulation from the Simula-
tion list, inform the server that he will be working on it and
then start the setup/modification of a new or existent scenario.

After the simulation is modified, the client will send all
the modification requirements to the server, and it will start
sending all the information required by the user to perform
the steering and postprocessing. This operation requires an
amount of time proportional to the bandwidth and the amount
of data transferred.

4.5 User feedback

Two tests were conducted upon the implemented VWT plat-
form:

4.5.1 Large model visualisation steering

A large model of the buoyant winds on the Aburra Valley
in Colombia (2.6 million cells approx.) was used as dataset
for interactive postprocessing between two groups of people
on different locations. The first group, located at Eafit Uni-
versity (Medellin, Colombia) used conventional screens and
mouse as interaction means, while the second group, located
at Los Andes University (Bogota, Colombia) used a large
format screen and remote controllers (wiimote type) as inter-
action means. Both groups were connected via Access Grid
[18] conference using audio and live video feeds as inter-
communication. Both sites are connected via the RENATA
(Colombian academic network, at 30 Mbps at that time). No
simulation was run and the platform was only tested as means
to set up a remote collaborative environment meant for dis-
cussion.

Once the platform was set up on both sites and the dataset
was shared, an initial discussion topic was established and for
30 minutes an interactive chat between both parties through
the video conference and the same simulation dataset was
held. Figure 5 presents the setup of the interaction devices
used on both sites.
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As a result of the previous test, we can make the following
observations:

– Fluent and stable communication between client and
servers.

– No locking points were found during the experiments.
– User interaction via remote controls was successful, but

still requires more expertise on the user side.

Fig. 5 Interactive post processing test

– Once the dataset is located on both clients, bandwidth is
not a big issue.

– Knowledge generation through discussion on different
sites is highly enriched by the interactive experience.
Communication skills are still key to guarantee a fluid
discussion.

– The initial setup of the platform requires specialised per-
sonnel, while the interaction and discussion has proven
that familiarity with similar tools is only a factor that ease
up the initial approach to the tool. Once familiar with the
environment, the user is free to explore the environment
on any way he desires.

4.5.2 Simulation steering

A simplified model of a toy car, formed by 715 facets, was
used as a test model for a VWT scenario. The CFD domain
around the body was initially subdivided into 150000 hexahe-
dral cells. The simulation was remotely steered by two groups
of people at different locations (EAFIT and Los Andes Uni-
versities).

Both parties, using Access Grid as video and audio con-
ference system, joined efforts for coordinately steer the sim-
ulation. Figure 6 presents the initial state of a simulation that
contains two bodies (Red and Green Cars) originally oriented
on the same direction. Inside the same figure, the initial finite
volume mesh used to solve the case can be seen and to its
right, the streamlines that represent the solution can be seen
as well.

After a brief discussion, it was required to change the
orientation of the Green Car (45 degrees rotation respect to
one of its principal axes). The operation was handled by the
team at EAFIT and the instructions sent to the server. The
simulation was steered and successfully visualised by both
clients. Figure 7 shows the result of the steering operation.

Further testing was performed on the same example using
the EAFIT network with 2, 3 and 4 clients, displaying an
stable and functional behaviour on all tests.

As a result of the previous test, we can make the following
observations:

Fig. 6 Original scenario example
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Fig. 7 Modified scenario solution example

– No locking points were identified during the steering.
The data exchange worked as expected between client
and server and between clients.

– The preprocessing times were fit enough to guarantee a
relatively fast simulation setup. The initial required para-
meters were intuitive enough for the group of users to
setup the scenario and recreate the phenomenon.

– Data exchange becomes the bottleneck of this schema
due to the large datasets being transferred to the clients.
Different schemes than TCP should be tested in order to
optimise dataflow.

– Solution time can be an issue, specially when large reso-
lution meshes were used to feed the Finite Volume Solver
used in the experiment.

– The users had to be properly trained in CFD practices for
properly steering the simulations. The system is aimed
at designers, engineers and scientist. Non trained users
found difficult to understand the parameters and their
physical meaning.

5 Conclusions

A collaborative workspace for CFD simulations/training rep-
resent significant opportunities to international (and maybe
remote) collaboration specially given the relatively low
resources that have to be spent to setup a system. The present
implementation uses grid infrastructure for the solver and
clients distributed over the network. This architecture has
provided useful information about the way users interact with
simulation. Message passing time is key to guarantee stability
and the depth of the interactive experience. The Fixed-Grid
preprocessor is a fast and reliable discretization method for
3D domains where the detail of the features of the object is not
the main goal. The discretization is automatically calculated
without requiring any user-based expertise or work. Domain
decomposition allows this algorithm to be parallelizable and
the computational load to be balanced between nodes. Defea-
turing may present an advantage for both speed and for pro-
viding hints about what the shape might become during the

CAE analysis. The solver developed uses the Finite Volume
Method. Although it is stable and accurate for solving CFD
phenomena, it has show not to be the best choice in terms of
minimising solution time. The same basic architecture can be
extended to simulate different phenomenon apart from fluid
mechanics. Finally, streaming video rendered on the Server
machine seems to be a suitable way to avoid sending large
data blocks over the network on clients which posses low
computational resources and low bandwidth.
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7. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynam-
ics, 3rd edn. Springer, Berlin (2002)

8. Flanagan, D., Matsumoto, Y.: The ruby programming language.
’O’Reilly Media, Inc (2008)

9. Foulser, D.: Iris explorer: a framework for investigation. Comput.
Graph. 29(2), 13–16 (1995)

123

http://dx.doi.org/10.1016/j.procs.2013.05.368
http://dx.doi.org/10.1016/j.procs.2013.05.368
http://www.sciencedirect.com/science/article/pii/S1877050913005115
http://www.sciencedirect.com/science/article/pii/S1877050913005115


Int J Interact Des Manuf (2015) 9:235–245 245

10. García, M.J.: Fixed Grid Finite Element Analysis in Structural
Design and Optimization. PhD. Thesis The University of Sydney,
Sydney, Australia (1999)

11. Garcia, M.J., Duque, J., Henao, M., Boulanger, P.: Paravoxel: a
domain decomposition based fixed grid preprocessor. Int. J. Com-
put. Methods (IJCM) (2014, submited)

12. Garcia, M.J., Steven, G.P.: Fixed grid finite elements in elasticity
problems. Eng. Comput. 16(2), 145–164 (1999)

13. Grudin, J.: Cscw: History and focus. Computer-Los Alamitos 27,
19–19 (1994)

14. Haber, R.B., McNabb, D.A.: Visualization idioms: a conceptual
model for scientific visualization systems. Visual. Sci. Comput.
74, 93 (1990)

15. Henderson, A.: Paraview guide, a parallel visualization application.
http://www.kitware.com/products/paraview.html (2007)

16. Jasak, H., Jemcov, A., Tukovic, Z.: Openfoam: A c++ library for
complex physics simulations. In: International workshop on cou-
pled methods in numerical dynamics, pp. 1–20 (2007). URLhttp://
powerlab.fsb.hr/ped/kturbo/openfoam/papers/CMND2007.pdf

17. Kreylos, O., Tesdall, A., Hamann, B., Hunter, J., Joy, K.: Interactive
visualization and steering of cfd simulations. In: Proceedings of the
symposium on Data Visualisation 2002, pp. 25–34. Eurographics
Association (2002)

18. Laboratory, A.N.: The access grid. Web (2012). http://www.
accessgrid.org/

19. van Liere, R., Mulder, J.D., van Wijk, J.J.: Computational steer-
ing. Future Generation Computer Systems 12(5), 441–450 (1997).
doi:10.1016/S0167-739X(96)00029-5. http://www.sciencedirect.
com/science/article/pii/S0167739X96000295

20. Mulder, J., van Wijk, J.: 3d computational steering with parame-
trized geometric objects. In: Nielson, G.M., Silver, D. (eds.) Visu-
alization ’95 (Proceedings of the 1995 Visualization Conference)
pp. 304–311 (1995)

21. Oh, D.: The java virtual wind tunnel—a two dimensional com-
putational fluid dynamics simulation. http://raphael.mit.edu/Java/
(2001)

22. Rank, E., Borrmann, A., Düster, E., Treeck, C.V., Wenisch, P.:
Computational steering: towards advanced interactive high perfor-
mance computing in engineering sciences. In: 8th. World Congress
on Computational Mechanics (WCCM8). International Associa-
tion for Computational Mechanics (2008)

23. Schroeder, W.J.: The visualization toolkit user’s guide: updated for
version 4.0. Kitware (1998)

24. Shannon, C.: A mathematical theory of communication. Bell Syst.
Tech. J. 27, 379–423 (1948)

25. Shannon, C.: Communication in the presence of noise. Proc. IRE
37 (1949)

26. Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J.,
Helser, A.T.: Vrpn: a device-independent, network-transparent vr
peripheral system. In: Proceedings of the ACM symposium on Vir-
tual reality software and technology, pp. 55–61. ACM, New York
(2001)

27. Tridgell, A., Mackerras, P., et al.: The rsync algorithm. Tech. Rep.
TR-CS-96-05, The Australian National University (1996)

28. Weller, H., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to
computational continuum mechanics using object orientated tech-
niques. Comput. Phys. 12(6), 620–631 (1998)

29. Wenisch, P., Treeck, Cv, Borrmann, A., Rank, E., Wenisch, O.:
Computational steering on distributed systems: indoor comfort
simulations as a case study of interactive cfd on supercomputers.
Int. J. Parallel Emerge. Distrib. Syst. 22(4), 275–291 (2007)

123

http://www.kitware.com/products/paraview.html
http://powerlab.fsb.hr/ped/kturbo/openfoam/papers/CMND2007.pdf
http://powerlab.fsb.hr/ped/kturbo/openfoam/papers/CMND2007.pdf
http://www.accessgrid.org/
http://www.accessgrid.org/
http://dx.doi.org/10.1016/S0167-739X(96)00029-5
http://www.sciencedirect.com/science/article/pii/S0167739X96000295
http://www.sciencedirect.com/science/article/pii/S0167739X96000295
http://raphael.mit.edu/Java/

	Computational steering of CFD simulations using a grid computing environment
	Abstract 
	1 Introduction
	2 Interactive CFD needs and requirements
	2.1 CFD and collaborative workspace

	3 Computational steering architecture
	3.1 Computational steering scheme
	3.2 Setting up of a new scenario (virtual wind tunnel example) 
	3.2.1 Fluid domain and bodies
	3.2.2 Initial and boundary conditions settings

	3.3 Preprocessing
	3.4 Solving
	3.5 Postprocessing

	4 Computational steering implementation
	4.1 Development requirements for the server
	4.2 Development requirements for the client
	4.3 Running the scenario
	4.4 Using an already existent Scenario
	4.5 User feedback
	4.5.1 Large model visualisation steering
	4.5.2 Simulation steering


	5 Conclusions
	Acknowledgments
	References




