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Abstract The design by multi-objectives optimization
implies the optimization of several contradictory objectives
simultaneously. In fact there is no optimal solution for one
particular objective if the other objectives are considered, but
the aim is to simultaneously minimize all the objectives in
order to reach an optimal compromise. Optimum is reached
if any improvement of one objective induces the degrada-
tion of one other. Such an optimum is located on a front
called Pareto front. The Pareto front, a set of optimal solu-
tions that are not equivalent, allows us to choose an optimal
solution with criteria external to optimization process (eco-
nomic or functional). In this study, a multi-objective parti-
cle swarm optimization (a metaheuristic) algorithm has been
used to optimize a wood plastic composite for decking appli-
cation. This metaheuristic, based on evolutionary techniques,
applies to a great diversity of functions objectives: continu-
ous or discrete equations, qualitative knowledge rules and
algorithms. The design variables are mainly variables of raw
materials production, and the incorporation of a biopolymer,
the control of timber particle sizes and chemical or thermal
timber changes. The objective functions are equations and an
algorithm integrating discrete data in the modelling of creep
behavior, water resistance and fossil resources depletion.
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1 Introduction

1.1 The preliminary ecodesign problem

Taking into account environmental impact criteria in the pre-
liminary ecodesign of semi-products or of completed func-
tional units is becoming more and more an issue for industry.
It implies going through a life cycle analysis (LCA) which
is now the international standard to evaluate such impacts. It
is in fact the only way to compare the environmental impact
of different products that fulfill the same function; and this,
from the production of raw materials to the final destina-
tion (Fig. 1). The fact that it is necessary to know the life
cycle of a product makes it difficult to use the LCA during
the preliminary ecodesign. One way to tackle the problem
would be to focus on one of the stages of the life cycle of
the product and to consider it as independent from the other
stages.

The design process will be different if we are trying to:
1) improve the environmental characteristics of a product
while disturbing as little as possible its production process,
2) optimize the environmental impact of a product defined
by end-use performances without restricting oneself to a par-
ticular process. The first case, frequent with manufacturers,
being guided by the manufacturing process, can make it
impossible to meet both the technical and the environmental
requirements in a given manufacturing scheme. The second
approach, which is more prospective and open, is guided by
the end-use properties that are required, and therefore can
be tackled either in seeking and environmental optimum in a
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Fig. 1 Representation of a product life cycle as being a system made
up of a sequence of subsystems

search space that is constrained by functional specifications
or through a multi-objective optimization.

The second approach is closer to conventional preliminary
design. However, as multi-objective optimization does not
provide a single solution, but a set of possible solutions sat-
isfying the design criteria among which the designer will
be able to choose according to additional constraints, both
approaches will be considered in this paper as preliminary
ecodesign.

The example which is studied here concerns the prelim-
inary design of an outdoor decking taking into account its
environmental profile (first approach). The initial choice was
of a wood–plastic composite, this choice allowing the use
of industrial byproducts in a constrained search space. The
optimum of the required properties will be obtained by multi-
objective optimization.

1.2 A multi-objective optimization problem

Design by multi-objective optimization implies simultaneous
optimization of various contradictory objectives. If we take a
simple example consisting in minimizing simultaneously the
two following functions: f1(x) = x1 and f2(x) = x2/ax1,

the improvement of the first objective ( f1(x)) comes with a
degradation of the second objective f2(x)). This contradic-
tion expresses the fact that there does not exist an optimal
solution regarding the two objectives, there are only optimal
compromises. With this example we see that for a minimal f1

and thus x1 the lowest possible, we need the lowest possible
x2 to minimize f2. In addition, the absolute minimum f2 is
obtained with x1 the highest possible and x2 the lowest possi-
ble. It is the taking into account of this contradiction between
minimization of f1 and minimization of f2 that introduces
the notion of compromise whether one favors f1 or f2. We

Fig. 2 Dominance relation in a bi-objective space: β is dominated by
α2 and α1, α2 and α3 are on the Pareto front

see that from a purely algebraic point of view x1 cannot be
null (division by zero). This observation introduces the fact
that there is often a certain amount of constraints that must be
met by the objective functions and/or their variables. These
are also called parameters, optimization variables or con-
ception variables. The constraints that are specifications of
the problem limit the search spaces of the parameters and/or
the determining, for example, bottom or top values. A gen-
eral multi-objective optimization problem includes a set of k
objective functions of n decision variables (parameters) con-
strained by a set of m constraint functions. It can be defined
as below:

Optimize �f (�x) = [
f1(�x), f2(�x), . . . , fk(�x)

]

subject to g j (�x) ≤ 0 for j = 1, . . . , p

and h j (�x) = 0 for j = p + 1, . . . , m

where �x = (x1, x2, . . . , xn) ∈ �n is the vector of decision
variables, fi : �n → � for i = 1, . . . , k are the objective
functions and gi , h j : �n → � for i = 1, . . . , m and j =
1, . . . , p are the constraint functions of the problem.

A compromise will be said optimal if every improvement
of an objective induces degradation of another objective.
A compromise whose objectives can be improved is not opti-
mal. It is said to be dominated by at least another compromise,
which is the one obtained after improvement of its objective
functions. The optimal compromises are located on a front
named Pareto front (Fig. 2). Let’s take as an example Fig. 2,
where the plain dots constitute the Pareto front, the objective
functions f1 and f2 at point β can still be improved to reach
point α2; therefore point β is dominated by at least point
α2. In addition, if, starting from point α2 we minimize again
function f2, we will reach point α3 which has an f2 superior
to the f2 at point α2; the same phenomenon would occur in
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Fig. 3 Illustration of
neighborhood topologies from
[9]: fully connected (all), ring,
four clusters, pyramid and
square

function with f1, α2 and α1. The Pareto Dominance can be
defined as below:

�x = (x1, . . . , xn) is said to dominate �x ′ = (x ′
1, . . . , x ′

n)

(denoted �x ≺ �x ′) if and only if

∀i ∈ {1, . . . , n} , xi ≤ x ′
i and ∃ j ∈ {1, . . . , n} , x j < x ′

j

The presence of a Pareto front, thus a set of optimal non-
equivalent solutions, allows the choice of an optimal solu-
tion with regard to economical of functional criteria, which
are external to the solved problem of multi-objective optimi-
zation. We will illustrate the procedure for the optimization
of a wood–plastic composite decking with three objectives
[3]. In this example, the optimization focuses on the creep,
swelling, and exhaustion of abiotic resources functions. The
design variables are mainly characteristics of raw materials
such as timber particle sizes and chemical or thermal timber
changes.

2 Background

2.1 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is an evolutionary com-
putation technique developed by Kennedy and Eberhart [6].
This technique, motivated by the simulation of social
behavior, has proved to be very efficient in hard optimiza-
tion problems. The swarm is composed of particles randomly
chosen in the search space. The search space, represented by
the objective function and its constraints, is of n dimensions
(a hyperdimension). Each particle knows its position in the
search space, its best position ever visited, the best position

of its neighborhood and has an instantaneous velocity.
A particle position is described by its n coordinates in the
search space and the corresponding fitness of the objective
function. A particle position is best than an other one if its
objective function fitness is best than that of the other one;
best meaning less than if it is a minimization problem and
greater than if it is a maximization problem. The neighbor-
hood of a given particle (its social network) is composed
by all the particles that influence its trajectory in the search
space. The two most commonly used neighborhood topol-
ogies are the fully connected topology named gbest topol-
ogy and the ring topology named lbest topology [8]. In the
fully connected topology all particle is connected to every
other; the trajectory of each particle is influenced by the
best position found by any particle of the swarm as well
as their own past experience. In the ring topology every par-
ticle is connected to its k immediate neighbors with toroidal
wrapping; this allows parallel search and then subpopula-
tions could converge in diverse regions of the search space.
Usually the ring topology neighborhood comprises exactly
two neighbors, every particle is connected to its two imme-
diate neighbors one on each side. With a fully connected
topology the swarm converges quickly on the problem solu-
tion but is vulnerable to the attraction of local optima, while,
with ring topology, it better explore the search space and
is less vulnerable to the attraction of local optima. Various
neighborhood topologies have been investigated in [5,8,9]
(Fig. 3). The structures experimented where from classical
communications structures [2] and small-worlds networks
[13]. The main conclusion was that the difference in per-
formance depends on the topology implemented for a given
function, with nothing suggesting that any topology was gen-
erally better than any other [11].
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The movements of the particles are synchronized: at each
time step all particles move at the same time, each particle
choosing a direction and a velocity, the calculation of which
includes its present position, the best position ever visited,
and the position of its neighbors. A particle is equipped with
means of communication, a small memory and a capacity to
make decisions. Its communication means enable it to inform
its neighbors of its own position, and to receive the position
of each one of them. Its memory enables it to memorise
its own position, the best position ever visited, and the best
position of its neighborhood. Its capacity to make decisions
enables it to decide which direction to go and at what veloc-
ity, and this at each time step. The standard PSO algorithm
has been defined [6] for a search in a n-dimensional search
space where the particles movements are synchronized: at
the t th iteration, for the i th particle, the position and position
change (velocity) vectors were respectively represented as:

Xt
i = (xt

i,1, xt
i,2, . . . , xt

i,n) (1)

V t
i = (vt

i,1, v
t
i,2, . . . , v

t
i,n) (2)

The position xt+1
i, j and position change (velocity) vt+1

i, j updat-
ing rules are given as below:

xt+1
i, j = xt

i, j + vt+1
i, j (3)

vt+1
i, j = w · vt

i, j + c1r1(pt
i, j − xt

i, j ) + c2r2(g
t
j − xt

i, j ) (4)

where i = 1, 2, . . .p, j = 1, 2, . . .n, p is the number of
particles (the size of the swarm), and n is the dimension of
search space; xt+1

i, j is the position of the particle i and vt+1
i, j

its velocity; w is called inertia weight, it is used to control the
impact of the previous history of velocity on the current one;
r1 and r2 are uniformly distributed random numbers between
0 and 1; c1 and c2 are positive acceleration constants; pi, j is
the value of j th dimension of the best position ever visited
by the i th particle; g j is the value of j th dimension of the
global best position ever visited by all particles in the swarm.

2.2 Discrete binary particle swarm optimization (DPSO)

Kennedy and Eberhart [7] have introduced a discrete binary
version of PSO (DPSO) that operates on binary variables
(bit, symbol or string) rather than real numbers. The differ-
ence between the PSO and DPSO definitions is in the velocity
updating rules vt+1

i, j where the position updating rule xt+1
i, j is

based on a logistic function as below:

xt+1
i, j = 1 if ϕ < S

(
vt+1

i, j

)

= 0 otherwise (5)

where

S
(
vt+1

i, j

)
= 1

1 + e−vt+1
i, j

(6)

and ϕ is an uniformly distributed random number between 0
and 1.

With the introduction of DPSO, Kennedy and Eberhart
[7] extend the use of PSO to optimization to discrete binary
functions as well as to functions of continuous and discrete
binary variables at the same time. To be able to handle the
optimization of functions including discrete n-ary variables,
Michaud et al. [10] have generalized the discrete binary ver-
sion of PSO to a discrete n-ary version of PSO as below:

xt+1
i, j = nk if ϕk−1 < S

(
vt+1

i, j

)

= nl if ϕl−1 < S
(
vt+1

i, j

)
≤ ϕl with 1 < l ≤ k − 1

= n1 if ϕ1 ≥ S
(
vt+1

i, j

)
(7)

where ϕ1, . . ., ϕk−1 are strictly ordered uniformly distributed
random numbers between 0 and 1.

2.3 The PSO algorithm

The original procedure for implementing PSO is a simple
and easy to implement six steps algorithm:

1. Initialize a population of particles with random positions
and velocities on n dimensions in the problem space.

2. For each particle calculate its fitness (the function to opti-
mize in n variables).

3. Compare particle’s fitness with the fitness of its best posi-
tion ever visited (pbest). If current value is better than
pbest, then it becomes pbest

4. Identify the particle in the neighborhood with the best
fitness, it becomes the leader of the neighbourhood.

5. Change the velocity and position of the particle accord-
ing to its velocity and position updating rules (Eqs. 3, 4
and/or 7).

6. Loop to step 2. Until the end condition is met, usually a
sufficiently good fitness or a maximum number of itera-
tions.

2.4 Multi-objective particle swarm optimization (MOPSO)

With the PSO algorithm, the determining of the leader that
influences the updating of the position of a particle is func-
tion of the established neighborhood topology. However, in
a multi-objective optimization problem the determining of
the leader is function of the set of leaders already founded
in the search space. Such set of leaders is usually stored in a
specific memory [1,4,12] called extended memory or exter-
nal archive. When a particle dominates some leaders in the
extended memory, it is added to the leaders set and the domi-
nated ones are discarded from the extended memory. The set
of leaders is reported as the final Pareto optimal set or Pareto
front. The particles in the Pareto front are equivalent in the
absence of any preference among the objectives.
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3 The wood–plastic composite preliminary ecodesign
problem

The wood–plastic composites (WPC) constitute a good
example of an ecodesign approach: initially developed in
North America for recycling materials—plastics and
papers—they also enable a significant reduction of the plas-
tic coming from the petrochemical industry. There is thus in
their development both a definite economic advantage and a
potential environmental interest. Nevertheless when decking
is used outdoor, these products exhibit a certain amount of
weakness points and contradictions: in order to allow a homo-
geneous extrusion and to prevent the material from becoming
too fragile, a minimal quantity of thermoplastic (about 30 %
in the case of a PEHD/wood composite) is necessary. In addi-
tion, in order to improve compatibility between the two com-
ponents—one being polar, the other being apolar—chemical
additives are included in the formula.

The WPC preliminary ecodesign requires first that the
designer solves a multi-objective optimization problem. Usu-
ally one of the three strategies below is used: 1) optimizing
one objective with constraints on the others, 2) optimizing
a weighted function including the different objectives or 3)
Pareto optimization. The first two strategies lead to a single
solution while the third one leads to a set of optimal com-
promises between the objectives that is well distributed in
the space of solutions. The evolutionary techniques—genetic
algorithm (GA), ant colony (AC), particle swarm optimiza-
tion (PSO), etc… are well adapted to the third strategy with
more or less efficiency. The PSO technique, like other evo-
lutionary techniques, finds optima in complex optimization
problems. Like GA, the system is initialized with a pop-
ulation and searches for optima by updating generations.
However, unlike GA, PSO has no evolution operators such
as crossover and mutation. PSO while traversing the search
space is focused on the optimum, whereas GA explores the
search space and then takes more time to find the optimum.
In the WPC preliminary ecodesign the main objective is to
find the relevant optima to be able to choice an optimum
with regard to economical of functional criteria; knowing that
completely different composite formulations lead to equiva-
lent composites in reference to the objective functions. Multi-
objective PSO technique is specially and fully suitable for
this problem.

3.1 The wood–plastic composite preliminary ecodesign
modelling

The modelling of WPC for decking application preliminary
ecodesign has taken a multidisciplinary team (physicists and
computer scientists). The modelling process has been to gen-
erate knowledge by some experiments, collect knowledge
generated and those from the literature and build up the

influence graphs of relationships between the problem vari-
ables [10]. The three objectives considered in the preliminary
ecodesign of wood–plastic composite (creep, swelling and
exhaustion of fossil resources functions) have been identi-
fied as critical weak points of the product [10]. From an
environmental point of view, exhaustion of fossil resources
is, with the green house effect, the weak point of this mate-
rial. We will recall their definition in order to highlight the
algorithmic nature of these functions.

3.1.1 The creep function (def)

The creep function, de f (tre f ), is an empirical non linear
power function that has been fitted to bending experimen-
tal results. The magnitude of creep deformation is related
to the elastic compliance 1/E . The kinetics of creep defor-
mation is related to the viscosity of the composite, ν. The
fiber size distribution parameter kGRAN used in Eq. 9 is a dis-
crete variable that can take three different values between 0.3
(random) and 1 (unidirectional) with an intermediate value
calculated at 0.69 (partially oriented)—see Michaud et al.,
op. cit., whereas the other variables used in the Eqs. (8), (9)
and (10) are continuous. In fact the def function (Eq. 8), in
its developed formula has an algorithm form due to the con-
ditions on the discrete kGRAN .

de f (tre f ) =
A

(
σ0

σM O R

)
· t

N ·e
(

σ0
σM O R

)

ν

re f

E
(8)

where A and N are fitted parameters of the creep function
model, σ0 is applied stress, σMOR is modulus of rupture of
the composite material, tre f is the time to reach a limit state
deflection, E is the modulus of elasticity and ν is the appar-
ent viscosity of the composite at room temperature. E and
ν are calculated through a simple mixture law, as shown in
Eqs. (9) and (10). These equations reveal the main optimiza-
tion variables, i.e., material properties, volume fractions and
fibre orientation.

E = λm(αbio Ebio + (1 − αbio − αadd)Em) + λadd Eadd

+(kGRAN ) · (1 − λm − λadd)E f (9)

ν = λm(αbioνbio + (1 − αbio)νm) + λaddνadd

+(1 − λm − λadd)ν f (10)

See Table 1 for the meaning of other variables.

3.1.2 Water swelling function (SW)

The swelling function due to water absorption, SW, is defined
by Eq. (11). It expresses the fact that the swelling of the com-
posite is the sum of the swelling deformations of all hygro-
scopic components present in the composite and accessible
to water, e.g., wood, biopolymers… The part representing the
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Table 1 Variables X = {x1, x2, . . . , x12} related to the composite formulation

x j Description Main relations

x1 = λ f Fiber ratio in composite formulation 0 ≤ x1 ≤ 1 and x1 = x1(x4 + x5 + x6)

x2 = λadd Additives ratio in composite formulation 0 ≤ x2 ≤ 1

x3 = λm Matrix ratio in composite formulation 0 ≤ x3 ≤ 1, x3 = 1 − x1 − x2 and x3 = x3(x7 + x8 + x9)

x4 = α f Fiber ratio in fiber component 0 ≤ x4 ≤ 1 and x4 + x5 + x6 = 1

x5 = α f rec Recycled fiber ratio in fiber component 0 ≤ x5 ≤ 1

x6 = αrein f Other reinforcement ratio in fiber component 0 ≤ x6 ≤ 1

x7 = αm Thermoplastic ratio in matrix component 0 ≤ x7 ≤ 1and x7 + x8 + x9 = 1

x8 = αbio Biopolymer ratio in matrix component 0 ≤ x8 ≤ 1

x9 = αtrec Recycled thermoplastic ratio in matrix 0 ≤ x9 ≤ 1

x10 = G R AN Fiber size distribution factor Discrete variable x10 = {1, 2, 3}
x11 = kt Fiber treatment factor Discrete variable x11 = {0, 1, 2, 3}
x12 Viscoelastic properties of constituents E , n

Fig. 4 Stability of the Pareto
front: a constant number of
particles, b constant number of
iterations

swelling of the fibres vanishes when the fibres are not accessi-
ble to water (below a given percolation threshold λ0). In addi-
tion the swelling capacity of wood fibres can be changed by
thermal or chemical wood modification, which is expressed
in Eq. (11) by the discrete variable kt that can take three
different values (low, medium or high effect). The SW func-
tion is also an algorithm: there are conditions on the dis-
crete variables (kt , m and ω) and on the threshold variable
λ0.

SW = (1 − α frec (1 − k f r ))kt (1 − e−m.λω+1
f )λ f SW f

+αbioλm SWm if λ f + αbioλm ≥ λ0

= αbioλm SWm otherwise (11)

where λ0 is the percolation threshold; k f r is the user defined
coefficient for influence of recycled fiber onto swelling; kt

is the user defined coefficient for influence of treatment onto
swelling; m, ω, SW f and SWm are swelling function param-
eters. See Table 1 for the meaning of other variables.

3.1.3 Exhaustion of fossil resources function (efr)

The exhaustion of fossil resources function, efr, is defined as
an addition of two factors (Eq. 12): one for fibres used and

one for the non renewable part of the polymer if the polymer
is a blend.

e f r = a1λ f + a2 (1 − αbio)
(
1 − λ f

)
(12)

where the coefficient a1 represents the impact of fiber pro-
cessing and treatment on the exhaustion of fossil resources,
and the coefficient a2 reflects the impact of non renewable
thermoplastic and additives production and processing. Other
factors have an impact on efr, such as consumption of non
renewable energy during composite assembly, production of
additives… For simplification they have not been consid-
ered. Normally a2 is expected to be higher than a1. The
balance between the two coefficients influences the environ-
mental optimization. See Table 1 for the meaning of other
variables.

3.2 Application of the MOPSO algorithm

In the design of wood–plastic composite (WPC), the creep
and swelling functions are conflicting: the swelling of the
composite growth when the creep decreases with the rate
of fibers (wood). The MOPSO deals with such conflicting
objectives; even if the representation of each objective is an
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Fig. 5 The distribution of
particles in the Pareto front is
statistically stable. The 3D
Pareto front is represented here
by two objective functions

Table 2 Examples of solutions
in the Pareto front Solution λm (%) αbio (%) GRAN α f rec (%) kt efr Creep (mm) Swelling (%)

a 33 0 2 9 2 4.67 1.0 3

b 59 39 2 2 2 4.10 1.9 3

algorithm and thus with a high number of functions. In our
WPC preliminary design we have three objective functions
with two of them represented each by an algorithm utilizing
several variables.

3.2.1 Dealing with continuous and discrete variables

Equations (3) and (7) are used as position updating rule of
respectively, real and discrete variables. The Equation (4) is
used as velocity updating rule for all variables. During the
optimization process, the real variables converge to their
optima according to the objective functions, whereas each
discrete variable randomly traverses its space of definition
and consequently its best solution is identified.

3.2.2 Multi-objective optimization

In this work we have applied the MOPSO method described
in [1]. In this method only the fully connected topology is
used to calculate the position of each particle for each objec-

Fig. 6 The influence of the precision of ratios in composite formula-
tion on the number of solutions in the Pareto front

tive function and then the Pareto dominance test is applied
to each particle regarding the particle’s positions stored in
the extended memory. If the position of a particle dominates
some particle’s positions in the extended memory, the posi-
tion of the particle is stored in the extend memory and the
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ones dominated are discarded from the extended memory. We
used, as end condition of the optimization process, a given
maximum number of iterations. Of course the swarm is ran-
domly initialized and the number of its particles is given.
The Pareto front is constituted by the particle’s positions
in the extended memory at the end of the optimization pro-
cess.

The efficiency of the optimization is hardly influenced
by the constant parameters w, c1 and c2 in Equation (4).
Such parameters have to be experimentally adapted to each
optimization problem. For our problem the parameters w,
c1 and c2 have been respectively settled to 0.63, 1.45 and
1.45.

4 Results and discussion

4.1 Stability of the Pareto front

The Pareto front is stable regarding the swarm size and the
number of generations of particles (number of iterations used
as end-condition of the optimization process):

1. for a given swarm size, the number of particles in the
Pareto front increases with the increasing number of gen-
eration of particles according to an affine law (Fig. 4a),
but the shape of the front remains the same; and for a
given number of generation of particles, the number of
particles in the Pareto front increases with the increase
of the swarm size (Fig. 4b).

2. for a given swarm size and two different numbers of gen-
eration (200 and 50), the distribution of particles in the
Pareto front is statistically stable (Fig. 5), as the coordi-
nates of the solutions in the front may differ.

The size of the Pareto front can be rather large and therefore
the swarm size and the number of iterations should be fitted
in order to obtain a reasonable front size.

4.2 Analysis of MOPSO solutions on composite
formulations

Table 2 illustrate the differences that can be exist between
two solutions, a and b, very close in the Pareto front. The
two solutions refer to the two completely different composite

Fig. 7 The influence of the
matrix ratio in composite
formulation on the number of
solutions in the Pareto front
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formulations: the solution (a) contains a low rate of plastic
(36%) without biopolymer, randomly oriented short fibers
with 9% of recycled ones and a high treatment level; the
solution (b) contains a high plastic content (59%) with 39%
of biopolymer thermoplastic, randomly oriented short fibers
with 2% of recycled ones and a high treatment level. These
two solutions are rather equivalent regarding the objective
functions values: for (a) 1 mm/3%/4.67 for creep/swelling/efr
and 1.9 mm/3%/4.10 for (b). These results show a signifi-
cant gap for raw materials content and underline the power
of such optimization process offering new possibilities of
preliminary design.

4.3 A large number of solutions

The number of MOPSO solutions on composite formula-
tions depends on the ratios between the components and their
desired precision. The number of solutions grows in function
with the precision of ratios between the components using a
logarithm-like law. It starts at 1,500 solutions for a precision
of 2 (the lowest possible precision) to more than 5,000 for a
precision greater than 5 (Fig. 6). The matrix ratio in compos-
ite formulation generates a peak of solutions around 75% for
any precision of ratio (Fig. 7). This large number of solutions
makes them difficult to handle. One solution is to take into
account, in the system process, the user of the system so he
could fix the precision of ratios, and for each ratio, its desired
range; the latter being included in the domain of validity of
the variable representative of the ratio. For example if you
want to formulate a wood–plastic composite with a matrix
ratio lying between 30 and 40% without biopolymer, it is suf-
ficient to restrict the range of the variable representative of
the matrix ratio (λm) between 0.3 and 0.4 and the one repre-
sentative of the biopolymer ratio in matrix component (αbio)

between 0.0 and 0.0. In this case the number of solutions in
the Pareto front fall down to 20.

5 Conclusion

In this paper we have shown the easiness of handling the
multi-objective particle swarm optimization (MOPSO)
method and its interest in preliminary ecodesign. The method
provides a set of “interesting” solutions among which the
designer will be able to refine the design process, intro-
ducing for instance processes, availability of raw materials
and economic viability. There is no restriction on the num-
ber of objectives, provided their expressions and interactions
between them can be clearly defined. We have used a MO-
PSO algorithm based on an extended memory technique to

calculate a stable Pareto front for three objective functions:
creep, swelling and exhaustion of fossil resources in the con-
text of the environmental optimization of the wood–plastic
composite. The creep and swelling functions are in fact algo-
rithms using in the same time continuous and discrete vari-
ables. A flexible and multiplatform (unix, windows and mac
osx) computer program has been developed.
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