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Abstract This paper proposes a method to develop a design
assistance tool dedicated to preliminary design. This tool
increases interactivity and enables the design space to be
explored. The user-friendly interface proposes to define
design parameters with interval values. In addition, an objec-
tive has to be selected and the tool offers an optimum design.
To take full advantage of all the exploration’s capabilities, it is
suggested that all the potential optimization functions be con-
sidered as design parameters and that each design parameter
be considered as a potential objective function. This method
was applied to build a software mock-up dedicated to com-
pression spring design. The industrialization process leading
to the commercial software is detailed.

Keywords Design space exploration · Optimization ·
Assistance tool · Mechanical springs · Industrialization

1 Introduction

The design of machines imposes the dimensioning of numer-
ous common mechanical components (gears, cams, shafts,
springs, etc.). These components have their own dimen-
sioning rules and require specific manufacturing knowledge.
The problem of designing a mechanical component is often
solved by using tables and charts for certain pre-selected
specifications and objectives. These calculations can be car-
ried out manually, but without computer assistance, design-
ers are often obliged to oversimplify the procedures, e.g. by
assigning a value to certain parameters in order to reduce
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the number of problem variables to only 2 or 3 [1–3]. They
are therefore unable to make the most of all the specification
possibilities and consequently optimize design. Progress in
Computer Assisted Design should lead to successful solu-
tions to this kind of problem.

Many classes of assistance tools can be found. The great-
est range of industrial software for component design can
be considered as analyzing tools. Some tools can be used for
the design of many mechanical components. MITCalc (www.
mitcalc.com) contains both design and check calculations for
many common tasks. KISSsoft is a calculation program con-
sisting of a standard package and expert add-ons for the certi-
fication and design of machine elements (www.kisssoft.ch).
Tumkor [4] presents an interactive website to assist in design-
ing shafts and bearings. Other tools focus on the design of a
specific mechanical component. As examples, Zakegear cal-
culators (www.zakgear.com) are online tools related to the
design of gears that apply the work of Dudley [5] and the
Institute of Spring Technology provides the Spring Design
and Validation Software (www.ist.org.uk).

All these analyzing tools provide a first level of assistance.
The main idea is to avoid the user having to perform tedious
calculations. The designer has to propose a design that is
analyzed by the tool. As for the Spring Design and Valida-
tion Software from IST presented in Fig. 1, the tool interface
commonly proposes to enter data in order to fully define a
design. The proposed data are the most common in use. When
several applications are proposed, the tool allows a choice to
be made from within several sets of data. For a given appli-
cation, the designer has to choose the most appropriate set of
data to define his design. The tool then analyzes the solution.
It calculates several parameters and can evaluate whether
the solution is acceptable or not with regard to standards
and/or the manufacturing process. The designer then has to
himself analyze the other calculated parameters in order to

123

www.mitcalc.com
www.mitcalc.com
www.kisssoft.ch
www.zakgear.com
www.ist.org.uk


266 M. Paredes

Fig. 1 Spring Validation
Software from IST

see whether the proposed design satisfies his requirement. If
the design is acceptable, then the designer usually stops the
design process and validates the design. If the design is not
valid, the designer modifies data, performing a trial and error
process. The success of such a process primarily depends
on the designer’s background. An experienced designer will
easily modify data in order to find an acceptable solution.
Moreover, an analyzing tool can hardly be operated in the
early design stages. Indeed, especially in the embodiment
design phase [6], there is always a host of parameters that
have not been yet been set, and it is therefore difficult to give
the fixed values required as data for this kind of tool.

To improve design interactivity, synthesis tools can be
used. In such tools, the designer defines his requirements
and the tool proposes a satisfying design as a result when
possible. The main difficulty for designers using synthesis
tools is in defining their needs. It is not always easy for a
designer to identify the relevant data, especially in the early
design stages. It often arises that the requirements given by
the designer lead to no acceptable solution. Thus, a tool that
would help the designer to give data would be of great inter-
est. Such a tool would increase interactivity during the design
process. One solution is to build a tool that interactively pro-
vides an overview of the design space. When new data is
given, the tool recalculates and presents the corresponding
new design space. Using such a tool, the designer would be
able to readily identify data that have the greatest effect on his
design and maintain consistency all along the design process.

The Ohio State University proposes the Run Many Cases
Program (www.gearlab.org) which provides a visualisation
of the design space for the design of gears. Many researchers

have worked on systems to represent the allowable design
space or the Pareto solutions space [7,8]. Design space explo-
ration has also often been applied to the design of processor
architectures [9–11]. Negotiation indicators [6] can also be
exploited to explore the design space by means of a class-
based approach.

We propose a method to build an assistance design tool
dedicated to preliminary design. This tool should be able to
consider uncertain data, should perform design space explo-
ration and also propose an optimal design. The first part of
the paper presents the methodology of our proposed syn-
thesis tool. The second part shows how it has been used to
build a mock-up dedicated to compression spring design.
The industrialization process from the research mock-up to
the industrial software is also presented.

2 Methodology for the assistance tool

The goal is to allow an assistance tool dedicated to a mechan-
ical component to be built. To do so, the window interface
comprises several areas to enter data and show results.

Three areas are defined to enter data. All the fixed data
are set in the first area. This area comprises all data that are
to be set and that do not change during a calculation. It can
be the material, a configuration or any other data that have
to be fixed so as to be able to perform calculation. The title
or reference of the calculation also has to be included in this
area. It thus comprises check boxes, option boxes, combo
boxes or text boxes.
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The second area is the main one for data. This area includes
a specification sheet where all the design parameters that can
be considered appear. Dore [12] proposes an approach to
identify design variables and criterion variables in prelimi-
nary design. Here, it is proposed to consider each variable
(design or criterion) as a parameter that can be defined by a
lower and/or an upper value. The list of considered parame-
ters has to be exhaustive in order to cover the widest possible
range of applications and be applied at any design step. Such
a specification sheet enables a broad range of problems to be
defined since the designer can readily give each parameter a
lower limit, an upper limit, an interval value, or a fixed value
by giving the same value to the lower and upper bounds, or
nothing by leaving the bounds empty.

The third area enables the objective function for design to
be defined.

This area is often not featured in synthesis tools. Indeed, a
synthesis tool can automatically stop the resolution process
when an acceptable solution is found and propose this solu-
tion as a result. Some tools have an implicit, unique objective
function. For example, the tool developed by Wong [13] for
the design and optimization of industrial silencers merely
proposes to minimize the total manufacturing cost and the
Spring Design Software distributed by the Spring Manu-
facturers Institute was able to automatically adjust the wire
diameter value in order to minimize spring weight. In our
view, defining an objective function is of considerable inter-
est for designers, as for a given set of requirements many
different designs may be acceptable. The objective func-
tion enables the tool to determine the most suitable solution
for the designer. Depending on the context this can involve
mono- or multi-objective optimization. The main final objec-
tive functions usually consist of minimizing weight, reducing
cost or maximizing reliability. Admittedly, it is often prema-
ture to define such an objective function from the functional
requirements at the early design stages [8]. Nevertheless, we
consider that defining intermediate objective functions can
greatly help designers to draw up their specification sheet.
For this reason, we suggest that each design parameter can
be considered as an objective function to be minimized or
maximized. The main advantage of such an idea is that it
enables the designer to explore the design space by select-
ing an appropriate objective function and evaluate the cor-
responding result throughout the process of drawing up the
functional requirements. Once the requirements have been
fully defined, the final objective function can be applied to
propose the final design. Designers may also wish to manage
multi-objective optimization, but using the proposed meth-
odology, only one unique objective function can be selected
at a time. However, there are many ways to deal with multi-
objective optimization [14]. To enable designers to manage
multi-objective optimization easily, we propose to consider
each potential objective function as a design parameter.

Thus, bounds can be set for each potential objective and it
becomes possible to explore one objective function while
assigning bounds to the others. In so doing, designers can
operate the tool to explore their multi-objective space and
analyze the associated Pareto solutions. Figure 2 illustrates
the proposed process for exploring the Pareto space for two
objective functions that have to be minimized. Figure 2a
shows the allowable multi-objective space resulting from the
functional requirements and the Pareto solutions are shown
by the thick line. An upper bound to the second objective
function is added to the requirements in Fig. 2b. This reduces
the solution space. The result of the optimization process
in minimizing the first objective belongs to the Pareto solu-
tions space. Modifying the upper bound value of the second
objective enables the Pareto solutions to be explored.

To conclude, in order to make the most of the proposed
design tool, each potential objective function has to be con-
sidered as a design parameter and all the design parameters
must be added to the list of potential objective functions.

The results are shown in two areas. The first result area
presents the proposed design that has to satisfy the require-
ments and correspond to the selected objective. This area
contains data that are usually found as a result for an analyz-
ing tool. Thus, the individual value of each design parameter
shown in the specification sheet has to be given. Moreover,
this result area can display the manufacturing parameters that
correspond to the design or details of calculation that shows
respect for standards. In this context, highlighting the objec-
tive function value enhances legibility.

Proposing a design that matches the requirements and
respects standards and manufacturing constraints is not an
easy matter. Moreover, in our suggested tool, the proposed
design has not only to be acceptable but also has to minimize
or maximize the objective function selected by the designer.
To do so, powerful capabilities of optimization strategies can
be harnessed as the requirements defined by the user can
be translated into an optimization problem. The objective
function is selected by the designer. The variables are then
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Result of the 
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Fig. 2 Exploring the Pareto space using one objective function at a
time
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chosen in order to fully define a design. Each limit given in the
specification sheet for a design parameter is used as a con-
straint for the optimization problem. In addition, the con-
straints related to standards or manufacturing knowledge
have to be automatically considered.

Many techniques exist to solve an optimization problem.
The main difficulty is to find a reliable method that is capa-
ble of solving the problem whatever the specifications. At
this stage, it is impossible to introduce just one approach
that would allow all problems to be solved. The resolution
process mainly depends on the nature of the optimization
problem. When continuous variables and functions (objec-
tive and constraints) are considered, mathematical program-
ming methods [15] can be applied. When considering other
types of variables (discrete, integer, Boolean, etc.) stochas-
tic approaches are more appropriate, as with genetic algo-
rithms [16], evolutionary strategies [17] or neural network
algorithms [18]. Finally, for mixed variable problems, sev-
eral strategies can be applied. Mathematical programming
and stochastic algorithms can also be combined [19] or Meta-
modeling used [20].

Details for applying mathematical programming can be
proposed. For continuous variables and functions, a direct
method can be implemented as each step in the resolution pro-
cess is based on a displacement inside the solution area. This
kind of property is useful if the resolution process is inter-
rupted before completion (when a full convergence proves
to be difficult), the tool being more likely to provide an ade-
quate though non-optimal solution. Direct methods require
a starting point inside or close to the solution area. Indeed,
the closer the starting point is to the final solution, the more
likely the algorithm will be to converge towards the opti-
mum solution. For this reason, we propose several strategies
to find a good starting point. The first involves giving each
considered variable the medium value of the bounds given in
the specification sheet. This basic method is efficient when
most variable bounds are defined. Clearly, it can lead to a non
acceptable initial solution when there are few data available.
To be more efficient, another strategy involves selecting the
best existing design related to the requirements from a cata-
logue. Depending on the specifications and on the database,
it may arise that no allowable design is found. The closest
design to the specification can then be chosen as a starting
point. This method can be improved by automatically defin-
ing a catalogue depending on the requirements. To do so,
interval arithmetic [21,22] is then useful.

The second result area shows a higher level of assis-
tance. This area proposes an overview of the design space.
This can be obtained by presenting the acceptable bounds of
each design parameter considered in the specification sheet.
This area can be updated at each data modification. In so
doing, the designer has an interactive overview of the design
space. Showing the acceptable bound of a parameter involves

representing the final value of an objective function as a result
of the optimization process shown below where the parameter
bound is considered as the objective [23]. Thus, an optimiza-
tion problem has to be solved for each bound to be presented.
This process can be time consuming and the approach can
therefore be applied most successfully when analytical for-
mulae or low numerical processes can be implemented. The
design space is thus represented by it bounds (not only on the
manufacturing variables but on each design parameter) but
no potential sub-spaces can be highlighted. Internal explora-
tion can be manually performed step by step by modifying
the bounds in the specification sheet.

Finally, this level of assistance also enables the resolu-
tion process to be facilitated by mathematical programming.
The database from which the initial design is selected can
be increased by keeping the design results for each run per-
formed to show the design space. Indeed, interactively dis-
playing the design space means finding the minimum and
maximum allowable values for each design parameter. When
a new data item is given, the design space can be reduced, but
at least one design remains acceptable. For example, when
the maximum value for a parameter is given (or modified) by
the designer then the design corresponding to the opposite
value of this parameter (the minimum) remains acceptable.
This method means an acceptable design to initialize vari-
ables is sure to be found.

3 Software mock-up for compression spring design

The method proposed to define an assistance tool was applied
to cylindrical compression springs with constant pitch. Defin-
ing a compression spring design means finding values for
manufacturing parameters to define spring geometry and
operating parameters to define its use. The main parameters
are shown in Figs. 3 and 4.

Fig. 3 Manufacturing parameters
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Fig. 4 Operating parameters

The other considered design parameters are:

• Spring mass
• Natural frequency of surge waves
• Energy stored during travel
• Housing diameter
• Overall volume at free length
• Overall volume when compressed

Parameters to respect standards and manufacturing
requirements are also considered:

• Minimum allowable length
• Spring index
• Helix angle
• Fatigue life factor
• Stress at solid
• Buckling length

To fully define a design some other characteristics have to
be set:

• Objective function
• Material
• Type of ends
• Number of dead coils
• Number of cycles
• Selected standard to calculate the minimum allowable

length
• Allowable stress at solid
• The end fixation factor to calculate the buckling length
• Whether the helix angle has to be checked
• Whether the stress correction factor has to be applied
• Required level of assistance

Considering this, an optimization problem can be auto-
matically built. Optimum compression spring design has
often been applied to illustrate mixed variable optimization
techniques [24–26]. The authors consider that the number
of coils is an integer variable, that the wire diameter is a

discrete variable and that the other variables are continu-
ous. From a practical point of view, all the variables can
be considered as continuous. Indeed, spring manufacturers
can build springs with a continuous number of coils. Further-
more, while standard wire diameters do exist, it is possible to
ask the wire manufacturer to provide a specified wire diame-
ter. The optimization problem thus comprises six continuous
variables that enable not only the spring itself (four manufac-
turing parameters) but also its use (two operating parameters)
to be defined together with a maximum of 47 constraints.
The objective function is selected from the considered list of
parameters. It is thus analytically defined (all the considered
parameters are defined analytically).

This optimization problem has to be solved automatically.
The goal here is to find a fast, reliable and comprehensive
method to solve our problem automatically, whatever the
specifications. As continuous variables and functions have to
be managed, mathematical programming is used and, more
specifically, the DOT algorithm [15]. This algorithm applies
the Sequential Quadratic Programming method and appears
to be extremely efficient. In order to initialize variables, inter-
val arithmetic [21] has been used to build a virtual catalogue
of springs [27]. The algorithm proposed by Paredes [28]
allows the optimal values of operating variables for each vir-
tual spring to be calculated automatically and finally the best
design to initialize the variables to be selected.

As the resolution process is extremely rapid, the highest
level of assistance was implemented. The result area shows
the values of all design parameters as well as constraint
parameters. An overview of the design space is also proposed
showing the allowable bounds of all the design parameters.

The final proposed window interface is shown in Fig. 5.
In addition, sensitivity analysis can be performed in order

to check the robustness of the design [9]. Paredes [27]
presents details of the sensitivity study and on building of
the software mock-up.

4 From the mock-up to the industrial software

The research mock-up dedicated to compression spring
design was presented to a set of industrial designers from
our partner, the Schneider-Electric company. Their feed-back
was very instructive. It appears that even expert designers
have never been able to fully define their specifications (con-
straints and objective function) in one run and that the results
given by the tools greatly help them. The tool been very quick,
an interactive dialog between the designer and the tool takes
place and the final design is mostly obtained after three or four
runs. The first wish is thus reached as the proposed mock-up
enables increasing design interactivity.

It also appears that almost all the designers quickly wish
to manage multi-objective optimization. As this functionality
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Fig. 5 Software mock-up for
optimum spring design

doesn’t directly appear in the tool, we had to explain our strat-
egy that enables selecting one objective at a time (we have
to explain here that designers are not aware of optimization
techniques).

Finally, the mock-up proved efficient enough to justify the
Schneider-Electric company supporting the transfer from the
research mock-up to an industrial software application.

For an industrial user, the software has to respect certain
key issues:

• It must remain effective whatever changes made in com-
puter systems

• It has to be compatible with other existing software
• Its interface has to be capable of being modified to respect

designer requirements
• It has to be guarantee a service life over a minimum num-

ber of years

In addition, the tool is expected to be operated worldwide.
Thus, the material database has to be significantly refined and
expanded.

For these reasons, co-operation was pursued with the
Institute of Spring Technology. Indeed, this institute already
develops and sells validation software related to spring
design. Thus, the Institute has taken responsibility for
software development and distribution problems that may

arise. IST also undertakes long-term research projects into
fundamental aspects of spring technology and high strength
materials. They thus maintain a substantial material database
that takes European, US and Japanese standards into account.

The main difficulty that has to be overcome relates to
the optimization core. Indeed, the optimization algorithm
applied in the software mock-up belongs to the Vanderpla-
ats Research and Development Company. Unfortunately, the
licence price for this efficient algorithm for the industrial tool
would have been higher than the expected selling cost of the
entire final software. At this stage, a large number of algo-
rithms have been tested, the determining criteria being that
they have to be efficient, easily implemented and have an
acceptable cost.

The solution we found involves using the fmincon function
from the Matlab Optimization Toolbox (www.mathworks.
com/products/optimization). fmincon is a numerical solver
that finds the minimum (or maximum) value of con-
strained nonlinear multivariable functions. It uses a Sequen-
tial Quadratic Programming method. In this method, a
Quadratic Programming sub-problem is solved at each itera-
tion. An estimate of the Hessian of the Lagrangian is updated
at each iteration using the BFGS formula [29,30]. This kind
of algorithm is capable of solving our optimisation prob-
lem. Several tests were performed in order to ensure its
accuracy.
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Fig. 6 Optimum Spring Design
Software from IST

The Matlab function fmincon was chosen for another
specific and strategic reason. The IST industrial software
is coded using Visual Basic. The Matlab Builder (www.
mathworks.com/products/netbuilder/) automatically gener-
ates independent Common Object Model (COM) objects
from Matlab functions such as fmincon and a COM object
can be called from any COM-compliant technology, such as
Visual Basic. As it is possible to convert a Matlab program
into a self-contained application or a software component
with the Matlab Compiler (www.mathworks.com/products/
compiler/), it is also possible to link a component compiled
from a Matlab function to a Visual Basic program. More-
over, applications using Matlab Builder components do not
require Matlab to be installed, and there is no additional cost
for distributing software that uses Matlab functions. Thus, the
spring design optimization problem solved with the efficient
Matlab function fmincon is implemented in Visual Basic to
be compatible with existing IST software. Deployment and
marketing of the resulting software is subject to no fee to the
Matlab editor, and the software user does not even need to
have a Matlab licence.

When building the software, it appears that fmincon is
efficient but has a slow resolution process. In order to main-
tain acceptable interactivity of the software, it was decided
not to implement the highest level of assistance. Indeed,
displaying the design space requires 38 optimization prob-
lems to be solved. Thus, this functionality has not yet
been implemented. However, progress in computer power
suggests that this will be possible in the near future. At pres-
ent, the tool allows the design space to be explored by select-

ing an appropriate objective function. Instead of viewing the
entire design space, the designer can select a parameter and
a bound (minimum or maximum) as an objective function to
see what influence an input has on that bound. This provides a
partial view of the design space. Even though it appears to be
time consuming, sensitivity analysis has been implemented
in order to enable the designer evaluate the robustness of the
proposed design when necessary.

Figure 6 shows the final window interface of the software.
A link has been added to transfer the optimum design to
the analyzing tool previously developed by IST (see Fig. 1).
Doing so, designers are able to see details of the design such
as fatigue life diagrams or manufacturing tolerances.

5 Conclusion

In the present paper, a strategy was introduced to build an
assistance tool to be used in preliminary design. The main
idea was to provide a window interface as a specification
sheet where each parameter can be defined by a lower and
an upper bound in order to manage uncertainty.

The requirements are translated into an optimization prob-
lem that is solved automatically. As each data item is entered,
a full overview of the design space can be provided show-
ing the allowable bounds for each parameter. This can be
obtained by setting each bound as the objective function
of the optimization problem. Solving the optimization prob-
lem whatever the specifications is not an easy matter. Sev-
eral solutions are proposed depending on the nature of the
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optimization problem. Details are given for solving an opti-
mization problem with continuous variables and functions.

The methodology is then applied to compression spring
design. The software mock-up uses the DOT algorithm from
Vanderplaats. This algorithm appears to be extremely quick
and efficient. Thus, the highest level of assistance was imple-
mented. At each new entry from the designer, the tool imme-
diately shows the design space and proposes an optimum
design. This tool has been tested in an industrial context and
proved to increase interactivity in design as this approach
helps the designer build-up his specifications.

Once the software mock-up was validated by industrial
designers, the corresponding industrial software was devel-
oped in collaboration with the Institute of Spring Technology.
Because of distribution costs, the software uses the Matlab
fmincon function to solve the optimization problem. This
algorithm is quite slow so the highest level of assistance has
not been implemented. However, designers can obtain a par-
tial view of their design space by selecting the appropriate
objective before a run. The compression spring optimization
module has now been distributed by IST. Other modules for
the optimal design of extension, conical and torsion springs
are under development.
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