Int J Interact Des Manuf (2008) 2:99-106
DOI 10.1007/s12008-008-0039-3

ORIGINAL PAPER

Using high-level models for modeling industrial machines

in a virtual environment

Adel Sghaier - Thierry Soriano

Received: 18 June 2007 / Revised: 15 July 2007 / Accepted: 25 July 2007 / Published online: 19 March 2008

© Springer-Verlag France 2008

Abstract The work presented in this paper deals with a
platform independent model formalism for designing virtual
reality applications. In our approach, we focused on indus-
trial machine simulators design. The structure of an indus-
trial machine model is composed by “Virtual Components”
which corresponds to the physical industrial components of
the machine and a control part which corresponds to the func-
tional specification of the machine. Each virtual component
is modeled by VRML model for geometry and by hybrid
automata (HA) for behavior. The control part is modeled by
Sequential Function Charts (SFC), as it is the case in the
majority of industrial machines. Those SFC are translated
to HA and composed with the virtual components HA. The
whole HA model of the machine is then implemented in the
generic virtual environment “OpenMASK” by specific soft-
ware translation tools which was developed previously. This
method makes virtual prototyping accessible by the special-
ists in the domain of industrial machine design domain In
this paper, we describe the high level modeling method putt-
ing the accent on the coupling between the control part and
the process and then we apply it in the case of an assembly
machine.

Keywords Virtual prototyping - Industrial machine -
High level modeling - Hybrid automata - SFC

A. Sghaier - T. Soriano (B<)

Institut Supérieur de Mécanique de Paris SUPMECA TOULON -
LISMMA, Maison des technologies, 83000 Toulon, France
e-mail: thierry.soriano@supmeca.fr

A. Sghaier
e-mail: adel.sghaier @supmeca.fr

1 Introduction

One of the new domains where the virtual reality can be
applied is the virtual prototyping of industrial machines. The
existent virtual prototype building tools are not adapted to
the usual practice of industrial design engineers. Indeed, this
tools requires low level coding and so the entails program-
ming knowledge. The solution that we propose to facilitate
design of virtual prototypes of industrial machines is to use
formalism with a high abstraction level independent of plat-
forms and implementation solution. Indeed, we have to keep
the designer of virtual prototypes the farthest from imple-
mentation problems [1]. So, our approach has as principal
goal to make the virtual prototype building accessible for the
industrial domain specialists.

Two distinct parts are identified in design of the virtual pro-
totype as in physical prototyping; firstly there are the modular
components which must be defined and secondly the building
of the assembly of components to get a complete machine.

1.1 Virtual component

A real industrial machine is generally an assembly consti-
tuted of various industrial standard components (motors,
jacks, conveyer belts...). In order to stay as faithful as possi-
ble with the design of a real machine, our tool will allow to
build virtual prototypes in the same way, that is, by assem-
bling virtual components.

We propose as definition of a “virtual component” the pair
of 3D geometric representation of solid parts and an associ-
ated behavior which is the representation of different modes
of cinematic dynamic.

The behavior of a virtual components, in order to be the
most realistic, must be described by different models with

@ Springer

100

A. Sghaier, T. Soriano

continuous equations and discrete jumps between them. The
best way to represent and study this type behavior is to apply
Hybrid Dynamical Systems formalisms [2].

The geometry is obtained from a CAD tool ina VRML file
format [3] which is accepted by most of virtual environments.

1.2 Virtual machine

From the geometrical point of view, an assembly of virtual
components with cinematic relationship can be seen as a con-
catenation of geometrical models.

From the behavior point of view, a more complex trans-
formation of the model has to be engaged involving degrees
of freedom, inertia, mass.

The design process of the virtual machine will be devel-
oped in paragraph 2.

1.3 Virtual machine control

Once the whole machine described and in order to simu-
late its functions and evaluate them, a control model must be
added. The control model of a real industrial machine is often
sequential, boolean and realized by a Programmable Logical
Controller (PLC). The most frequently encountered language
for this purpose is the Sequential Function Chart (SFC). With
the aim of being closed to real machines design, we use the
SFC to control the virtual prototype and we have developed
a method to translate SFC in hybrid automata (control HA)
and then to compose them, with virtual component HA. We
will develop this feature in paragraph 3.

The last paragraph 4 is dedicated to the application which
is an virtual assembly machine model implemented in the
OpenMASK environment [4].

2 Virtual machine design
2.1 Virtual components design

The design of a virtual prototype of an industrial machine
could be a time consuming task. In order to reduce to the min-
imum the design time of a virtual prototype it is necessary to
employ the re-usability of models. Industrial machines are
generally composed of assembly of standard industrial com-
ponents. That is why we have decided to consider as a basic
module for building virtual machines the “virtual compo-
nent”. The basic module used in the majority of virtual envi-
ronments is the “virtual object”. This module corresponds
to an elementary geometrical object associated to its behav-
ioral model. In our case, the virtual component represents
the virtual model of an industrial component. It can, there-
fore, be composed by several virtual objects. Once we built

@ Springer

virtual components, these models will constitute a library of
reusable models.

An industrial component comprises, in general, a static
part which will be fixed on other elements of the machines
and one or more moving parts which will perform the action.
The displacement of the moving parts compared to the fixed
parts constitutes the behavior of the virtual component. This
behavior can be represented neither by continuous models
nor by discrete models. This is why we use hybrid models
to describe this behavior. This behavior can be described by
several formalism of which we hold up as an example the
hybrid Petri nets, hybrid SFC, bond graphs, hybrid automata

We carried out a study of the most known hybrid dynami-
cal systems description formalisms [2]. The hybrid automata
formalism was chosen because it is the best formalism to
model industrial components motions [5]. Indeed, this for-
malism allows the user to describe a rather general behavior
thanks to the differential equations. Another reason of this
choice was that hybrid automata profit from modeling and
formal checking tools [6]. Once the choice of the formal-
ism made, it remains the choice of the implementing method
of this formalism in the chosen virtual environment (Open-
MASK in our case).

OpenMASK is a virtual environment which uses modu-
lar architecture to build virtual applications. The modules
composing the application are specialization of a generic
object (PsSimulateObject). The Interaction between modules
is realized with communications through the Data bus.

An OpenMASK module is a prototype of a C++ class
containing among others the following methods:

— A method for the initialization (Init ()),
— A method of behavior computing (Comput ()),
— A method for events handling ...

An OpenMASK module can also contain input—outputs
for the exchange of data. Modules can exchange events or
send events to the core. So we noticed very quickly the anal-
ogy between the states of the hybrid automata and the notion
of module in OpenMASK. Indeed, the calculation of the con-
tinuous evolution (differential equations) can be made in the
comput() method. One notice also that the transition from
a continuous state to the other can easily correspond to a
sending of event between modules [5].

The chosen method was to model every state of the hybrid
automaton representing the behavior of a virtual corposant
by an OpenMASK module. This method, in spite of appear-
ances, does not imply a high number of OpenMASK mod-
ules. Indeed, there is only a single active state at the same
time in a hybrid automaton. This consideration implies that
there is only a single OpenMASK module active for each
hybrid automaton.

Using high-level models for modeling industrial machines in a virtual environment

101

Geometry
VRML
1
1 <<communicate>> Hybride
Virtual Automaton
O coordonates Il Coordonées
&fiCoordonées |4 1| initg
% Comput()
% ProccesEvent()
Lty 0.*
SIELE Transition

E¥invariant : Boolean

[®equation differentielle()

Fig. 1 Hybrid external behavior

Sate 1
Differential equ

Invariant

|
| Gu

— Guard 1
“\Affectation 1

\Affectation 2

Eguard : Boolean

[Miaction()

ations

ard 2

Init()
{

OpenMASK module

state actif or not
initialise state variables
do affectations

Comput()

|

differential equations
test invariants and guards
{ send transition envent }

ProcessEvent()

test invariant
{ activate state

/

connect to outputs }

Fig. 2 From hybrid automaton state to OpenMASK module

Fig. 3 Virtual component

architecture

2.2 Virtual machine design

Building a virtual machine is based on the assembly of
virtual components. Once the library achieved, the user has to
select components needed and assemble them. This assem-
bly has to be made with respect to the manufacturing process
of real industrial machines. The assembly has to favor the
future implementation in the virtual environment.

The user assembles two virtual components of an indus-
trial machine by positioning them in the 3D scene and by
defining the type of the connection which exists between
their common parts. This operation can be made in a building
graphic interface. Several types of connection are possible
between the industrial machine components. The commonly
used connections are cinematic connections and especially
incitement connections. Indeed, in most cases components
are fixed with each others or they are fixed to the scene
(Figs. 1, 2, 3).

There is a hierarchy between the assembled virtual com-
ponents. The virtual component which is generally firstly
defined and fixed to the scene is the basic structure of the
virtual machine. This component is then the highest hierar-
chical one and it is defined in the absolute referential. Every
component assembled to the basic structure is not defined in
the absolute referential any more but is defined including a
displacement from the absolute referential.

Every time a virtual component is added, a displacement
is defined (Fig. 4). The position of the virtual components
should take into account hierarchical successive displace-
ments from the initial referential. In another hand a compo-
nent must take into account the motion of all components
assembled to it higher in the hierarchy. To move from a

CAD file

Hybrid automata

High level
VRML,3dS, step... Independent model
i
; -
' |
0 ‘ T / tool
i
}
1 Module OpenMASK
Main Module
Send space coordinates of Module Module Module
moving parts to the core OpenMASK OpenMASK OpenMASK

State 1 ‘ State 2 ‘

Virtual environment

State n ‘
level

specific to the tool

Bus OpenMASK

N

‘ Virtual environment

Code C++

Implementation level
(low level)

@ Springer

102

A. Sghaier, T. Soriano

Basic strusture
Absolute referential

M1 M2
[M3

Component 1
Referentiel 1

Component 2

- Component 3
Referential 2

Referential 3

M4

Component 3.1
Referential 3.1

M6 M5

[

Component 3.1.2
Referential 3.1.2

Component 3.1.1
Referential 3.1.1

Fig. 4 Hierarchy of components links

referential to an other we use the displacement matrixes. If
one wants to calculate the motion of a component in its own
referential, it is necessary to multiply his local motion by
all the displacement matrixes of the components which are
higher than him in the hierarchy of connections.

Fig. 5 Virtual machine
assembly

Virtual
Component 1

Virtual

I::> Assembly
tool

The specification of connections will take place during
the assembly of the virtual machine. Indeed, the assembly
software generates an assembly description file in which it
specifies the position of every component and its connec-
tions with the others. In this way the association of the mod-
els of the virtual components with the assembly description
file constitutes a high level model completely independent
from the virtual environment (Fig. 5). Indeed we can gener-
ate from virtual machine models the corresponding model in
the virtual environment which we want to use by the way of
the adequate translation software. In our case, we are inter-
ested in the OpenMASK virtual environment. This way to
define models independent from platforms is very similar to
the platform independent model (PIM) and platform specific
model (PSM) in the Model driven architecture (MDA) in the
UML2 language [7].

3 The virtual machine control

The model defined previously represents geometry and
dynamic behavior of the machine. This virtual prototype can-
not run without a control model. As it was said previously
the control model for real machines is often described in SFC
language and it was decided to follow such an industrial stan-
dard. This will allow to test control scenarios on the virtual
machine before implementing them in the real machine.

Assembly file
Virtual environnment

Comporent?2 Type of links Independent model
Ordre of links
Virtual
Component n
Compilation
I Translation per/
PsObjet1 PsObjet2 PsObjetn

=~ == =

Virtual environment

< >

Bus OpenMASK

Q dependent model

@ Springer

Using high-level models for modeling industrial machines in a virtual environment 103

In order to control virtual components with SFCs, the most
natural solution is to translate SFCs in hybrid automata (HA)
and then to couple them with the virtual machine HA. This
path is possible since a hybrid formalism like HA has a great
expressive power for discrete event systems and continuous
equations systems. This leads to use HA states without the
continuous functions description inside them. In the transla-
tion, there is still a difficult point which is the representation
of concurrent states. They are supported by the SFC formal-
ism and not by the HA one.

This transformation has already been studied [8]. In their
approach, authors proposed to generate the situation graph
from the SFC. This situation graph represents the tree of
all the possible SFC situations encountered in the dynamic
exploration. The advantage of the method is to obtain only
one hybrid automaton with only one active state at each
instant and so to save computing resources. The most impor-
tant drawback is that this kind of exploration leads gener-
ally to combinatory explosion when divergence structures
are used in the model. Thus, finally, it is difficult to retain
such a method in the case of industrial SFC.

We have been led to develop an new method to translate
SFC into HA. This method is based on the rule that for each
“AND” divergence contained in the SFC, a new independent
HA is created. The “OR” divergence is treated inside the
same HA. So, there is no combinatory explosion.

This method of translation is applied with a certain num-
ber of hypotheses. Indeed, we try to exclude cases which risk
to weigh down the algorithm of translation. The hypotheses
of departure are the following ones:

— Uniqueness of the initial step in the control SFC,

— Symmetry of divergences (the same number of branches),
— There is at least a step between every divergence,

— “or” divergences are exclusive.

3.1 Translation algorithm

The following translation algorithm is the skeleton of the
translation algorithm developed in an internal report [8].

1. Position on the initial step of the SFC
Build the corresponding initial state in the main hybrid
automaton (HA) and build the initial transition

3. Test divergence presence
— If “and” divergence go to (13)
— If “or” divergence go to (8)
— If no divergence go to (4)

4. Go to the next step of the main SFC or branches.

5. Build the next state in the HA corresponding to the step
and build a transition from the previous state

— If treating the main branch go to (6)

— If “and” go to (16)
— If “or” branches go to (10)
6. Test the end of the main SFC

— If the end go to (7)
— Ifnot goto (3)

7. Build transition from the current state to the initial state
and finish

8. Position on each first step of each branch

9. Build a state in the main HA for each branch and build
transitions from the previous state the each of built state.

10. Test convergence presence

— If convergence go to (11)
— Ifnotgoto (3)

11. Position on the next step in the higher branch and if
corresponding state is not built, build it.

12. From each state of end of the divergence build a tran-
sition to the current state and go to (3)

13. Build an initial state of an auxiliary HA for each branch
with coupled initial transitions

14. Position on the first step of each branch

PULRLGA ; Poste de montage fins

Fig. 6 The model of the assembly post of the flexible cell

v

Fig. 7 The motor assembled on the elevator

@ Springer

104 A. Sghaier, T. Soriano

Fig. 8 The control SFC

- Run
S0 conveyor

—I— Marked piece
—t— Not marked pi
piece Stop
S1
conveyor
—| Piece on the left position :l: Piece on the right position
sz
elevator out
V
S8 —— Elevator on the top
ommand
elevator out Motor in the
— L S3 Stop elevator
left position
—1— Elevator on the top
Vi
0
A —— Elevator stoped —_— T
—Elevator and motor stoped
Piece
S15 | mounting Piece
operation S5 | mounting
operation
~1~ Mounting operation finished
—— Mounting operation finished
elevator in
—— Elevator down ommand the
s
elevator in
op elevator
> s10 []Motor| | Ejevator down
right
—— Elevator stoped __Motor |n_the s7
right position
Stop
S11 'l motor
—tElevator and motor stoped
15. For each step build a second state in the auxiliary HA (a) If convergence go to (17)
for and a transition from the initial state (b) If not for each branch go to (3)
16. Test convergence 17. Position on the next step in the higher branch

@ Springer

Using high-level models for modeling industrial machines in a virtual environment 105

18. Build the corresponding state and build a transition
from the last state in the higher branch and transitions
from the last state in each auxiliary HA and couple them
with the precedent transition and go to 3.

4 Application

The complete design process of an industrial machine virtual
prototype is applied to the particular case of an assembly sta-
tion of an flexible cell. We put the stress in this example on
the modeling of the control of the machine and the coupling
of the control of the station and its operative part.

The operation of assembly consists in awaiting the pres-
ence of the one of the plates which are transported by a con-
veyor belt. Once the detection of a plate occurred, and if that
one is marked, a piece must be mounted on the free side of
the plate considering that the marked plates are those which
do not comprise piece on one of their sides (Fig. 6).

This example allows us to illustrate the modeling of an
industrial machine from the operative and control point of
view. Operative part model is constituted by the graphical
model and by the behavioral one. Graphical models were
realized with a CAD tool (AMAPI 3D) and were exported
as Inventor files. We associate to every virtual component a
behavior described the hybrid automata formalism. Only the
conveyor belt, the motor and the elevator behavioral models
are detailed to reduce the size of the model.

If one considers the example of the assembly of the ele-
vator, which is connected with the basic structure of the
machine, with the motor (Fig.7). The motion of the motor
is dependent on the motion of the elevator. So the behav-
ior of the assembled motor is different from its autonomous
behavior. The motion of the stem of the jack in its referential
(R) is modeled by the following displacement matrix:

1 00 0

10 1 0 Ty

Mi=1o9 01 o0 M
00 0 1

and the motion of the motor compared its referential (R) is
modeled with:

1 0 0 0

|0 cos(H") sin(H) O
M=o —sin(H)) —cos(H’) 0 @

0 0 0 1

Knowing that the motor element is the son of elevator ele-
ment in the hierarchy tree and that the elevator itself is the son
of the basic structure of the machine, the motion of the motor
in the absolute referential is computed using the following

displacement matrix:

1 0 0 0

r 0 cos(H') sin(H) Ty
My=Mi* M| _Gin(H') —cos(H') O 3)

0 0 0 1

The control of the machine is described by the SFC of the
Fig. 8. Through this simple example we can efficiently test
the design method of the control part considering that we
encounter most of the divergence cases of the SFC (Fig. 8).

We does not detail in this part the operation of piece assem-
bly in order to reduce the size of the example. The translation
algorithm is applied to the control part of the machine and
we obtain the control hybrid automata described in Fig. 9.

It is noticed that the two “And” divergences of the SFC
are translated to two auxiliary hybrid automata (Fig. 10).

Each state of the control hybrid automata is defined by
the differential equation of the evolution of time (we do not
use the continuous states for the control SFC). The transi-
tion invariant corresponds to the complement of the deci-
sion of the SFC. The transitions from the control hybrid

Tinit0
Init event

Event3

Fig. 9 The main branch control hybrid automaton

Tinit8
Init event

Tinit10
Init event

Event1

T8_9

Fig. 10 The “And” divergent branches control hybrid automata

@ Springer

106

A. Sghaier, T. Soriano

Init event

Event8

Event1

Elevator out
dy/dt=cst2
y<ymax

Elevator in
dy/dt=-cst2
y>0

Elevator stop
dy/dt=0
true

Tinit_conv
Init event

Event5

Conveyor On

dx/dt=cst1
true

Init event

Event9 Event1

Motor right Motor stop Motor left
dh’/dt=cst3 dh’/dt=0 dh’/dt=-cst3
dy’/dt=dy/dt dy’/dt=dy/dt dy’/dt=dy/dt

h<0 true h>hmin

Fig. 11 The operative part hybrid automata

Assembly file

Compl (x,,y, zi, Hi, Pi, R)) LinkType/Compi

Comp2 (X2, y2, 72, Ha, P2, Ry) LinkType/Compj
LinkType/Compk

Fig. 12 Assembly file

automata are conditioned by the guards which correspond
to the SFC decision. Each transition of the hybrid automaton
generates an event. These events are used to couple the main
control hybrid automaton with the auxiliary ones and to con-
trol transitions of the virtual components hybrid automata.
For example the transition T1-2 (Fig. 9), which represents

@ Springer

the cross between stage 1 and 2 of the SFC, will control the
output of the elevator (Fig. 11) throw the event 1. It also will
control the activation of the auxiliary SFC (Fig. 10) throw the
same event. The result of the implementation of the whole
method is illustrated in the Fig. 10. This little example was
made to illustrate the method developed before (Fig. 12).

5 Conclusion

We develop in our approach a method for modeling industrial
machine on a high level of abstraction. The high level model
of the machine describes the geometry as well as the behavior.
This model is completely independent of the virtual environ-
ment. The use of a translation software implementing this
method in a virtual environment (OpenMASK for example)
allows to generate a virtual prototype of a machine.

The virtual prototype of the machine thus generated will
be used as test and training platform.

Translation tools for implementing the high level models
under OpenMASK are developed using the PERL language.
In another side we are developing a graphical interface for
specifying the high level model. In order to improve the
immersion of user, the tool could integer in the future
compatibility with external interfaces.

References

1. Boeck, J.D., Cuppens E., Raymaekers, C., Conix, K., Flerackers,
E.: High-level interaction modelling to facilitate the development
of virtual environments. IEEE VRIC (2004)

2. Zaytoon, J.: Systemes dynamiques hybrides. Hermes science pub-
lications. (ISBN 2-7462-0247-6) (2001)

3. Dille, Ed. Explorer Moving Worlds. VRML 2.0 et les mondes animés
sur le web. ISBN 2-84180-146-2. International Thomson publica-
tions, London (1997)

4. Duval, T., Le Teneir, C.: Interactions 3d coopératives en environn-
ements virtuels avec openmask pour I’exploitation d’objets tech-
niques. J. Mécanique Ind. 5, 129-137 (2004)

5. Sghaier, A., Soriano, T.: Modeling parts behavior on virtual envi-
ronments. In: IEEE VRIC 2004, Laval, France (2004)

6. Henzinger, T.A., Ho, P.-H.: Hytech: the cornell hybrid technology
tool. Lecture Notes in Computer Science, LNCS 999, pp. 265-293.
Springer, Heidelberg (1995)

7. Soriano, T., Sghaier, A., Turki, S.: Towards a pim for virtual proto-
typing. WSEAS Trans. Commun. 1(3), 1707-1713 (2004)

8. Sghaier, A.: The sfc to hybrid automata translation algorithm.
SupMECA Internal note (2005)

	Using high-level models for modeling industrial machinesin a virtual environment
	Abstract
	Introduction
	Virtual component
	Virtual machine
	Virtual machine control
	Virtual machine design
	Virtual components design
	Virtual machine design
	The virtual machine control
	Translation algorithm
	Application
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

