Int J Interact Des Manuf (2014) 8:139-150
DOI 10.1007/s12008-013-0182-3

SHORT ORIGINAL PAPER

A modular architecture for a driving simulator based

on the FDMU approach

F. De Filippo - A. Stork . H. Schmedt - F. Bruno

Received: 14 March 2012 / Accepted: 21 February 2013 / Published online: 9 March 2013

© Springer-Verlag France 2013

Abstract The present paper describes the development of
a modular and easily configurable simulation platform for
ground vehicles. This platform should be usable for the
implementation of driving simulators employed both in train-
ing purposes and in vehicle components testing. In particular,
the paper presents a first architectural model for the imple-
mentation of a simulation platform based on the Functional
Digital Mock-Up approach. This platform will allow engi-
neers to implement different kinds of simulators that integrate
both physical and virtual components, thus achieving the pos-
sibility to quickly reconfigure the architecture depending on
the hardware and software used and on specific test case
needs. The platform has been tested by developing a case
study that integrates a motion platform, some I/O devices
and a simple dynamic ground vehicle model implemented in
OpenModelica.

Keywords Functional Digital Mock-up -
Driving simulator - Real time simulation - Virtual reality -
OpenModelica

F. De Filippo - F. Bruno ()

DIMEG-Dipartimento di Ingegneria Meccanica Energetica e
Gestionale, Universita della Calabria,

Rende, CS, Italy

e-mail: f.bruno@unical.it

F. De Filippo
e-mail: francesco.defilippo@unical.it

A. Stork - H. Schmedt

Fraunhofer-Institut fiir Graphische Datenverarbeitung IGD,
Darmstadt, Germany

e-mail: andre.stork @igd.fraunhofer.de

H. Schmedt
e-mail: hendrik.schmedt@igd.fraunhofer.de

1 Introduction

Driving simulators are used since several years both for
videogames and training applications. The most advanced
driving simulators include a special hardware, usually called
motion platform, which tries to simulate accelerations and
vibrations of the car in order to give the user the sensation of
being inside a real car [1].

Driving simulators are also used, in the automotive indus-
tries, to involve final users in the evaluation of a virtual pro-
totype of a car during the development process. This kind
of simulators can be used to test the behaviour of the whole
vehicle or to verify how the vehicle dynamics is influenced
by a new component (virtual or real) since the early phases of
a design process [2,3]. These kinds of simulators have been
also developed taking advantage of the Hardware In the Loop
(HIL) approach. This approach allows to include some of the
real devices that influence the vehicle behaviour in the sim-
ulation. HIL simulations are increasingly likely to be used
in the development and test of complex real-time embedded
systems, as they are able to provide an effective platform for
developing and testing real-time embedded systems.

Obviously the architecture and the technologies used for
the development of a simulator devoted to gaming applica-
tions are completely different from the ones used in industry.
The first ones use, in general, approximate behavioural mod-
els based on few and simple physical laws. Moreover they
lack of flexibility because they tightly integrate the mathe-
matical model with the hardware components, making diffi-
cult to change the configuration.

The second ones adopt accurate models for each single
component considered in the simulation, trying to obtain a
global behaviour model as realistic as possible.

The work presented in this paper aims to study the feasi-
bility of a simulation platform for ground vehicles based on

@ Springer

140

Int J Interact Des Manuf (2014) 8:139-150

an innovative architecture that is able to be quickly reconfig-
ured. The platform should be usable for the implementation
of several kinds of driving simulators employed for various
tasks like driver training, studies about road safety, design
and testing of new components or systems in the automotive
field.

The simulation platform should be easily configurable
depending on:

(a) the purpose of the specific test-case (e.g.: component
development or testing, drivers training, etc.);

(b) the hardware used: motion platform, driving cockpit,
devices for visualisation and interaction;

(c) the number and the type of software modules used to
simulate the different components of the vehicle;

(d) the possibility to include in the simulation some of the
control devices used in the real vehicle, according to the
HIL approach.

In other terms, the goal is to create a flexible simulation plat-
form based on a modular architecture that allows to add or
replace components, both virtual and real ones depending on
the test cases.

In order to fulfil all these requirements, a tool capable
of simulating the global functionality of complex systems
that can be related to different physical domains (mechanics,
electric, electronic, software, etc.) is essential.

This is a well-known problem in the modern industry
that continuously require to reduce costs and time-to-market
and to increase quality, also for complex and multi-domain
objects, e.g. mechatronic components and products.

It stands to reason that designers and engineers need soft-
ware architectures capable of managing different simulator
software in order to furnish a complete virtual prototype that
allows to detect and solve problems since the early phase of
the design process.

Hence, the integration between solvers for different phys-
ical and engineering domains, Virtual Reality applications
and I/O devices has been performed in different ways and
with different aims.

For example, Tideman et al. [4] and Kanai and Verlinden
[5] discuss the importance of prototyping in evaluate stake-
holders tastes; in [6] and [7] virtual industrial machines are
designed in order to allow workers to train and manufacture
process testing; Bruno et al. [8] and Kanai et al. [9] show
particular software architectures employed to perform the
simulation of virtual products in virtual environments also
using real devices.

The simulation platform has been tested by implement-
ing a case study that includes a driving cockpit installed on a
Stewart platform [10, 11] that, in the final version, will gener-
ate the vibrations and the accelerations that give the driver the
feeling of being in a real car. The motion platform is located at

@ Springer

Fraunhofer Institut fiir Graphische Datenverarbeitung (IGD)
in Darmstadt. The simulation platform is based on the Func-
tional Digital Mock-Up (FDMU) concept, which represents
the evolution of Digital Mock-Up (DMU) systems and of
classical virtual prototyping [12].

The Fraunhofer Institute developed the FDMU architec-
ture to provide a platform for the integration of a variety
of simulators capable of mapping the desired functioning of
a product also during the very early steps of its production
stages.

2 State of the art

First simulators appeared in the mid-1960s. Earliest notable
examples are devices developed by UCLA, GM Styling Staff,
Cornell Aero Labs, and Volkswagen (e.g., [13—15]), although
they were not able to support vehicle R&D.

Simulators improved during the 1970s and early 1980s, as
they were well suited for studying human behaviour, but not
yet for vehicle design and development. Some representative
examples are simulators developed at the Road and Traffic
Research Institute (VTI) in Sweden [16,17], at VPI [18], at
the Institute for Perception (IZF-TNO) in the Netherlands, at
FAT in Germany, and the HYSIM of FHWA [19].

In the 1980s and 1990s mid-to-high level devices have
been installed (e.g. at Daimler Benz in Berlin [20-22] and
further improvements have been made to the VTI simulator
in Sweden [23] and to the DRI driving simulator [24].

This generation of driving simulators were advanced
enough to support both vehicle R&D and studies about driver
behaviour.

In the second half of 1990s the National Advanced Driving
Simulator (NADS) has been sponsored by the US Depart-
ment of Transportation’s National Highway Traffic Safety
Administration (NHTSA) [25]. This simulator is intended to
be “world class”, providing, among a variety of applications,
also vehicle R&D capability.

In the meanwhile, other car companies and other organi-
zations established driving simulators also to support vehi-
cle design and development, but only recently these devices
overcome some technical problems (e.g. lack of motion capa-
bility, feel characteristics and image accuracy, sickness of
simulator, etc.) and became very elaborate and sophisticated
driving simulators. Among them, the upgraded simulators at
Daimler Benz [26,27], Vertex at Ford [28], BMW [29], Toy-
ota [30], TNO [31], and the current version of the DRI [32]
and NADS [33] simulator are notable examples.

Some of the mentioned simulators use very advanced sys-
tems of motion in order to reproduce the driving experience as
real as possible. They’re often employed in researches about
traffic safety and human behaviour for studying the influence
of factors that can affect attention while driving (e.g. fatigue,

Int J Interact Des Manuf (2014) 8:139-150

141

illness, optical disturbs, etc.) and to improve cars’ safety sys-
tems. They’re also used to test new car models or new car
parts in a safe, economic and perfectly repetitive way.

Focusing on the software control system of simulators, the
motion of the hardware device can be managed in different
ways.

The simulation can be centred around global vehicle
dynamics, using equations and parameters (often empirical
parameters) [34] or it can employ a hybrid Motion-Generation
method that combines the classic dynamics equations with
data acquired from an actual vehicle, providing a very effi-
cient and realistic simulation [35]. These kinds of simulators
require a preliminary step for data acquisition or parame-
ters evaluation that makes the simulator able to reproduce a
unique vehicle in a unique configuration and so they’re quite
rigid and not useful for industrial testing applications.

The most advanced driving simulators are controlled by
software that performs multi-body simulation in order to
accurately evaluate the vehicle dynamics. These software
have a modular structure that allows to interface the simulator
with real devices and/or other simulators, and to completely
reconfigure the specific vehicle, but they are generally written
for vehicle simulation (e.g. CAN interface).

Software frameworks like SARTURIS [36], developed
by Dresden University of Technology, allows the interactive
simulation of technical systems in a virtual reality environ-
ment and the cooperative simulation of different models mod-
elled using Modelica, the multi-physics modelling language.
Each model can be automatically converted in a SARTURIS
model thanks to a developed tool. SARTURIS also provides
some modules and interfaces for data exchange with lots of
devices (CAN port), for 3D visualisation (OpenSceneGraph)
and for the motion platform control.

SARTURIS allows to easily add or substitute a Model-
ica module, but it can communicate with others simulators
only through the standardized Functional Mock-up Interface
(FMI) [37,38] as shown in [39].

Others interesting software architecture employed in
driving simulators field are represented by control systems
used in NADS-1 and DESDEMONA simulator.

The first one uses NADSdyna, a dedicated highly con-
figurable software providing real-time multi-body vehicle
dynamics capable of simulating any vehicle [33].

The latter has a totally innovative motion hardware con-
sisting of a fully gimballed system that, as a whole, can
move vertically and horizontally and the car mock-up com-
municates via shared memory to a Matlab-Simulink envi-
ronment in which the vehicle model is running. The vehicle
model is generated in CarSim. The CarSim math models
cover the complete vehicle system and its inputs from the
driver, ground, and aerodynamics. The models are extensible
using built-in VehicleSim commands, MATLAB/Simulink
from the Mathworks, LabVIEW from National Instruments,

and custom programs written in Visual Basic, C, MATLAB,
and other languages.

The state of the art puts in evidence that a noticeable
research effort has been made to improve the flexibility and
the modular approach of the driving simulators, but most of
the proposed solution are based on a specific simulation envi-
ronment thus reducing the possibility to adapt the simulation
architecture to the specific engineering needs. For this rea-
son we have decided to test the use of the FDMU approach
to develop a modular platform for driving simulators. We
have adopted the framework developed at Fraunhofer Insti-
tute [40,41]; the employment of a generic simulation frame-
work can allow to easily use the most appropriate simulator
for each component, and to choose the preferred software
for each specific aim (e.g. simulation, visualisation, audio
reproduction, etc.). Each module will be interfaced, through
a custom wrapper, with the central data manager (Master-
Simulator); this allows to make the most from the capability
of the dedicated software components. The FDMU frame-
work also provides a visualisation component that allows
the interactive 3D representation of the simulation results.
FMDU is based on a Service Oriented Architecture (SOA).
A SOA defines some principles and methodologies to design
and develop software mechanisms able to manage large prob-
lems, in order to find the related solutions by breaking them
down into smaller problems. This goal is also pursued by
other standardized distributed simulation frameworks like
Distributed Interactive Simulation (DIS) [42] and its suc-
cessor, the High-Level Architecture (HLA) [43]. Like SOA,
these are specifications and not implementations. In partic-
ular, HLA overtook some DIS limitations specifying a stan-
dard architecture for distributed modelling and simulation;
it operates beyond a subnet using less bandwidth and can
reduce the development time by providing a flexible data
model able to share large quantities of data among applica-
tions in a very efficient manner. In order to do this, HLA
provides time management and synchronization tools, but it
imposes some rules that require some knowledge of compo-
nents’ inner operation.

SOA, instead, benefits from loose coupling, component
reuse and scalability, and allows integration of heterogeneous
resources and web-wide accessibility across firewall bound-
aries. As any other SOA, FDMU is suitable to perform the
data exchange and the service sharing among different sys-
tems and organization, meeting the requirements of secure-
ness and respect of ownership. Furthermore, the FDMU
framework is more oriented towards Virtual Prototyping and
it has been designed to satisfy the requirements of 3D visual-
isation and rapid reconfiguration. As better explained in the
following section, FDMU provides some additional services,
such as algorithms for simulation and time management and
tools for 2D/3D visualisation and data analysis to enhance
SOA characteristics of interoperability and easy debugging.

@ Springer

142

Int J Interact Des Manuf (2014) 8:139-150

With our work we intend to show that a FDMU exten-
sion towards the simulation field allows to exploit the high
flexibility and the powerful visualisation tool offered by
the FDMU architecture in CAE simulation environments,
in order to enhance product quality and reducing production
times.

3 The FDMU approach

In this section we briefly describe the FDMU framework;
further details are available in some of the papers listed in
references [12,41,44].

The FDMU tries to give to designers and engineers a tool
capable of simulating the global functionality of complex
systems that can be related to different physical domains
(mechanics, electric, electronic, software, etc.).

In particular, the FDMU framework developed by Fraun-
hofer Institute has been used. As widely explained in [40] and
[41], the framework has a central component, called Master-
Simulator, that links different Functional Building Blocks
(FBB) containing native behavioural model implemented
through either real or virtual components (see Fig. 1).

Each module works independently and communicates just
with the MasterSimulator through a wrapper application that
standardizes the FBB interface. The dedicated wrapper is the
only part of the architecture that needs to be implemented (or
modified) when a new simulator or a physical component is
added (or replaced).

The framework is loose coupled and implemented as a
Service Oriented Architecture whose components work as
services of a server-client infrastructure. The Web Service
standards have been pursued in implementing FDMU API
and in HTTP-based SOAP (Simple Object Access Protocol)
messages used for signal data exchange, and also to ensure
communication secureness, encryption and standardization
through firewalls, so that, different companies can collabo-
rate in development without risks for their own confidential
information.

The advantage of this approach is a high flexibility for
hosts, hardware platform, operating systems and IP domains,

FBB 1 FBB 3
y 4 v 4
MasterSimulator
4 v

FBB 2

FBB i

Wrapper n

Fig. 1 Basic scheme of FDMU architecture

@ Springer

allowing the coupling of different simulators also via Inter-
net, even if communication overhead occurs as drawback
[45].

In addition the distributed system paradigm of FDMU
architecture makes it suitable for large-scale co-simulation
scenarios, supporting concurrency and multi-threaded imple-
mentations in which thread-safe queues allow for distributed
and deadlock-free communication methods. The Master-
Simulator handles the information in order to get output
data from modules and to provide them the necessary input
information. Several protocols are available to support com-
plex concept of data transfer: the simplest algorithm handles
independently each connection, so preventing dead-locks and
maximizing their throughput, but it is also possible to upsam-
ple or downsample data, to preserve delays of event succes-
sion or to reorder it according to a predefined protocol. As
illustrated in Fig. 2, the MasterSimulator allocates an out-
put slot for each variable coming from the wrappers and an
input slot for any incoming variable required by the behav-
ioural model. The main part of the synchronization is car-
ried out by the MasterSimulator, which tries to decouple the
co-simulation by running parallel threads and buffering data
values in each slot, in order to avoid unnecessary blockings
of simulators or waiting for free processing time [12].

The FDMU framework does not require language bind-
ing because the coupling passes through each wrapper that
follows the WSDL (Web Service Definition Language) spec-
ification of the MasterSimulator to send information received
from its own FBB.

The universal description language SysML [46] adopted
for wrapper design allows for a standardized and tool-
independent description of interfaces of the native behav-
ior models [41]; incoming and outcoming variables have to
be mapped to standardized types in SysML in order to be
exchanged with MasterSimulator. Thanks to this approach,
itis possible to test the consistency of the model at an abstract
level, in order to specify value ranges and to check them at
run-time.

Wrapper
(3|8 N 1]

MasterSimulator
|
ing or Conversion
OUTPUT p . INPUT
Slots Slots

Fig. 2 Dataexchange via MasterSimulator; slots are named as In/Out-
put according to the wrapper’s point of view

Int J Interact Des Manuf (2014) 8:139-150

143

Each instance of the wrappers has its unique own text file
that correctly configures the connections with the MasterSim-
ulator and the FBB. This configuration file contains infor-
mation about the specific hardware or mathematical model
and about the variables and slots which have to be handled.
This mechanism increases flexibility and makes this frame-
work particularly suitable for testing different configurations,
thanks to the reusability of wrappers and models: it allows
the developer to use the same class of wrappers with different
instances of FBB that typically require a specific configura-
tion in terms of input and output slots.

The use of FDMU architecture in a driving simulator gives
some important advantages with respect to the software con-
trol systems mentioned in the state of the art. Like HLA or
FMI, FDMU allows to achieve a complex solution by split-
ting a complex problem in relatively simple partial problems
and solving them through different software and/or devices
but, as FDMU is expressly oriented towards Virtual Proto-
typing, it is focused on the concepts of secureness, flexibility,
easy reconfiguration and debugging.

In fact, thanks to its service-oriented architecture and to
the Web Service Standard employed, it allows each user
to test different devices and to choose their favourite soft-
ware for each analysed domain, easily coupling them via
Internet when they are resident on different departments or
companies.

No language binding is required and the architecture is
capable to accomplish a secure communication between dif-
ferent simulation tools, with no particular request for their
open interface, just by a dedicated wrapper.

Furthermore, the FDMU provides a flexible and extend-
able visualisation component that enhances development and
problem solving characteristics of a typical virtual prototyp-
ing environment. This interactive visualisation tool allows to
control the simulation process and, above all, to display even
large DMU models, composed by millions of polygons, giv-
ing the possibility to show and observe the movements that
are induced by the global system simulation and highlighting,
for example, colliding parts or signal source/sink. It is man-
aged independently by the framework, which ensures its con-
sistency with the model and an adequate refresh rate. Finally,
thanks to its post-processing functionalities, the user can plot
and analyse parameters and variables of the simulation.

4 The architecture of the simulation platform

As a first step, the developed architecture just includes the
essential components of a driving simulator. In particular we
have a hardware module (made up by a Stewart platform
and by a driving cockpit) and a software module represented
by a simulator that solves the equations of the mathemati-
cal model related to the vehicle dynamics. Thanks to imple-

Fig. 3 Motion platform

mented wrappers, the MasterSimulator manages the whole
simulation and performs the data exchange between mod-
ules. The complete architecture also includes a control panel
module that is a part of the FDMU visualisation component.

In this section we treat about hardware and software mod-
ules, about the central MasterSimulator and, finally, about
wrappers needed to integrate each module in the FDMU
framework.

4.1 Hardware module

This paragraph describes the hardware devices used in this
study and their interfacing capability in sending and/or
receiving commands.

As shown in Fig. 3, the hardware module includes a Stew-
art platform used to move the cockpit and reproduce the
accelerations, a cockpit with steering wheel and pedals and
a visualisation system made with three LCD displays.

The hardware module provides information about plat-
form state and values of steering wheel, accelerator and brake
pedals. At the same time, it receives the joint values cal-
culated by the wrapper to move the platform according to
simulation results (see Table 1).

4.1.1 Stewart platform
The Stewart platform is provided by OTLO (see Fig. 4) and

it has six ball screw actuators, each one independently con-
trolled. Hence the platform has six degrees of freedom that

@ Springer

144 Int J Interact Des Manuf (2014) 8:139-150

Table 1 Variables exchanged
by hardware module with Incoming variables Actuator extensions (six degrees of freedom evaluated by the wrapper starting
MasterSimulator from vertical translation, roll angle and pitch angle values given by software
module)
Outcoming variables Steer angle

Throttle pedal angle
Brake pedal angle

- =
i \\\\\\\\\\\\\\\\\\\\\\\

Fig. 4 Stewart platform and ball screw actuator

can be controlled by imposing the extensions of the actuators
at a maximum speed of about 2 m/s.

The robot is connected with an industry-standard com-
puter (OTLO VR Systeme), shown in Fig. 5, which controls
all its components (actuators, electric supply, encoders, etc.)
and contains process data acquisition and control modules.

The control computer can exchange data over a network
through UDP socket.

4.1.2 Steering wheel and pedals

The cockpit has been equipped with a FANATEC kit that
includes a steering wheel and three pedals (see Fig. 6). The
kit is configured as a multi-axis joystick and it comes with
DirectX drivers. It can be connected to a PC through a USB
port and the data can be read using DirectX API.

This kit works on three axes: one for the steering wheel,
another for throttle and brake pedals and the last one for
clutch pedal. Throttle and brake give, respectively, positive
and negative values on the same axis. It has got also several
buttons that may be assigned to custom functions.

4.2 Software module

The software module simulates the car dynamic model using
input values received from MasterSimulator and it sends back

. Fig. 5 Industry-standard ter OTLO VR Syst
results about the dynamic parameters. % fdustry-standarc compuier ysieme

@ Springer

Int J Interact Des Manuf (2014) 8:139-150

145

Fig. 6 Steering wheel and pedals by FANATEC

We have adopted a simplified dynamic model of a car writ-
ten in Modelica language and simulated using OpenModel-
ica (OM). OM provides an interactive simulation subsystem,
called OM Interactive (OMI), which allows a user-interactive
and time synchronous simulation.

OMI is part of the simulation runtime core and results in
an executable simulation application, which contains the full
Modelica model as C/C++ code with all required equations,
conditions and different solvers to simulate a whole system
or a single system component [47].

This executable application communicates with external
applications via message passing using TCP/IP.

At this stage of the work we’ve implemented a simplified
three degrees-of-freedom (dof) full-car model like the one
shown in Fig. 7.

After setting different parameters, the simulator evaluates
the vertical translation and pitch and roll angles that result
from the displacement given for each wheel (d-fr, d-fl, d-rl
and d-rr).

The same three dynamic parameters are also evaluated
through some qualitative relations using the data received
from cockpit input devices (steer, acceleration and brake
pedal angles) and by estimating longitudinal speed and accel-
eration. In this simplified model, the final motion set that has
to be applied to the Stewart platform is just obtained as the
superposition of the effects due to road roughness and user
input (actually the effects influence each other). This behav-
ioural model is very simple (it is not intended to ensure
high accuracy), and it has been implemented just for test-
ing connection and communication capability of the whole
system using a standard commercial PC (i7-Q720 @ 1.76
GHz processor, 6 GB RAM); in Modelica environment we
are able to obtain a 1 millisecond resolution spending about
70 ms of wall-clock time for each second of model simulation
time.

roll

—

d-rr

d-rl

Fig. 7 Three-dof full-car model

The whole set of parameters and variables managed by
the model is summarized in Table 2; according to OpenMod-
elica conventions, we define as “variable” those properties
that have to be evaluated or received as input, and as “para-
meters” the ones that are assumed to be constant during the
simulation, but that could be also interactively changed by
the user, through the configuration interface of the simulator,
in different simulations or in different phases of the same
simulation without editing the model.

It should be noted that, in this version, the wheel displace-
ments are assigned by using a random periodic function, but
in future they will be extracted from the virtual simulation
scene.

We will also implement the possibility to change some
simulation parameters at run-time. In the specific case, the
simulation parameters represent the most relevant character-
istics of a vehicle (e.g.: mass, dimensions, spring and dump-
ing suspensions coefficients, etc.) but they could include
information about driving assistance systems, external envi-
ronment, components wear, etc.

@ Springer

146

Int J Interact Des Manuf (2014) 8:139-150

Table 2 Parameter and variable

set handled by the simulator Parameters

Simulator internal variables

Incoming variables (from MasterSimulator)

Outcoming variables (to MasterSimulator)

Body weight

Car track and wheelbase

Moment of inertia about pitch axis
Moment of inertia about roll axis
Centre of Gravity position

Spring constants

Dumper constants

Suspension lengths

Additional forces on suspensions

4 x wheel displacement

Velocity along z

Acceleration along z

Angular velocity about roll axis
Angular acceleration about roll axis
Angular velocity about pitch axis
Angular acceleration about pitch axis
Steer angle

Throttle pedal angle

Brake pedal angle

Vertical translation

Control Panel
Platform

Motion v,
Platform Vs

MotionPlatform Wrapper Control Panel Wrapper

Device values,] Simulatio Device values, & Simulatio
Platform stat results nt Platform state ' results ’1
MasterSimulator I

Input device y Simulation
values l results t

OMIWrapper

OpenModelica
Interactive

Fig. 8 Scheme of implemented control architecture

4.2.1 FDMU MasterSimulator

The data exchange between software and hardware mod-
ule is realized thanks to the FDMU Mastersimulator, which
loads the needed modules and launches the global simula-
tion, moving the platform according to the dynamic parame-
ters evaluated by the mathematical model that processes the
user inputs.

The complete scheme is visible in Fig. 8.

While the simulation is running, it is possible to check
every variable or parameter through the Control Panel mod-
ule linked to the MasterSimulator. This module provides a
graphical interface (illustrated in Fig. 9) that allows the user
to launch and/or stop the simulation and to monitor each sim-

@ Springer

ulation variable. In the future, through the control panel and
the visualisation tool, it will be possible to set some of the
simulation parameters, e.g.: data about the scenario, char-
acteristics of the dynamic model, etc., and to interactively
visualise the simulated 3D model.

4.3 Implementation of the wrappers

Both the hardware and the software module need to exchange
data with the MasterSimulator; in order to perform data
exchange two wrappers have been implemented. Imple-
mented wrappers are executable applications written in C++
language and launched by the central framework. They han-
dle the related module and create the needed slots.

In particular, the motion platform wrapper links the hard-
ware modules with MasterSimulator. It acquires input device
values and information about platform state and writes them
on the specific slots of theMasterSimulator. The MasterSim-
ulator makes the simulation results available for the motion
platform wrapper that reads and elaborates them in order to
calculate joint variables of actuators. The wrapper, in fact,
performs the resolution of the inverse kinematics, determin-
ing the translation that each actuator has to perform in order
to achieve the pose of the platform evaluated by the solver.
Figure 10 shows the data flow between the motion platform
and the MasterSimulator.

The motion platform wrapper allows to exchange data
with the robot and to control its state and its movements. The
robot is controlled by a dedicated calculator that exchanges

Int J Interact Des Manuf (2014) 8:139-150

e e AT
Temperature K

Texmperature K
Texperature K

slot hex.D_Pad
slot hex.Buttons

OUTPUT Double Scalar Value SazpledDataFlow 0.0 0.1 0.0
OUTPUT Double Scalar Value SampledDataFlow 0.0
OUTPUT Double Array Value SampledDataFlow 0.0 0.1 0.0

0.1 0.0

channel x02 hex.steerAngle steerAngle
channel x03 hex.accAngle accingle
channel x04 hex.brakeAngle brakeAngle
channel x01 psi hex.psi
channel x05 del hex.del
channel x06 vX hex.vx
channel x07 sosp.bedy.s hex.sosp.body.s
channel x08 phi hex.phi
“ m
< = I
}) Scope 20 | scope 21 scope 22 Scope #3|
um 3 e 1= 1% fo=
FrLEChERELEMRKELWEEEEE B L L.,
: 4
Name Value »
7] del 1,342 7
VX 0
phi 0
] psi 0 6
| steerAngle 0
hex.vx 0
t..nex.phi 1,506¢ 3
V| hex.psi 3,008
7] hex.steerAngle . 0
7] hex.accAngle 0 4
hex.brakeAngle 0
hex.D_Pad 0
| hex.Buttons 0 s
2
1
A
o L/
-1
2
0 1 2 3
vl < {}

[Tue Apr 19 10:16:55 CEST 2011] [INFO] Console: console started

Fig. 9 Graphic interface of the control panel

,fé,\ Motion Platform ‘._/'/!L@

input device platform Joint
values < state values

Motion PlatformWrapper

input device values, Simulation
platform state results

—

MasterSimulator :'

Fig. 10 Scheme of data exchanged by motion platform wrapper

data with external applications (in this case, with the motion
platform wrapper) through sockets, using an UDP/IP com-
munication protocol.

[Tue Apr 19 10:16:55 CEST 2011) ([INFO) Console: FDMU Console - Version 2.5.0 (August 18, 2010)

The motion platform wrapper uses DirectX libraries to
acquire data by the input devices (steering wheel and pedals),
thus it can be reused also with other DirectX compatible input
devices.

The OMI wrapper reads input device values from Master-
Simulator and sends these data to the OMI simulator, which
evaluates the pose of the motion platform (limited to pitch
and roll angle and vertical position) and sends it to the wrap-
per.

Finally the OMI wrapper writes the simulation results on
the slots of MasterSimulator, which make them available for
the other modules.

Figure 11 illustrates data exchange between OMI and
MasterSimulator.

The OMI wrapper launches the Modelica model that sim-
ulates the car dynamics and controls the simulation process.

@ Springer

148

Int J Interact Des Manuf (2014) 8:139-150

| MasterSimulator -
input device Simulation
values ‘ results ‘

OMI Wrapper

input device Simulation
values results ¥

OpenlModelica

Interactive

Fig. 11 Scheme of data exchanged by OMI wrapper

The OMI wrapper and the related module exchange infor-
mation through different sockets using TCP/IP protocol.

Both the motion platform and the OMI wrappers initialize
all the slots required by MasterSimulator using their own
configuration file.

It is important to point out that wrappers are totally
reusable and they make the platform usable for simulating
any kind of vehicle (not only terrestrial) with different levels
of detail, just by coupling a different Modelica model with
OMI Wrapper and editing the configuration file; the same
simple operation is required to be done on the platform wrap-
per configuration file, if different input devices are needed.

5 Conclusions

With the developed architecture, we verified the feasibility
of a control architecture for a driving simulator based on the
FDMU approach and technologies. In order to achieve this
goal, we have elaborated a simplified dynamic ground vehicle
model and we have implemented wrappers to interface the
central framework both with hardware and software modules.

For the first time the FDMU framework has been inte-
grated with a physical component (i.e. the motion platform),
giving us a positive feedback about the effectiveness of the
proposed approach.

The implemented modules have been used to conduct the
first tests using a standard PC (i7-Q720 @ 1.76 GHz proces-
sor, 6 GB RAM). The real-time simulations have been per-
formed with Modelica simulator, the two Wrappers and the
MasterSimulator running on the same machine, reaching a
complete exchange time of about 50 ms, allowing to refresh
the platform position 20 times per second; the fluidity of
platform movement is anyway ensured by its own refresh
rate. No time management has been harnessed at this step.
Future works will be intended to enhance communication
performances, now limited by TCP/IP sockets required on
the simulator side, and provide further information about
time frequency and average time delay realized in order to
confirm good results already obtained in other applications
[41,44]. Other tests will be performed to verify the differ-

@ Springer

ent available time management methods and to better check
reliability of HIL integration according to bandwidth char-
acteristics.

The implemented architecture has got some interesting
characteristics related, above all, to the development process
of vehicles and/or vehicles components:

— Possible integration of both virtual and real components;

Easy and quick integration/substitution of simulation

components;

Rapid integration of new classes of components;

— Real-time monitoring of simulation parameters and
events visualisation.

The FDMU approach gives the possibility to quickly change
the number and the configuration of the FBBs connected to
the MasterSimulator. So, for example, the same OMI wrapper
could be used also to include in the architecture other FBBs
containing different Modelica models (e.g.: thermal, electric,
electronic, etc.) thus obtaining a more detailed and reliable
virtual prototype.

It represents a powerful way to create a flexible simulation
environment using the preferred hardware for the physical
components and the most suitable software for each physical
domain, ensuring the complete control of the simulation and
of its parameters.

Furthermore, the software architecture implemented for
the platform allows to simulate different kinds of vehicles,
justby replacing the Modelica model and/or the input devices
and editing wrappers and MasterSimulator configuration
files, thus achieving the possibility to quickly configure the
architecture according to specific test case needs.

Its capabilities of early inspection and problem pinpoint-
ing provide a powerful tool for testing each hardware com-
ponent or software configuration at any development stage,
always taking into consideration the positive contribution
on the whole product functionality. These characteristics
are essential in every industry field, and in particular in the
automotive engineering area, because they allow to improve
quality, reliability and appeal on customers too, reducing the
time-to-market.

In the future, the architecture will be extended with new
components to enrich the visual and audio simulation and the
detail level of the mathematical model, in order to test it in
different and more challenging scenarios.

References

1. Bergamasco, M., Avizzano, C.A., Angerilli, M., Carrozzino, M.,
Facenza, G., Frisoli, A.: Fork-lift truck simulator for training in
industrial environment. In: Proceedings of Virtual Concept 2005

(2005)

Int J Interact Des Manuf (2014) 8:139-150

149

2.

10.

11.

12.

13.

14.

17.

20.

21.

22.

23.

Freeman, J.S., Watson, G., Papelis, Y.E., Lin, T.C.: The Iowa
Driving Simulator: An Implementation and Application Overview
(1996)

Reymond, G., Heidet, A., Canry, M., Kemeny, A.: Validation of
Renault’s dynamic simulator for Adaptive Cruise Control exper-
iments. In: Proceedings of the Driving Simulation Conference
DSC’2000. Paris, France, pp. 181-192 (2000)

Tideman, M., van der Voort, M.C., van Houten, F.J.A.M.: A new
product design method based on virtual reality, gaming and sce-
narios. Int. J. Interact. Design Manuf. 2, 195-205 (2008)

Kanai, S., Verlinden, J.: Advanced prototyping for human-centered
design for information appliances. Int. J. Interact. Design Manuf.
3, 131-134 (2009)

Acal, A.P, Lobera, A.S.: Virtual reality simulation applied to a
numerical control milling machine. Int. J. Interact. Design Manuf.
1, 143-154 (2007)

Sghaier, A., Soriano, T.: Using high-level models for modeling
industrial machines in a virtual environment. Int. J. Interact. Design
Manuf. 2, 99-106 (2008)

Bruno, F,, Caruso, F,, Li, K., Milite, A., Muzzupappa, M.: Dynamic
simulation of virtual prototypes in immersive environment. Int. J.
Adv. Manuf. Technol. 43(5-6), 620-630 (2009)

Kanai, S., Miyashita, T., Tada, T.: A multi-disciplinary distributed
simulation environment for mechatronic system design enabling
hardware-in-the-loop simulation based on HLA. Int. J. Interact.
Design Manuf. 1, 175-179 (2007)

Gough, V.E.: Contribution to discussion of papers on research in
automobile stability, control and tyre performance. In: Proceedings
of Auto Div. Inst. Mech. Eng., pp. 392-394 (1956-1957)

Stewart, D.: A Platform with Six Degrees of Freedom. In: Proceed-
ings of Institution of Mechanical Engineers (UK), Vol. 180 (Pt 1,
No 15) (1965-1966)

Schneider, P., ClauB, C., Enge-Rosenblatt, O., Schneider, A.,
Bruder, T., Schifer, C., Voigt, L., Stork, A., Farkas, T.: Functional
digital mock-up—more insight to complex multi-physical systems,
Bonn (2010)

Wojcik, C.K., Hulber, S.F.: The driving simulator—a research tool.
ASME Paper 65-WA/HUF-13 (1965)

Beinke, R.E., Williams, J.K.: Driving simulator. In: Paper pre-
sented at the General Motors Corporation Autootive Safety Semi-
nar (1968)

. Lincke, W., et al.: Simulation and measurement of driver vehicle

handling performance. SAE Paper 730489 (1973)

Nordmark, S., et al.: A moving base driving simulator with wide
angle vision system. In: 64th Annual Meeting, Transportation
Research Board, Washington D.C. (1985)

Nordmark, S.: VTI driving simulator—mathematical model of a
four-wheeled. Swedish Road and Traffic Institute, VTI No. 267A
(1984)

. Wierwille, W.W.: Driving simulator design for realistic han-

dling. In: Proceedings of the Third International Conference on
Vehicle System Dynamics, Swets and Zeitlingerand, Amsterdam
(1975)

Alicandri, E.: HYSIM: the next best thing to being on the road.
Public Roads. Winter 57(3): 19-23 (1994)

Drosdol, J., Panik, F.: The Daimler-Benz driving simulator a tool
for vehicle development. SAE Paper 850334 (1985)

Hahn, S., Kdding, W.: The Daimler-Benz driving simulator—
presentation of selected experiments. SAE Paper 880058 (1988)
Kiading, W.: The advanced Daimler-Benz driving simulator. SAE
Paper 950175 (1995)

Nordmark, S.: The new Trygg Hansa truckdriving simulator: an
advanced tool for research and training. In: Swedish Road and
Transport Research Institute, VTI Reprint 187 (1992), 6 pages,
Proceedings of the International Symposium on Advanced Vehicle
Control 1992 (AVEC ’92), Yokohama, Japan (1992)

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

Weir, D.H., Bourne, S.M.: An overview of the DRI driving simu-
lator. SAE Paper 950173 (1995)

Stall, D.A., Bourne, S.: The national advanced driving simulator:
potential applications to ITS and AHS research. In: Proceedings of
the 1996 Annual Meeting of ITS America (1996)

Breuer, J.J., Kaeding, W.: Contributions of driving simulators to
enhance real world safety. In: Proceedings of the Driving Simulator
Conference Asia/Pacific 2006, Tsukuba, Japan (2006)

New driving simulator taken into operation in Sindelfingen:
Investment in cutting-edge technologies. http://www.daimler.
com/dccom/0-5-658451-1-1338848-1-0-0-0-0-1-8-7165-0-0-0-
0-0-0-0.html. Accessed 4 Mar 2013

Greenberg, J., Artz, B., Cathey, L.: The effect of lateral motion cues
during simulated driving. In: Proceeding of the Driving Simulator
Conference North America 2003, Dearborn (2003)

Huesmann, A., Ehmanns, D., Wisselman, D.: Development of
ADAS by means of driving simulation. In: Proceedings of the
Driving Simulator Conference Europe 2006, Paris (2006)
http://www?2.toyota.co.jp/en/news/07/1126_1.html. Accessed 4
Mar 2013

Feenstra, P.J., Wentink, M., Roza, Z.C., Bles, W.: Desdemona, an
alternative moving base design for driving simulation. In: Proceed-
ings of the Driving Simulator Conference North America: Septem-
ber 2007. Iowa City, Iowa (2007)
http://www.dynres.com/prod_drivingsimulators.html. Accessed 4
Mar 2013

National Advanced Driving Simulator Overview. http://www.
nads-sc.uiowa.edu/. Accessed 4 Mar 2013

Ambroz, M., Prebil, L.: i3Drive, a 3D interactive driving simulator.
IEEE Comput. Graph. Appl. 30(2), 86-92 (2010)

Cha, M., Yang, J., Han, S.: A Hybrid Driving Simulator with
Dynamics-Driven Motion and Data-Driven Motion. SIMULA-
TION (2008)

Frenkel, J., Schubert, C., Kunze, G., Jankov, K.: Using Modelica
for interactive simulations of technical systems in a virtual reality
environment. In: Proceedings 7th Modelica Conference, Como,
Italy (2009)

http://www.modelisar.org/. Accessed 4 Mar 2013

Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clau}, C.,
Elmgqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold,
T., et al.: The functional Mockup interface for tool independent
exchange of simulation models. In: Proceedings of the 8th Inter-
national Modelica Conference, Dresden, Germany (2011)
Gruening, T., Kunze, G., Katterfeld, A.: Simulating the working
process of construction machines. In: 3rd International Confer-
ence & Exibithion BulkSolids Europe 2010, Glasgow, Scotland
(2010)

Stork, A., Thole, C.A., Klimenko, S., Nikitin, I., Nikitina, L.,
Astakhov, Y.: Simulated reality in automotive design. In: Inter-
national Conference on Cyberworlds, Hannover (2007)

Stork, A., Wagner, M., Schneider, P., Bruder, T., Hinnerichs, A.:
Functional DMU: co-simulation of mechatronic systems in a vir-
tual environment. In: ASME, editor. Proceedings of the ASME
2011 World Conference on Innovative Virtual Reality, Milan, Italy,
pp- 193-198 (2011)

IEEE Standard for Distributed Interactive Simulation—
Application Protocols. Distributed Interactive Simulation Com-
mittee of the IEEE Computer Society. IEEE Std 1278.1a-1998
(Supplement to IEEE Std 1278.1-1995) (1998)

DoD High Level Architecture (HLA) for Simulations. Department,
U. S. Defense, Under Secretary of Defense for Acquisition and
Technology, USD (A&T), memorandum (1996)

Schneider, P., ClauB}, C., Schneider, A., Stork, A., Bruder, T.,
Farkas, T.: Towards more insight with functional digital mockup.
In: Proceedings of the 4th EASC 2009 European Automotive Sim-
ulation Conference, Munich, Germany, pp. 325-336 (2009)

@ Springer

http://www.daimler.com/dccom/0-5-658451-1-1338848-1-0-0-0-0-1-8-7165-0-0-0-0-0-0-0.html
http://www.daimler.com/dccom/0-5-658451-1-1338848-1-0-0-0-0-1-8-7165-0-0-0-0-0-0-0.html
http://www.daimler.com/dccom/0-5-658451-1-1338848-1-0-0-0-0-1-8-7165-0-0-0-0-0-0-0.html
http://www2.toyota.co.jp/en/news/07/1126_1.html
http://www.dynres.com/prod_drivingsimulators.html
http://www.nads-sc.uiowa.edu/
http://www.nads-sc.uiowa.edu/
http://www.modelisar.org/

150 Int J Interact Des Manuf (2014) 8:139-150

45. Enge-Rosenblatt, O., ClauB}, C., Schneider, A., Schneider, P.: Func- 46. SysML. http://www.sysml.org/. Accessed 4 Mar 2013
tional digital mock-up and the functional mock-up interface—two 47. Fritzson, P., Pop, A., et al.: OpenModelica System Documentation
complementary approaches for a comprehensive investigation of (Version for OpenModelica 1.5) (2010)
heterogeneous systems. In: International Modelica Conference,
Dresden (2011)

@ Springer

http://www.sysml.org/

	A modular architecture for a driving simulator based on the FDMU approach
	Abstract
	1 Introduction
	2 State of the art
	3 The FDMU approach
	4 The architecture of the simulation platform
	4.1 Hardware module
	4.1.1 Stewart platform
	4.1.2 Steering wheel and pedals

	4.2 Software module
	4.2.1 FDMU MasterSimulator

	4.3 Implementation of the wrappers

	5 Conclusions
	References

