
Int J Interact Des Manuf (2013) 7:261–269
DOI 10.1007/s12008-012-0180-x

ORIGINAL PAPER

Design and interactive simulation of cross-axis compliant pivot
using dynamic splines

Pier Paolo Valentini · Eugenio Pezzuti

Received: 16 October 2012 / Accepted: 30 October 2012 / Published online: 13 November 2012
© Springer-Verlag France 2012

Abstract The paper deals with the description of a new
methodology for addressing the modelling for static and
dynamic simulation of the cross-axis flexural pivot. The pro-
posed methodology is based on the use of the dynamic spline
formulation for describing the deformation of the structure
using reference points. By using this approach, the very large
displacement of the compliant pivot can be modelled using
a reduced number of variables. The methodology has been
formulated to be also suitable for an integration with an aug-
mented reality interactive design environment. The results
coming from the simulations (both static and dynamic) of the
proposed model have been compared to those of an equiv-
alent finite element model and show very good accordance.
The proposed methodology is able to take into account the
nonlinear aspects and it is suitable for real-time computa-
tion. An example of implementation in an augmented reality
interactive design environment has been successfully imple-
mented.

Keywords Cross-axis flexural pivot · Dynamic spline ·
Interactive design · Simulation · Augmented reality

1 Introduction

The cross-axis flexural pivot is a compliant mechanism which
allows the controlled relative rotation between two attached
bodies. Figure 1 shows an example of the device in its basic
and preferred embodiment. As a compliant mechanism, it
gains mobility thanks to the deformation of its links and flex-
ible components rather than through the use of specific kine-
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matic pairs [1]. For this reason, the cross-axis flexural pivot
does not have any degree of freedom in the strict sense, but
however preserves the mobility thanks to the specific shape
of its parts which produces controlled deformation of the
entire structure. In particular, the relative movement of the
two attached bulky parts is based on the presence of two flex-
ible beams that deform and store energy during movement.
This energy can be used for driving the relative motion back
to the original undeformed configuration. Thanks to this char-
acteristic, the cross-axis flexural pivot is used in automatic
deployment system, controlled devices and similar applica-
tions, without necessarily having to insert specific compo-
nents such as torsional springs [2,3].

The cross-axis flexural pivots are easy to manufacture and
easy to assemble. They can be produced by means of common
moulding of plastic material or by cutting of metal sheets.
Moreover, they allow high performances in terms of accu-
racy, reliability, low wear, low weight, low noise and low
maintenance.

The main challenge in the design of compliant mech-
anisms and in particular in the design of flexural pivots
concerns with the careful definition of morphological and
structural properties of components in order to achieve the
desired articulation and required functionality [4,5]. The
mobility of compliant mechanisms is allowed thanks to the
deformations of its members which however must be limited
by mechanical resistance considerations.

According to the scientific literature, the design method-
ologies of compliant mechanisms (analysis and synthesis)
are often addressed using the pseudo-rigid-body approach
[6–10]. Following this methodology, the compliant mecha-
nism is associated to a system with all rigid bodies, kinematic
pairs and concentrated elastic elements that reproduces the
global behaviour of the device in an satisfactory manner.
The pseudo-rigid-body model allows the application of the
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Fig. 1 An example of cross-axis flexural pivot

common design techniques for rigid-body mechanisms both
for synthesis and analysis purposes.

The definition of a pseudo-rigid-body mechanism is a
good compromise between simplicity in modelling and accu-
racy in the estimation of functional behaviour. The equivalent
rigid body has to be implemented taking into account all the
possible deformation modes.

In 2002, Jensen and Howell [11] approached the mod-
elling of cross-axis flexural pivot. They proposed two
methodologies for addressing the implementation of surro-
gate pseudo-rigid-body mechanism. The first one is based on
the use of a single central pivot with a torsional spring and
the second one is based on the implementation of a four-bar
mechanism with four torsional springs.

For the specific application to the cross-axis flexural pivot,
the pseudo-rigid-body approach has two main drawbacks.
First of all, it is not suitable for very large deformation con-
figurations (pseudo-hinges rotation of more than 50◦ ÷60◦),
since the approximation using concentrated articulations
leads to unacceptable errors due to linear stiffness approxi-
mations [1,12]. Secondly, the approach is suitable for static
and quasi-static assessment, but gives too inaccurate results
in dynamic simulations because the inertia distribution of the
moving parts is badly approximated as well [13].

Another possible approach in the design of this type of
mechanisms makes use of finite element modelling [3,14].
This methodology allows a precise and accurate description
of the shape and the elastic behaviour of each link of the
device but requires considerable computational resources.
This limitation is mainly due to the need for complex formu-
lations for taking into account the highly nonlinear effects
of large displacements. Finite elements can be suitable for
refinement analyses but are often too computational onerous
for preliminary design and optimization and for interactive
assessment and simulation.

The objective of the paper is to present an innovative
methodology for approaching the design of compliant mech-

anism having a computational efficient formulation (faster
than finite elements), but able to achieve more precise results
with respect to the pseudo-rigid-body model in the whole
range of displacement. The proposed methodology makes
use of the dynamic splines that are suitable for the simula-
tion of very flexible slander links.

Dynamic splines have been introduced in computer-aided
design simulation by Quin and Terzopoulus [15], optimized
by Theetten et al. [16] and specialized in multibody dynamics
simulation by Valentini et al. [17]. They combine physics-
based constraining equations with spline geometry represen-
tation. Their main advantage is that even a complex and large
displacement of a beam-shaped element can be expressed in
terms of a polynomial closed form expression using common
spline description, deducing geometrically exact expressions
of kinetic and elastic energies.

In comparison to classical finite element approaches, the
dynamic splines allow the use of the same representation
for drawing and simulating without requiring the meshing
of flexible parts. Moreover, they allow accurate modelling
requiring a reduced number of variables (degrees of freedom)
[17,18]. This characteristic is very suitable for implementing
interactive design methodologies based on real-time or very
fast simulations [19].

The paper is organized as follow. In a first part, the math-
ematical modelling of the cross-axis flexural pivot using
dynamic splines is presented. In a second part, the results of
simulations are presented together with a comparison using
nonlinear finite element approach. In the last part, details of
the integration of the proposed methodology into an inter-
active design environment based on augmented reality are
discussed.

2 Modelling the cross-axis flexural pivot using dynamic
splines

2.1 General equations of motion

The cross-axis flexural pivot is a mechanical system which
can be modelled using two rigid bodies and two flexible
splines (see Fig. 2). The rigid bodies represent the attachment
parts and the splines represent the compliant beam-shaped
elements which allow the articulation. Since the motion of
the system is expected in a plane, a 2D simplification can be
used.

Each beam can be described with a cubic Bézier spline
using four control points and can be expressed in the poly-
nomial parametric form as:

beam 1 → C1 (u) =
3∑

i=0

bi (u)Pi (1)
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Fig. 2 Nomenclature of cross-axis flexural pivot model using dynamic splines

beam 2 → C2 (v) =
3∑

i=0

bi (v)Qi (2)

where Pi are the control points of the curve C1 that passes
through the centre of each cross-section of beam 1; Qi are the
control points of the curve C2 that passes through the cen-
tre of every cross-section of beam 2; bi (x) are the blending
functions that for a cubic 4-point B-spline can be assumed as:

b0(x) = (1 − x)3

b1(x) = 3 · x · (1 − x)2

b2(x) = 3 · x2 · (1 − x)
b3(x) = x3

(3)

Considering one of the rigid bodies as the ground, the entire
system possesses 19 degrees of freedom (8 for the description
of each spline and 3 for the description of the other rigid
body).

The equations of motion of whole system can be writ-
ten in terms of generalized coordinates and deduced using
Lagrange equations:

{
d
dt
∂T
∂q̇i

− ∂T
∂qi

−
[
∂ψ
∂qi

]T · λ = Qi i = 1 . . . 19

ψ = 0
(4)

where qi is the i-th generalized coordinate—for the spline
they are the coordinates x and y of the control points; for
the rigid body they are the kinematic descriptors (x and y
coordinates of the centre of mass and the attitude angle θ);

q̇i = dqi
dt is the time derivative of the i-th generalized coor-

dinate; T is the kinetic energy of the whole system; ψ is the
vector containing the constraint equations; λ is the vector of
Lagrange multipliers associated to the constraint equations;
Fi is the component of all generalized forces acting on the
i-th coordinate qi .

2.2 Definition of constraints

The investigated system includes four constraints describ-
ing the connection between the beams and the two rigid
bodies. All these connections can be modelled using 2
degrees of freedom constraints applied to both ends of the
beams.

Four constraints (8 scalar equations) are needed to express
the coincidence of the first and last control points of the
splines to the corresponding points on the ground and the
moving rigid body:

ψ1,2 = C1(0)− A1 = P0 − A1
ψ3,4 = C1(1)− B1 = P3 − B1
ψ5,6 = C2(0)− A2 = Q0 − A2
ψ7,8 = C2(1)− B2 = Q3 − B2

(5)

Four other constraints have to be introduced in order to
ensure that the relative angles between the rigid body 1 and
the first point of both beams and the rigid body 2 and the last
control points are constant. Since the control points do not
possess rotational degrees of freedom, these conditions have
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Fig. 3 Cross-axis flexural pivot articulation for a prescribed rotation
of the upper rigid body

to be written using Frenet frame components [17]. For the
particular case, with reference to Fig. 3, we have:

ψ9 = dC1
du

∣∣∣
u=0

× mA1

ψ10 = dC1
du

∣∣∣
u=1

× mB1

ψ11 = dC2
dv

∣∣∣
v=0

× mA2

ψ12 = dC2
dv

∣∣∣
v=1

× mB2

(6)

where × denotes the cross product, t = dC
dx is the generic

tangent unit vector and the unit vectors m are fixed to the
corresponding rigid bodies.

In order to produce the initial deformation of the flexural
pivot the rotational motion of the rigid body has to be pre-
scribed using a driving constraint:

ψ13 = ϑ2 − ϑ0
2 (7)

For deployment simulation (i.e. free motion of the cross-axis
flexural pivot), the constraint in Eq. (7) has to be removed.

2.3 Computation of forces

Each generalized force acting on the flexible beam have two
contributions:

Fi = Fi,elastic + Fi,external (8)

The first one, Fi,elastic, is due to the elastic forces gener-
ated by the deformation of the beams. It can be computed
from the derivative of the overall elastic energy Uelastic with

respect to the generalized coordinates as:

Fi,elastic = −∂Uelastic

∂qi
(9)

The second contribution to the generalized forces, Fi,external ,
depends on the external forces and torques acting on the
structure. In the simulated scenario this contribution has been
neglected.

For the 2D (planar) case, the overall elastic energy Uelastic,
required to compute the elastic forces in Eq. (8) is composed
of two terms. The first one is due to bending, the second one
is due to stretching.

The bending elastic energy is proportional to the square
of the variation of the bending strain:

Ubending = 1

2

∫

spline

E I
(
εb − ε0

b

)2
ds

= 1

2

1∫

0

E I
(
εb − ε0

b

)2
∥∥∥∥

dC

dx

∥∥∥∥ dx (10)

where ε0
b is the bending strain of the free form spline (unde-

formed condition); εb is the bending strain of the deformed
spline; E is the Young modulus of the material of the beam;
I is the moment of inertia of the cross section of the beam
with respect to the bending axis (section is considered sym-
metrical and untwisted).∥∥∥ dC

dx

∥∥∥ is the generic derivative of the two parametric

expressions in Eqs. (1) and (2) with respect to the corre-
sponding variable x .

The bending strain can be expressed with the scalar Frenet
curvature κ(x):

εb(x) = κ(x) (11)

The generalized elastic forces due to bending can be eval-
uated as:

Qi,bending = −∂Ubending

∂qi

= −1

2

∫

spline

E I
∂

(
εb − ε0

b

)2

∂qi
ds

= −1

2

1∫

0

E I
∂ (κ − κ0)

2

∂qi

∥∥∥∥
dC
dx

∥∥∥∥ dx (12)

It is important to underline that Eq. (12) takes into account
the influence of the actual beam length in the computation of
the bending strain. Since the evaluation of the integral in Eq.
(12) has to be performed over the entire length of the spline
(over ds), the effects of beam lengthening can be taken into
account, obtaining accurate results for large displacement
analysis [17].
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The stretching elastic energy is proportional to the square
of the variation of the stretching strain:

Ustretching = 1

2

∫

spline

E A
(
εs − ε0

s

)2
ds

= 1

2

1∫

0

E A
(
εs − ε0

s

)2
∥∥∥∥

dC
dx

∥∥∥∥dx (13)

where A is the cross section area of the beam; ε0
s is the stretch-

ing strain of the free form spline (undeformed configuration);
εs is the stretching strain of the deformed spline.

The stretching strain can be evaluated as:

εs − ε0
s =

∥∥∥ dC
dx

∥∥∥ −
∥∥∥ dC0

dx

∥∥∥
∥∥∥ dC0

dx

∥∥∥
(14)

where
∥∥∥ dC0

dx

∥∥∥ is the derivative of the curve of the free form

spline (undeformed configuration).
The generalized elastic forces due to stretching can be

evaluated as:

Qi,stretching = −∂Ustretching

∂qi

= −1

2

∫

spline

E A
∂

(
εs − ε0

s

)2

∂qi
ds

= −1

2

1∫

0

E A
∂

(
εs − ε0

s

)2

∂qi

∥∥∥∥
dC
dx

∥∥∥∥dx (15)

The kinetic energy T has three contributions:

T = Trigid_body1 + Trigid_body2 + Tbeam1 + Tbeam2 (16)

where Trigid_body1 and Trigid_body2 are the kinetic energies
of the two rigid bodies; Tbeam1 and Tbeam2 are the kinetic
energies of the two flexible beams.

The kinetic energy of the i-th rigid bodies can be computed
as:

Trigid_body(i) = 1

2
massi ‖VGi‖2 + 1

2
Jiϑ

2
i (17)

where massi is the mass of the i-th rigid body; VGi is the
velocity vector of the centre of mass of the i-th rigid body;
Ji is the moment of inertia of the i-th rigid body with respect
to the centre of mass along a direction normal to the plane of
movement; ϑi is the angle describing the attitude of the the
i-th rigid body.

For the two elastic beams we have:

Tbeam = 1

2

∫

spline

(
ĊT · M · Ċ

)
ds (18)

where Ċ = dC
dt is the time derivative of the spline parametric

expression [Eqs. (1) and (2)]; M =

⎡

⎢⎢⎣

μ 0 . . . 0
0 μ . . . 0
. . . . . . . . . . . .

0 0 . . . μ

⎤

⎥⎥⎦

8×8

is

the inertia matrix and μ is the linear density depending on
the shape and the material of the beam.

3 Numerical simulations and validation

In order to validate the numerical model described in the
previous section, two simulation scenarios have been imple-
mented and solved. In general, all the simulations concerned
with one of the rigid body kept fixed (as ground) and the
beams and the other rigid body movable.

3.1 Static behaviour

The first simulation concerned with the verification of the
static elastic behavior of the flexural hinge when one of the
rigid bodies is rotated with respect to the other one. Inertia
effects have been neglected. For this type of simulation, the
equations to be solved are:

{[
∂ψ
∂qi

]T · λ + Qi = 0 i = 1 . . . 19

ψ = 0
(19)

The prescribed rotation of the upper rigid body can be
expressed by the specific constraint in Eq. (7) assumingϑ0

2 =
90◦ which is a very large rotation.

Table 1 includes other numerical input data used in the
model definition.

Figure 3 shows a sequence of snapshots of the rotation
increments during the simulation.

The same scenario has been implemented using finite
elements, describing each flexible elements with 20 beam
elements and performing a nonlinear static solution by 20
displacement increments.

The two models have been compared with respect to the
position of the center of mass of the movable rigid body and
the overall rotational stiffness.

The comparison between the trajectories of the upper body
center of mass is depicted in Fig. 4.

It can be observed that the two trajectories are very close.
The maximum difference at the end of the movement is below
1 %.
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Table 1 Parameters definition for the implemented cross-axis flexural
pivot model

Parameter Value

Beam length (m) 0.06
√

2

Beam initial angle (◦) ±45

Beam cross section area (m2) 0.00005

Beam cross section inertia (kg m2) 1.041e−10

Beam material’s Young modulus (GPa) 206

Beam material’s Poisson ratio (–) 0.29

Beam material’s density ( kg/m3) 7,800

Rigid body mass (kg) 0.2

Rigid body moment of inertia (kg m2) 0.002

Fig. 4 Comparison between the trajectories of the rigid body centre of
mass

The rotational stiffness Kϑ of the compliant mecha-
nism can be computed from the reaction force λ13 of
the driving constraint in Eq. (7) which represents the
torque to be applied to the rigid body in order to produce
the required rotation ϑ0

2 as:

Kϑ (ϑ2) = −∂λ13 (ϑ2)

∂ϑ2
(20)

The comparison between the global stiffness values from the
two models is plotted in Fig. 5.

Again, the differences of the results obtained from the two
approaches are negligible. The dynamic spline model tends
to overestimate the overall stiffness. This behavior is due to
the limited number of the control points (four) chosen in the
description of the deformed shape.

Fig. 5 Comparison between the rotational stiffness values of the pivot

Fig. 6 Comparison between upper body’s centre of mass trajectories
during the dynamic simulation

3.2 Dynamic behaviour

The second set of simulations concerned with the verification
of the dynamic behavior of the flexural hinge when one of the
rigid bodies (the upper one) is free to move after the hinge
has been displaced.

In this case, the equations to be solved are included in the
whole system of Eq. (4) and the driving constraint in Eq. (7)
has to be disabled. The initial conditions about the positions
of each part are taken from the end of the static simulation.

The same scenario has been implemented using finite ele-
ments, describing each flexible elements using 20 beam ele-
ments and performing a nonlinear dynamic solution by means
of an explicit solver.

The two models have been compared with respect to the
time history of the position of the centre of mass of the mov-
able rigid body.

The comparison between the two models is presented in
Fig. 6.
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Fig. 7 Snapshots of the cross-axis flexural pivot interactive simulation in augmented reality

It can be observed that the two time histories are slightly
different and this behavior can be explained considering
the differences of the computed stiffness (see Fig. 5) which
slightly alter the modal behavior of the system. In particular,
the dynamic spline model presents an higher free vibration
frequency (due to the higher global stiffness) due to the lim-
ited number of control points used in the description of its
deformation.

4 Implementation into an interactive environment

In order to verify the suitability of the proposed modelling
approach for an implementation into an interactive scenario,
the discussed model has been integrated into an marker-based
augmented reality environment. In the proposed scenario, the
two rigid bodies are attached to two patterned markers (see
Fig. 7) which can be moved on a plane by the user. By this
way, the user can interactively change the relative position
between them and the spline flexes accordingly.

The relative rotation between the two markers is used to
update the constraint equations by changing the parameter
ϑ0

2 in Eq. (7). A possible translational displacement between

the two bodies has been also taken into account including
two other driving constraints on the moving body.

During the simulation, the user can decide to release the
connection between the second marker and the correspond-
ing rigid body, performing a subsequent dynamic simulation.

For the static simulation the equations to be solved are
those in Eq. (19). Their real-time solution is possible since the
updating of the relative position is performed synchronously
with respect to the acquisition frame rate (25 Hz). It means
that the value of the driving constraints changes very slowly
each solution step and the equations are solved starting from
an initial point which is very close to the correct one.

The dynamic equations are implemented and solved using
the sequential impulse solver strategy which is very suitable
for accurate and real-time simulations [20–22].

4.1 Sequential impulse solver

The sequential impulse formulation can be split into two main
steps. The first one is about the solution of the equations of
motion in (4) neglecting the constraint equations:

Mq̈approx = Fe (21)
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By this way, Eq. (21) can be solved for q̈approx that rep-
resent the vector of approximated generalized coordinates.

The values of the corresponding approximated general-
ized velocities and positions can be computed by linear
approximation:

q̇approx = hq̈approx (22)

qapprox = hq̇approx (23)

where h is the fixed integration time step which is set 1/4 of
the video stream acquisition frame rate (1/100 s).

In order to correct the q̇approx and fulfill the constraint
equations, a series of impulses Pconstraint has to be applied
to the bodies. Each impulse is computed imposing the fulfill-
ment of the constraint equations written in terms of general-
ized coordinates. The application of these impulses causes a
variation of momentum:

M
(
q̇corrected − q̇approx

) = Pconstraint (24)

where q̇correctedis the vector of generalized velocities after
the application of impulses Pconstraint.

The corrected velocities can be computed from Eq. (24)
as:

q̇corrected = q̇approx + M−1Pconstraint (25)

Considering that the impulses are related to the constraint
equations, they can be computed as

Pconstraint = ψqλ (26)

where λ is the vector of Lagrange multipliers associated to
the impulses.

Since the effect of the impulses is to correct the generalized
velocities and fulfill the kinematic constraints, the q̇corrected

has to satisfy the constraint equations written in terms of
velocities (according to the index 2 DAE system):

ψ = 0 ⇒ ∂ψ

∂t
= ψqq̇ + ψt = 0 (27)

ψqq̇corrected + ψt = 0 (28)

Inserting Eq. (26) into Eq. (25) and substituting q̇corrected

into Eq. (8) we can obtain:

ψq

(
q̇approx + M−1ψT

q λ
)

+ ψt = 0 (29)

Equation (9) can be solved for λ obtaining:

λ =
(
ψqM−1ψT

q

)−1 (
ψqq̇approx + ψt

)
(30)

Then, the impulses can be computed using Eq. (6) and the
corrected values of generalized velocities using Eq. (25).

Since the impulses are computed sequentially, the global
fulfillment of the constraint equations cannot be directly
achieved. Some iterations are required.

A thorough description about the sequential impulse
solver strategy goes beyond the scope of the paper and the
interesting reader can find other implementation details in
[23].

4.2 Augmented reality implementation

The tracking and recognition of markers have been
implemented using ARToolkit libraries (freely downloadable
at the internet site http://sourceforge.net/project/showfiles.
php?group_id=116280). Graphical interfaces has been imple-
mented using standard OpenGL libraries.

The computational strategy has been implemented as fol-
lows:

• Equations of motion are solved using a fixed time step
(1/100 s) with the sequential impulse solver;

• Each image frame acquisition, four integration steps are
performed in order to improve the stability of the solution;

• During the simulation, the user can interactively switch
from an elasto-kinematic simulation (enforcing con-
straints) to a fully dynamic simulation;

• The intent of the user is recorded using two patterned
markers;

• Each frame, after the computation of the simulation steps,
output results are retrieved and augmented scene is ren-
dered and projected back to the user.

Figure 7 shows three snapshots taken during the interactive
simulation.

5 Conclusion

An innovative method for addressing the simulation of cross-
axis flexural pivot has been presented. The method is based
on the use of the dynamic spline formulation.

The methodology allows a more detailed description of
both elastic and inertia contributions of the flexible parts with
respect to the commonly used pseudo-rigid body approach.
On the other side, modelling beams using dynamic spline
allows a computationally more efficient and compact for-
mulation with respect to finite elements. The methodology
is able to simulate the high geometrical non-linearity of the
model and to reproduce in an accurate way both static and
dynamic behaviour.

Actually, the spline description using only four control
points each flexible beam leads to negligible approximations
in comparison to finite element model. This simplification
seems to be an adequate compromise for having a reduced
computational complexity and accurate results.

The formulation has been successfully integrated into an
high interactive design environment based on the use of
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marker-based augmented reality and demonstrated to be suit-
able for real-time processing and event-based simulation.

The efficient formulation and the ability to be integrated
into an interactive environment make the proposed methodol-
ogy very suitable for conceptual design, preliminary reviews
and simulation of deployment systems or similar devices
based on the use of compliant assemblies.

Concerning with the qualification of the proposed model,
according to [24] the proposed approach has strong levels
of parsimony, exactness, precision and a medium level of
specialization. For all these reasons, the methodology can
be extended to other compliant structures, based on beam
schemes.
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