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Abstract A simple and robust method to simulate spiral
bevel gears generating and meshing processes is proposed.
In a first part, a mathematical model of universal hypoid
tooth surfaces generator is formulated. It is based on Fong’s
approach. The model takes into account all the kinematic
motions of common CNC machine tools dedicated to hypoid
gears machining. It is general enough to enable the simulation
of various hypoid gears cutting methods such as face-hob-
bing, face-milling, plunge cutting and bevel-worm-shaped-
hobbing processes. In this paper, only developments related
to face-milled spiral bevel gear generation are presented. We
show that the results obtained are in good agreement with
those of certified software. In a second part, a simple and
numerically stable algorithm is proposed for unloaded tooth
contact analysis. The simulation method is based on a dis-
cretization of one of the two tooth flank surfaces in contact
and a specific projection of the points on the opposite flank.
It gives a good approximation of the contact pattern location.
The accuracy of the contact point locations and computing
time is directly dependent on the mesh density. However, this
approach enables obtaining in a very short time sufficiently
accurate results to meet the needs of designers, particularly in
the preliminary stages of design. The relative displacements
of the gears can be taken into consideration. The robustness of
the proposed computing process and the adjustable accuracy
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of the results are the two main advantages of the presented
approaches.
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Abbreviations
A Machine center to cross point
Am, As Axial displacement of the master part,

of the slave part
B Sliding base
E Work offset
Gw Outer cone distance of the tooth
i Tilt angle
j Swivel angle
L pt 3 × 3 upper-left submatrix of Mwt

system
�nt Unit normal vector to tool surface
�n p Unit normal vector to workpiece surface
O Offset displacement
pm, ps Angular pitch of the master part, of the

Slave part
R f Filet radius of the tool
Rp Profile radius of the tool
Rt Mean radius of the tool
Rw, Rs Sphere radius of the workpiece
�rt Position vector in tool system
�rp, �rm, �rs Position vector in workpiece system
�rθs Master point position vector in slave part

system
S Radial distance
st Curvilinear abscissa along the tool section
X W f Point radius of the tool
W f Point width of the tool
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Ww Face width of the tooth
αp Profile angle of the tool
γ Shaft angle between the master and the

Slave part
γ f Root cone angle of the tooth profile
γh Head cone angle of the tooth profile
γw, γs Cone angle of the workpiece
� Machine root angle
δc Distance between master part point and

Slave part flank
θm Rotation angle of the master part in the

Meshing process
φc Rotation angle of the cradle in the generation

process
φt Rotation angle of the tool in the generation

process
φp, φs Rotation angle of the workpiece in the

generation process
ϕ Tool rotation angle in the face-hobbing process

1 Introduction

The spiral bevel gears are components of many high-tech
devices. Because of a relatively complex geometry, continu-
ous efforts are made to streamline the design and manufac-
turing process. The performance improvements rely on the
means to analyze and control all the phenomena appearing in
these mechanisms. The implementation of numerical tools to
build, from the earliest stages of design, an accurate represen-
tation of surfaces that will be then machined is still an open
field of study. There are many ways to approach the subject.
The choices can have significant consequences in terms of
precision, reliability and cost. The ability to develop a sim-
ple, robust, and universal method remains an important issue.
This is also true for the tooth contact analysis of the spiral
bevel gears.

The literature provides numerous papers dealing with spi-
ral bevel and hypoid gear generation. Most methods are based
on the theory of surface envelopes. “Theory of gearing” by
Litvin [17] details this approach. It involves complex geome-
try and relative motions. The solving method relies on the use
of reference systems. Di Puccio [1,2] shows that the theory of
gearing can be formulated without any recourse to reference
systems. This invariant approach is entirely based on geomet-
ric concepts. As an example, Di Puccio [3] and Gabiccini [9]
apply this new method to the generation of spiral bevel and
hypoid gears. Dooner [4,5] uses another approach of the the-
ory of gearing: the theory of screws. There are various manu-
facturing processes for the spiral bevel and hypoid gears. The
two mains are face-milling and face-hobbing. Litvin [12] is
one of the first to develop a computer simulation of the spi-
ral bevel gear machining process. He considers the Gleason

technology. Each tooth results from the tool work envelope.
Later, Litvin [13] proposes a numerical model of the Glea-
son Phoenix CNC machine tool. Lin [10] presents a model
made of four components. The first part is the tool geometry.
The second defines the modified roll method. The third is
the kinematic relation between the tool and the workpiece.
The fourth introduces the equation of meshing which rules
the generation process. Fong [8] proposes a mathematical
model to make easier the development of a universal hypoid
gear generator. Despite its simplicity, it enables to virtually
simulate most of the existing processes. More recently, Shih
[19] adapts Fong’s model to simulate other face-hobbing pro-
cesses.

The earliest study of Litvin [11] about the behavior
of the spiral bevel gear focuses on theoretical models
approximating the practically non conjugate tooth surfaces
by theoretically conjugated ones. However, these hypothet-
ical conjugate surfaces are simpler than the actual ones and
the meshing motion is extremely sensitive to the flank shapes.
The simulation of the spiral bevel gear machining process is
the only way to obtain exact tooth topographies and a good
estimation of the contact pattern location. Therefore, Litvin
et al. [14–16] develop a tooth contact analysis method
directly related to the physical machine tool kinematic
motions. Vogel [21] proposes a direct mathematical model
relying on the same approach. The research and generation
of the contact points run simultaneously. However, it requires
the numerical resolution of many non linear equations. The
instability risk is high and it does not simplify the conver-
gence management. Fan [6,7] generalizes his model to face-
milling and face-hobbing processes. He proposes to reduce
the number of nonlinear equations to be considered and thus
improves the stability of the meshing simulation algorithm.
The core of his approach is the determination of the con-
tact point location at each phase of engagement by solving
a system of five nonlinear equations. Three of them imply
the punctual coincidence of the pinion and gear tooth sur-
faces. The two others involve the tangency between the mat-
ing tooth flanks. They formalize the contact point existence
conditions. Sheveleva [18] proposes an algorithm based on
the examination of the distance field between the two mating
tooth surfaces. This approach avoids having to solve a heavy
system of nonlinear equations. Vimercati [20] applies finite
element method with a low torque. The results are similar for
a longer computing time.

A method based on the simplest approaches is defined in
this paper. The proposed algorithm is very stable and gives
quickly a good approximation of the contact pattern location.
The balance between accuracy and computing time is adjust-
able. The level of complexity is reduced to achieve a high
robustness. The simulation algorithm has to run whatever
the tooth flank topography without being at fault. The goal
is, in fine, to achieve an automated improvement process of
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Fig. 1 Tool transverse section geometry

the behavior of the spiral bevel gear relying on a direct opti-
mization of the machine tool settings.

In a first time, the mathematical method used to model
the nominal surfaces of spiral bevel gear flanks that will be
machined is detailed. It is based on Fong’s approach [8].
It enables reducing the number of equations which have to
be solved numerically. In this paper, the simplifications are
clearly highlighted. They make easier the development pro-
cess and the algorithm convergence management. In a sec-
ond time, a meshing simulation algorithm is presented. The
general approach is similar to that of Sheveleva [18] but the
calculation method used differs. In this paper, the distance
measurement is performed from generated points when Shev-
eleva uses interpolations. The accuracy of distance measure-
ment values is thus higher. The simplicity and the robustness
of the proposed approach are illustrated. Finally, we conclude
with the interest of such qualities for the future works.

2 Spiral bevel gear generation

2.1 Mathematical model

2.1.1 Tool settings

The tool considered here as the basis of the tooth flank gener-
ation is made of surfaces of revolution. Its transverse section
is shown in Fig. 1 The inside and outside tool flanks (IB and
OB in Fig. 1) generate respectively the convex and concave
tooth flanks. A tool flank is made of three parts. The profile
is either a conical or a toroidal surface. It machines the tooth
flank profile. As shown in Fig. 1, it can be concave, straight or
convex. The point is a convex toroidal surface. It produces
the tooth flank root. The land is a plane surface. It makes
the tooth root land. The contiguous parts intersect satisfying
positional and tangential continuity.

The tool surface is defined using two parameters. The cur-
vilinear abscissa along the transverse section and the rotation
angle of the tool are drawn in Fig. 2
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Fig. 2 Tool surface parameterization

The position vector of a point on the flank surface is
defined in the tool Cartesian system as shown in Eq. (1).

�rt =

⎡
⎢⎢⎣

xt (st , φt )

yt (st , φt )

zt (st , φt )

1

⎤
⎥⎥⎦ (1)

Then, the unit normal vector to flank surface at this point
is determined as shown in Eq. (2).

�nt =
∂�rt
∂st

× ∂�rt
∂φt∥∥∥ ∂�rt

∂st
× ∂�rt

∂φt

∥∥∥
=

⎡
⎣

ut (st , φt )

vt (st , φt )

wt (st , φt )

⎤
⎦ (2)

2.1.2 Machine tool settings

The mathematical model is potentially able to simulate
six axes CNC machine tool. It takes into account fourteen
settings: the machine center to cross point, the machine
root angle, the sliding base, the work offset, the radial
distance, the swivel angle, the tilt angle, the tool rotation
angle and the six modified roll coefficients of the cradle rota-
tion angle. The modified roll method consists of a represen-
tation of the machine settings in higher order polynomials in
terms of the workpiece increment angle. It enables accurate
modifications of the tooth flank topographies. Figures 3 and
4 describe the machine tool kinematic model.

The machine tool kinematic motions shown in Fig. 4 are
not really used to generate face-milled spiral bevel gears.
The swivel angle, the tilt angle and the tool rotation angle
are set to zero. Nevertheless, all of them are implemented in
the tooth flank generation algorithm.

The present work is illustrated with an example of spi-
ral bevel gear manufactured with the face-milling method.
The machine tool architecture enables recreating the mesh-
ing motion between the workpiece and an imaginary gener-
ating gear as shown in Fig. 5. The tool materializes a gear
tooth and thus follows the same trajectory. It turns around the
cradle axis which is that of the gear. So, the cradle motion
depends on the workpiece rotation.
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Fig. 5 Simulation of the generating gear meshing with the workpiece

The generation of face-milled spiral bevel gears requires a
relation linking the cradle to the workpiece rotation angle. A
roll ratio is applied between the cradle and workpiece angles.
Its function is changed and extended with the modified roll

method. The tooth flank topographies are thus changed. The
Eq. (3) gives the representation of the cradle angle in terms of
the workpiece angle. The first coefficient of the polynomial
is the roll ratio. The whole polynomial is usually known as
the modified roll ratio. Figure 6 shows the specific effect of
each coefficient on the tooth flank surfaces.

φc
(
φp

) = φc0 + c1 · φp + c2

2! · φ2
p + c3

3! · φ3
p + c4

4! · φ4
p

+c5

5! · φ5
p + c6

6! · φ6
p (3)

2.1.3 Generation method

The tool generates the blank between two teeth of the work-
piece as shown in Fig. 7. Its motion generates a family
of surfaces. The tooth flank surface is the resulting enve-
lope. The generation method is based on the differential
geometry.

Theoretically, the envelope exists at the point where the
tool surface normal is perpendicular to its velocity defined
relatively to the envelope system. That is mathematically for-
malized by the equation of meshing shown in Eq. (4). A
generated point of the workpiece tooth flank exists if this
equation is satisfied.

f p = �n p · ∂�rp

∂φp
= 0 (4)

The position of a point on the tool flank surface is defined in
the workpiece Cartesian system as shown in Eq. (5).

�rp = Mpt · �rt =

⎡
⎢⎢⎣

x p
(
st , φt , φp

)
yp

(
st , φt , φp

)
z p

(
st , φt , φp

)
1

⎤
⎥⎥⎦ (5)

The tool flank surface normal at this point is defined in the
workpiece Cartesian system as shown in Eq. (6).

�n p = L pt · �nt =
⎡
⎣

u p
(
st , φt , φp

)
vp

(
st , φt , φp

)
wp

(
st , φt , φp

)

⎤
⎦ (6)

The coordinate transformation matrix from the tool system
to the workpiece system is shown in Eq. (7). The different
elementary transformation matrices formalize the machine
tool architecture illustrated in Figs. 3 and 4.

Mpt = Mpi · Mih · Mhg · Mg f · M f e · Med

·Mdc · Mcb · Mba · Mat (7)

Mpi =

⎡
⎢⎢⎣

1 0 0 0
0 cos

(
φp

) − sin
(
φp

)
0

0 sin
(
φp

)
cos

(
φp

)
0

0 0 0 1

⎤
⎥⎥⎦ Mih =

⎡
⎢⎢⎣

1 0 0 −A
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
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Fig. 6 Effects of the modified
roll coefficients on the tooth
flank topographiesFigure
caption

Mhg =

⎡
⎢⎢⎣

cos (�) 0 sin (�) 0
0 1 0 0

− sin (�) 0 cos (�) 0
0 0 0 1

⎤
⎥⎥⎦ Mg f =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −B
0 0 0 1

⎤
⎥⎥⎦

M f e =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 E
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ Med =

⎡
⎢⎢⎣

cos (φc) sin (φc) 0 0
− sin (φc) cos (φc) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Mdc =

⎡
⎢⎢⎣

1 0 0 S
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ Mcb =

⎡
⎢⎢⎣

− sin ( j) − cos ( j) 0 0
cos ( j) − sin ( j) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Mba =

⎡
⎢⎢⎣

cos (i) 0 sin (i) 0
0 1 0 0

− sin (i) 0 cos (i) 0
0 0 0 1

⎤
⎥⎥⎦

Mat =

⎡
⎢⎢⎣

cos (ϕ) − sin (ϕ) 0 0
sin (ϕ) cos (ϕ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Three variables run the generation process: the curvilinear
abscissa along the tool section, the rotation angle of the tool
and the rotation angle of the workpiece. Usually, we assume
the workpiece rotation angle is a polynomial function of the
cradle rotation angle. This relation may be considered as
bijective. Hence, we can also define the cradle rotation angle
as a polynomial function of the workpiece rotation angle
as shown in Eq. (3). This trick simplifies the manipulation
of the equation of meshing. This equation is extended, sim-
plified and factorized to establish the Fong formulation [8].
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Fig. 7 Generation of the envelope

Its analytical solution gives the rotation angle of the tool as
a function of the curvilinear abscissa along the tool section
and the workpiece rotation angle.

2.1.4 Generation of the tooth root

The tooth flank points are generated on spheres which are
centered on the pitch apex as shown in Fig. 8. The pitch apex
is the workpiece pitch cone center. The tool point machines
the tooth flank root. The curvilinear abscissas of the points
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Fig. 8 Generation of the tooth
root
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along the tool point and the sphere radiuses are known. The
tool and workpiece rotation angles are unknown. The prob-
lem is solved with the two independent equations written in
Eqs. (8) and (9).

The equation of meshing gives the tool rotation angle in
terms of the workpiece rotation angle as shown in Eq. (8).

f p(φt , φp) = 0 ⇒ φt = f (φp) (8)

The existence condition of the tooth root points on the given
spheres is formalized by Eq. (9).
√

x2
p(φp) + y2

p(φp) + z2
p(φp) − Rw = 0 (9)

Equation (8) is solved analytically and Eq. (9) is solved
numerically with the Newton–Raphson method. Equations (8)
and (9) are solved simultaneously and the coordinates of the
generated points are determined.

2.1.5 Generation of the tooth profile

The points of the tooth profile are generated at the intersec-
tions of spheres and cones as shown in Fig. 9. The spheres and
cones are centered on the pitch apex. The sphere radiuses and
the cone angles are known. The tool and workpiece rotation
angles are unknown. The curvilinear abscissas of the points
along the tool profile are not given. The two following Equa-
tions (10) and (11) are not sufficient to solve the problem.
Hence, one more equation is formulated in Eq. (12).
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Fig. 9 Generation of the tooth profile

The equation of meshing gives the tool rotation angle
in terms of the curvilinear abscissa of the point along the
tool profile and the workpiece rotation angle as shown
in Eq. (10).

f p(st , φt , φp) = 0 ⇒ φt = f (st , φp) (10)
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Fig. 10 Points used to build the
CAO model

Fig. 11 Comparison with existing generation software
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Fig. 12 Relative displacements
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The existence condition of the tooth profile points on the
given spheres is formalized by Eq. (11).

√
x2

p(st , φp) + y2
p(st , φp) + z2

p(st , φp) − Rw = 0 (11)

The tooth profile points are on the given cones if Eq. (12) is
satisfied.

arctan(

√
y2

p(st , φp) + z2
p(st , φp)/x p(st , φp)) − γw = 0

(12)

The Eq. 10 is solved analytically and the two Eqs. (11)
and (12) are solved numerically with the Newton–Raphson
method. The Eqs. (10), (11) and (12) are solved simulta-
neously and the coordinates of the generated points are deter-
mined.

The tooth profile generation problem is more complex
than the tooth root one. Two equations are numerically solved
instead of one. The research process of the solutions is thus
less stable. However, the presented mathematical formula-
tion minimizes the number of equations which have to be
solved using the Newton–Raphson algorithm. It makes sim-
pler the debugging efforts during the development step to
stabilize the iteration convergence. The simplicity and the
robustness of the algorithm are easily improved.

2.2 Results

A computer application is coded with VBA in an EXCEL
workbook. It generates a quite ruled and uniform mesh of the
tooth flank surfaces. The generation process takes less than
one second with the density shown on Fig. 10. The computer
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used is a 2 CPU laptop with 1800 MHz clock rates. A VBA
module is coded to draw splines and surfaces through the
points. The CAO model shown in Fig. 10 is build with CA-
TIA V5 software.

The simulated topographies are compared to the ones
obtained with certified methods used in machine tool man-
ufacturer software. The result is illustrated in Fig. 11. The
distances between the two generated surfaces are lower than
one micrometer. The minor gap can be due to slight numerical
errors or rounding approximations in tabulating the modified
roll coefficients.

3 Tooth contact analysis

3.1 Meshing simulation

The relative displacement of the two parts is taken into
account in the meshing simulation algorithm. As shown in
Fig. 12, it is made of four independent components: the axial
displacement of the master part, the axial displacement of
the slave part, the offset displacement also called hypoid dis-
placement and the shaft angle. They can be set in the design
process. However, they are generally due to mounting inaccu-
racies, under load distortions or bearing displacements. They
are zero if the pitch apexes of the two parts are coincident.
The sign of their value and the displacement direction are
linked according to the Gleason rule. The axial displacement
value is negative if the part moves toward the pitch apex. It
is positive in the opposite direction. With the configuration
represented in Fig. 12, the hypoid displacement value is neg-
ative if the gear moves down or else it is positive. The signs
are opposite if the hand of spiral is changed. The shaft angle
displacement value is negative if the two parts get closer or
else it is positive.

The geometric and kinematic behavior of the contact pat-
tern depends on the tooth flank topographies and their relative
displacement. The tooth flank generation process previously
explained is the core of the meshing simulation algorithm
shown in Fig. 13. The contact points are selected among
the whole points of the tooth profile. The stability of the
algorithm only depends on the flank generation process. The
research of the solution of the contact simulation problem is
done on existing entities. This method does not imply non-
convergence hazard due to a set of variable values out of the
real field. It is based on the analysis of the angular distances
between the tooth flanks in contact. A regular mesh is gen-
erated on the master tooth flank and its nodes are projected
on the opposite slave tooth flank. The angular distances are
computed between the master points and their respective pro-
jections on the slave surface. The master part can be either
the pinion or the gear.

Generate the maste r flank points 

Select the direction of rotation 

Select the position of rotation 

Existence of a corresponding 
point on the slave surface? 

Rotate the master flank point 

Generate the point 

Compute the angle between the master flank 
point and the respective slave surface point 

Existence of the contact point? 

yes 

yes 
no 

no 

Select a master flank point 

Minimal angle founded? 

no 

yes 

Fig. 13 Meshing simulation algorithm

For each position of the master part, all points of the mas-
ter flank are successively considered. The position vector of
the selected point in the master part system is known. It is
written in the slave part system as shown in Fig. 14. The
sphere radius and cone angle of the point in the slave part
system are computed. The existence of the point inside the
slave flank bounds is checked. If it is confirmed, the point
of the slave surface is generated at the intersection of the
sphere and cone using the tooth profile generation process
previously explained.

The master flank rotates. The slave flank is fixed. For
each meshing position of the master flank and for each node
of the master flank mesh, the respective point existing on
the slave flank is generated. Subsequently, the angle around
the slave part axis between the two points is computed. The
pair of points with the smallest angle is considered as the
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Fig. 14 Generation of the slave
surface point
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Fig. 15 Simulation of the contact
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approximated contact point. This approach is illustrated for
a spur gear in Fig. 15.

The smallest angle value computed for each meshing posi-
tion of the master part is compared with its value one pitch
earlier. If the first is smaller than the second, the contact point
exists in the meshing zone. Else, the contact point is out of
the contact pattern and it does not exist. All the contact points
of the contact pattern are selected in this way. This approach
is illustrated for a spur gear in Fig. 16. The method can be
quite easily coded in a computer program.

3.2 Results

The algorithm remains stable whatever the tooth flank topog-
raphies, whatever the relative position of the parts, whatever
the discretizations of the master flank surface and the mesh-
ing motion. This quality is demonstrated with few examples.
The basic data are given in Tables 1, 2, 3 and 4. The appli-
cation runs on a 2 CPU laptop with 1800 MHz clock rates.
Meshing simulations have been performed with low and high
discretization densities. The computing process lasts 24 s in
the first case and 246 s in the second. The unloaded contact
pattern and transmission error are shown in Fig. 17. The con-
tact points are selected among the master flank mesh nodes.
That is why the contact pattern seems to be discontinuous.
Actually, it should be a smooth curve. The transmission error
is computed for each meshing position. A parabola fits the
points. Its amplitude slightly changes with the model dis-

Table 1 Workpiece data

Workpiece Pinion Gear

Tooth flank Concave Convex

Number of teeth 23 30

Module (mm) 5 5

Whole depth (mm) 10.24 10.24

Addendum (mm) 5.6 3.65

Face angle (deg) 40.2 54.283

Pitch angle (deg) 37.483 52.517

Face width (mm) 29 29

Hand of spiral Left hand Right hand

Direction of rotation Counter clockwise Clockwise

Driving status Driven Driver

Table 2 Tool data

Mean diameter (mm) 143.013 152.392

Point width (mm) 1 1.910

Profile angle (deg) 19.225 20

Profile radius (mm) 392.872 ∞
Point radius (mm) 0.76 1.2

Table 3 Machine settings

Cradle angle (deg) 60.891 300.183

Tilt angle (deg) 0 0

Swivel angle (deg) 0 0

Root angle (deg) 35.717 49.8

Radial distance (mm) 68.646 72.2

Work offset (mm) −0.479 0

Sliding base (mm) −0.937 −2.1

Machine center to cross point (mm) −1.348 0

1st Modified roll coefficient 0.639404 0.794488

2nd Modified roll coefficient −0.005814 0

3rd Modified roll coefficient 0.000598 0.001704

4th Modified roll coefficient −0.000997 0

5th Modified roll coefficient 0.000023 −0.000024

6th Modified roll coefficient −0.000168 0

Table 4 Axis displacements

Pinion axial displacement (mm) 0

Gear axial displacement (mm) 0

Hypoïd displacement (mm) 0

Shaft angle (deg) 90

cretization but remains realistic. It gives an indication of
the behavior of the mechanism. Indeed, noise is generated
by the meshing motion and it increases with the amplitude
of the transmission error.

The pinion and gear are mounted in a gear box. Their
positioning is checked by comparing the locations of the real
and virtual contact patterns. As shown in Fig. 17, the estima-
tion of the simulated contact pattern location is good enough
with a low accuracy. The high accuracy simulation is ten
times longer than the low one. A high discretization den-
sity implies a long computing time and does not give more
information.

The unloaded contact pattern is usually checked with a
dedicated machine. The pinion and gear are positioned with-
out relative displacement. A powder is spread on the active
tooth flanks. The machine drives one of the two parts. The
friction removes the powder in the meshing zone and the
contact pattern appears. The simulation is validated by com-
paring the real and virtual contact patterns. They are shown
in Fig. 18. Their locations are consistent. The real contact
pattern is wider because the applied torque cannot be zero
and the surfaces are not ideal. Furthermore, slight grinding
and mounting tolerances are allowed for the checking test.
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Fig. 17 Contact points and
transmission error with low and
high discretization density
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Fig. 18 Contact pattern
checking test

4 Conclusion

In most tooth contact analysis approaches, the tooth flank
modeling is the core of the meshing simulation algorithm.

Each generated point is determined by numerically solving
non-linear equations. The research of the solution can be
managed with the Newton–Raphson method. This is a pos-
sible source of numerical instability. The proposed method
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reduces significantly the number of equations to be simulta-
neously solved. It makes easier the algorithm development
and the convergence management. The obtained unloaded
meshing simulation gives a quite good and quick estima-
tion of the contact pattern location. The stability of the algo-
rithm only depends on the flank generation process. For each
meshing position, the contact location is estimated among
pairs of points. The existence of these points on their respec-
tive tooth flank is previously checked so the investigation
field is mastered. It gives a robust and tolerant research pro-
cess. The presented methods are coded in a computer applica-
tion. The execution on a common laptop shows a sufficient
computing efficiency enabling its implementation in itera-
tive processes. The unloaded contact pattern location and the
transmission error are commonly used to qualify the behav-
ior of a gear. This paper lays down the bases of future works
on the meshing motion control through an automated opti-
mization process. Such an approach requires a really stable
meshing simulation algorithm. The proposed methods insure
a good speed, accuracy and stability.
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