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Abstract Biofouling is a major issue for many indus-
tries including shipping, oil, and gas and can lead to
accelerated corrosion, particularly for structures and
components in and around salt water. Many efforts are
undertaken to lessen its impact and financial losses.
One of the promising methodologies is application of
antibiofouling coatings to minimize biofouling, and the
best results were observed with a superhydrophobic
coating. Ample literature reviews on superhydropho-
bic coating have shown biofouling inhibition on the
surface due to high wetting angles similar to the
phenomenon on a lotus leaf. The hydrophobic coating
can be deposited using multiple techniques such as
electroless plating, chemical vapor deposition (CVD),
sol–gel, and electrodeposition. In this review, an effort
has been made to encompass such experimental work
under a single domain and compare the effectiveness
of each coating. In addition, mechanical properties and
surface characteristics such as wetting angle, surface
energy, and morphology were also discussed for
various types of polymeric coating. Similarly, the
application of nanoparticles such as ZnO, SiO2, TiO2,
and CeO2 was found to improve the substrate’s
mechanical properties, the durability of coatings,
improvement in wear properties, adhesion, interlami-
nar cohesion, and increased wetting angle and above
all, improve superhydrophobicity. These improve-
ments are compared for various nanoparticle inte-
grated coatings. In addition, other novel approaches to
prevent marine biofouling by various polymer-based
coatings such as superhydrophobic, foul-release, and
foul-resistant coatings are discussed in this paper.

Keywords Antifouling coating, Foul-release coating,
Superhydrophobic surface, Tributyltin (TBT),
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Introduction

Biofouling is a natural mechanism of formation of
undesirable bacteria, algae, and mussels on any struc-
tures and components of machines such as shipyard
structures, underwater pipelines, underwater cables,
and submarine hulls. Biofouling can accelerate corro-
sion, degrade structures, and reduce marine system
efficiency, which can result in increased fuel consump-
tion and CO2 emissions. The earliest case of biofouling
was reported in papyrus plants in 412 BC, and a
mixture of arsenic and sulfur was used to minimize its
effect.1In the present scenario, biofouling has emerged
as a primary issue for structures and equipment used
for military or commercial ships, onshore industries,
and other marine engineering applications.2–4 The
undesirable adhesion of the marine species (flora and
fauna) and its colonization over the substrate leads to
the coining of the term called marine fouling. Microor-
ganisms like bacteria, algae, diatoms, sponges, etc., and
macro-organisms like mussels, balanus, barnacles,
hydroid, etc., are two broad categories of water
organisms responsible for marine fouling.5–11 The
shipping industry is considered one of the leading
sources of the nation’s income, contributing up to 90%
in some countries.12 Biofouling in ships causes tremen-
dous damage to its components and thus promotes
losses in the annual economy of the shipping industry.
Marine fouling deteriorates the performance of the
ship by affecting the ship vessel’s surface, increasing
the vessel’s weight, reducing speed, causing poor ship
mileage, and contributing to environmental pollution
by emission of SO2, NOx, CO2, and other harmful
gases.13–17 A schematic diagram of marine fouling is
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shown in Fig. 1. Considering the above parameters,
there are two key routes that describe marine biofoul-
ing’s growth. Initially, when the substrate is immersed
in the seawater and gets wet, organic carbon residue
(OCR) will immediately adsorb on the substrate’s wet
surface, generating a conditioned film in a few minutes.
The composition of these OCRs solely depends upon
the fulvic acids, humic acids, glycoproteins, and ions
accessible in the liquid form. After a few hours under
electrostatic and Van der Waals force, microbes get
adsorbed on the conditioned film to form a biofilm.
The adherence of microbes on the conditioned film is
promoted by sedimentation, water flow, convective and
Brownian motion.18–21 Finally, after a week of activity,
some single-celled algal spores, protists, and marine
biological larvae adhere over the biofilm surface to
provide nutrition to increase their population to create
a vast biological fouling community.22 The attached
organism colonizes onto the ship’s hull surface there-
after increasing the ship’s drag, reducing the ship’s
speed, and increasing the hydrodynamic weight of the
vessel.23 For more than 2000 years, humans have been
fighting with marine fouling. Early generations used
biocidal compounds which are capable of killing
fouling organisms to prevent colonization. The devel-
oped biocidal compounds vary from simple Cu to Pb
sheets on wooden boats for antimicrobial coatings
containing arsenic, mercury, and copper on marine
hulls. Copper was a popular and effective biocide, but
it was only effective for two years. The researchers
started to work on antifoul technology to attenuate the
harsh effect of biofouling. Spirit-based vanish paint was
initially applied to the bottom of the vessels in 1908 to
prevent biofouling. Ships were painted with mercuric
oxide disseminated in turpentine and alcohol-creating
paint, with a nine-month durability rating. TBT
(tributyltin)-based polishing and coating technique
was developed in the twentieth century, composed of
TBT acrylate ester, which acts as an antifouling
agent.24,25 Unfortunately, it was observed that the
toxic nature of TBT causes severe damage to aquatic

life. After that, many antifouling paints and wax
replacing TBT were developed, which inhibit biofoul-
ing growth on the substrate.26,27 The academic and
industrial researchers started their research to find the
most economical, ecological, and nontoxic coating that
can replace the traditional method. The coating tech-
niques were designed based on two prime objectives.
First, it is necessary to develop an antifouling strategy
to prevent marine organism attacks and secondly,
to design a mechanism to create a fouling release
strategy to lessen the adhesion force after an attack.28

Superhydrophobic coating is one of the durable and
efficient methodologies recently developed for such
purpose.29 Superhydrophobic surfaces have recently
attracted a lot of attention due to their efficacy in the
fields of self-cleaning, antifouling, water repellence,
and antisticking properties.29–34 The term superhy-
drophobicity has been known since the 1940s,35 but the
concept of superhydrophobicity inspired by nature has
been utilized in the past decade. This nature-inspired
surface consists of a micro–nano-structure and nano-
enclosed pores that can repel the adhesion of oil,
protein, and bacteria to prevent the surface from
biofouling.36–38 The bio-mimicry of this natural phe-
nomenon helps to suppress biofouling.39,40 Fouling
bacteria or organisms may migrate with ships and
could lead to bio-invasion when it reaches different sea
water without natural opponents.41 In the Black Sea,
fouling from the jelly comb Mnemiopsis arrived in the
1980s that endangered the existence of native ancho-
vies. Hence, the International Organization of Mar-
itime (IOM) circulated the resolution to diminish the
impact of biofouling bio-invasion. The corrosion of
surfaces can also be exacerbated by biofouling. The
accumulation of fouling bacteria on surfaces acceler-
ates regional variations in these types and deliberations
of pH values, oxygen levels, and ions which can cause
coatings to degrade, increase the conductivity of the
liquid, and encourage electrochemical and chemical
processes.42,43 This type of corrosion is known as
biocorrosion or microbial-influenced corrosion (MIC).
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Fig. 1: Graphical representation of the marine fouling method depicting the timeline and causes

1500

J. Coat. Technol. Res., 20 (5) 1499–1512, 2023



MIC accounts for 20% of the corrosion in aqueous
systems.44 Marine corrosion can cause minute surface
fissures, much like the proliferation of cancer cells.
Over time, this can culminate in large-area corrosion,
which weakens the surface and poses major security
risks. Every year, the ‘‘cancer of ships’’ causes tremen-
dous economic and financial damages that create
global problems. According to the National Associa-
tion of Corrosion Engineers (NACE) survey, the
annual cost of corrosion around the world is 3.4%
($2.5 trillion) of global GDP.45 Thus, reducing the
effects of marine biofouling and corrosion is crucial for
the growth of the worldwide maritime sector. The
previous research articles have suggested that biofoul-
ing and corrosive behavior under different field testing
like underwater, seawater, river water, and chemical
solution have affected the performance of coated
materials. Moreover, surface coating methods have
recently demonstrated promise as affordable and
effective ways to shield subsea surfaces to prevent
corrosion and biofouling. Although conventional coat-
ings often serve just one purpose, such as antifouling or
anticorrosion. Therefore, merging anticorrosion and
antifouling properties into hybridized coating has
excellent potential to mitigate fouling.

This review paper compares various environmen-
tally friendly, efficient, and long-lasting antifouling
methods for marine applications. Fouling-resistant
polymer coatings, superhydrophobic coatings, and
fouling-release polymeric coatings are the three main
coating methods that have been discussed briefly.
Further, the study also envisages the impact of various
metal oxide nanoparticles, such as ZnO, SiO2, TiO2,
nanorod, and others, on the design of superhydropho-
bic surfaces. Wenzel, Cassie–Baxter, and Young’s
wetting models are a few analytical models used to
determine the appropriate sliding angle and water
angle of contact for the superhydrophobic surface.
Overall, this review will provide a brief insight to the
reader about biofouling’s effect and prevention meth-
ods.

Methodologies for preventing biofouling

Nature-inspired biomimetic coatings

A methodical replication of biological features on a
surface is percieved to give a proficient, efficient, and
eco-friendly method to prevent biofouling. Research-
ers have created and used this nature-inspired concept
for engineering applications.46,47 Biofouling is primar-
ily influenced by surface characteristics such as wetta-
bility and microtexture.48–51 Wettability impacts fouler
colonization, ranging from water-loving hydrophilic to
water-repelling superhydrophobic. Surface roughness
and surface energy are the two characteristics that
govern wettability. Siloxanes, stearic acid, and fluoro-
carbons are the most frequent materials used to reduce

surface energy. The concept of superhydrophobicity
was inspired by nature, with a WCA of more than 150�
and a sliding angle below 10� to reduce the slippery and
sticky properties of the surface against water.52–56

Superhydrophobic surfaces, such as lotus leaves,57,58

butterfly wings,59,60 peanut leaf,61 red rose petal,62,63

water strider legs,64 and fish scale,65,66 have low surface
energy to resist wetting. Tables 1 and 2 provide various
examples of nature-inspired flora and fauna, as well as
their mechanisms which help to understand the super-
hydrophobic concept from nature and inspire engi-
neers to use concepts of superhydrophobicity to
prevent biofouling for engineering applications.

Table 2 presents an example of nature-inspired
fauna such as shark fish, dog fish, stone fish, butterflies,
blue mussels, dragonflies, pilot whales, and doves. They
are mainly found in nature with superhydrophobic
characteristics, low surface free energy, and ridge
microtexture, which helps them swim on the water’s
surface. This nature-inspired fauna concept may be
helpful for researchers to apply superhydrophobic
concepts in engineering materials to prevent biofouling
on the ship’s hull. The most frequent fouling organisms
found at the test sites of the samples are bryozoans,
barnacles, calcareous algae, bivalves, tubeworms, and
hydroids. The surface can be classified as hydrophilic,
hydrophobic, or superhydrophobic based on the con-
structed contact angle. The varying contact angles of
wetting properties are depicted in Fig. 2. Bacterial
attachment to ship hulls is reduced due to the low
surface energy. It was created to minimize interactions
with biomolecules by removing strong polar interac-
tions (like hydrogen or ionic bonding). Due to uneven
rough surfaces, the superhydrophobic surface can be
beneficial. Air bubbles are trapped on the surface of
hills and valleys, consisting of micro–nano-structures
and nano-enclosed pores, increasing the water contact
angle. Based on the Cassie–Wenzel hypothesis, re-
searchers investigated the chemistry of nonstick and
antiadhesion coatings.83–86 The Wenzel model is appli-
cable for homogenous surfaces having the equation:

coshw ¼ rcosh ð1Þ

where hw = Wenzel angle of contact, h = Young’s
angle of contact, r = Surface roughness factor.

For heterogeneous surface Cassie and Baxter’s
model is applicable by the equation:

cosh ¼ f 1cosh1 þ f 2cosh2 ð2Þ

where h = Baxter and Cassie angle of contact,
f1 = contact area ratio where solid is in contact with
liquid, f2 = contact area ratio with air packets that
confine the inner side of surface cavities

Xie et al.87 fabricated a ZnO/Acrylic superhy-
drophobic surface on an aluminum substrate via
spraying and co-curing to prevent marine biofouling.
They obtained a rolling angle of 1.8� and a WCA of
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171�, indicating a superhydrophobic surface after
coating. SEM images of the sample shown in Fig. 3
confirmed the results of the antibiofouling test after
150 days in a chlorella-inoculated growth. In Figs. 3a
and c, a few chlorellae were adsorbed on zinc oxide
pure acrylic polyurethane superhydrophobic coating,
indicating it suppresses biofouling. There was a con-
siderable amount of chlorella with a diameter of 5 lm,
as indicated by the red circle in Figs. 3b and d,
adsorbed on the pure acrylic polyurethane (PUA)
coating.

Sun et al.88 generated an SHS on a stainless steel
substrate using a picosecond laser texturing approach.
After five weeks of immersion in seawater, a specimen

with SHS found considerable antibiofouling impact on
a substrate compared to bare stainless steel plates.
Figure 4a and b shows a microgroove and micropit
array on the surface indicated by the red rectangle that
suppresses biofouling.

Selim et al.89 developed a superhydrophobic PDMS/
SiC nanowire composite for marine applications. It was
observed that there was an excellent antibiofouling
property due to micro/nanoscale roughness on their
surfaces. The SiC nanowire with (0.5 wt%) showed
excellent hydrophobicity with a WCA of 153� and a
low surface free energy of 11.25 mN/m after three
months in seawater. Selim et al.90 created superhy-
drophobic Si/MnO2 nanorod composite coating on

90 deg

10 deg

150 deg

Hydrophobe Hydrophile

Superhydrophobe
Superhydrophile

180 deg

Ranges require roughness

Substrate

Contact angel (θ)

Droplet

Fig. 2: The contact angle of wetting properties67

Table 1: Antifouling mechanism inspired by natural flora

S. No Type Mechanism References

1 Lotus Superhydrophobic self-cleaning surface 57
2 Jewelweed Hydrophobic surface 68
3 Water fern Superhydrophobic surface 69
4 Eelgrass (Zosterra marina) Zosteric acid secretions 70
5 Lady mantle (Alchemilla mollis) Hydrophobic surface 71
6 Broccoli (Brassica oleracea) Superhydrophobic surface 71
7 Red Seawood (Delisea pulchra) Bacteria message manipulation 72
8 Coralline algae (Porhyridium purpureum) Chemical secretion and shedding 73
9 Seawood (Ulva lactuca) Hydrophobic surface 74

Table 2: Antifouling mechanism inspired by natural fauna

S. No Type Mechanism References

1 Shark fish (Squalus acanthias) Low drag, flexion of mucous and scales 75
2 Dog fish (Scyliorhinus canicula) Ridge microtexture surface 76
3 Stone fish (Synanceia horribilis) Skin sloughing 77
4 Butterfly (Polyommatus icarus) Superhydrophobic wing 78
5 Blue mussel (Mytilus edulis) Microtexture and filter feeding 77
6 Dragon fly (Libellula), Mayfly (Hexagenia) Hydrophobic wax-covered wings 79
7 Pilot whale (Globicephala melas), Dolphin (Delphinus delphis) Surface energy and microtexture 80, 81
8 Birds dove (Zenaida), Pigeon (Columba) Superhydrophobic feathers 82
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sample and submerged them in seawater for 90 days in
the same year to attenuate marine fouling, as illus-
trated in Fig. 5. It is noticed that uniformly scattered
nanorods (0.5 wt%) have a superhydrophobic nature.
The nanorod has a WCA of 158� and surface free
energy of 12.65 mN/m. This results in an excellent eco-
friendly foul-release coating for ship hulls.

Selim et al.91 considered an in situ approach to
produce (PDMS)/Al2O3 nanorod composites for mar-
ine antibiofouling and found that uniform distribution
of Al2O3 nanorods inside the PDMS resin gives
improved fouling repellence with WCA of 169� and
surface free energy of 10.03 mN/m. Similarly, in
another study, He et al.92 used a spin-coating approach
to create a superhydrophobic surface using PDMS

precursor and silicon dioxide. It is reported that the
addition of SiO2 nanoparticles increased the WCA
from hydrophobic (106.8 ± 1.2�) to superhydrophobic
(165.2 ± 2.3�) property. This is owing to the presence
of micro–nano-scale features of SiO2 which aids to the
increase in superhydrophobicity resulting in slipping of
organisms from the substrate surface. An et al.93 used
PDMS coated with fluoroalkyl silane and cerium
dioxide (CeO2) nanoparticles to form a superhy-
drophobic composite coating with a rough texture.
The results showed good superhydrophobicity with a
water contact angle of (161 + 2�) and a sliding inclina-
tion of (4 + 1�). CeO2 nanoparticles also provided
adequate corrosion protection for metal substrates
even in adverse conditions due to their air cushion and
corrosion hindrance.

Fouling release coating

Fouling release (FR) coatings are considered environ-
mentally acceptable antifouling coating methods since
they have low interface energy and elastic modulus.
Low elastic modulus detaches hard foulants like
barnacles, and low interface energy reduces relative
adhesion.94–97 The low surface elasticity makes the
coated surface flexible or dynamic and creates diffi-
culty for microorganisms to settle on it. It can be
described further by the dynamic surface antifouling
(DSA) mechanism.98–102 FR does not get dissolved or
decompose in seawater and does not release any
hazardous chemicals or gases. They weaken the bond
between the substrate and the fouling organism,
therefore causing easy removal of the microorganisms
with a simple cleaning approach.103,104 All fouling
organisms will fall off automatically when a ship’s hull
is coated with fouling release coatings, allowing the
ship to travel at a speed of 10 to 20 knots in usual
conditions.105 Fluoropolymers and polysiloxanes are
now widely utilized fouling-release coating materials to
prevent biofouling. Fluoropolymers are nonpolar, with
a low surface tension of 10–20 mN m�1 to confer the
hydrophobic nature of the surface.106 However, fluo-
ropolymer cannot cover large parts of a ship’s hull
effectively because it has various defects, including
limited structural mobility, which limits fluorine stiff-
ness and rotations in the entire polymer matrix, making
fluorine monomers expensive.107 Polysiloxanes are
cheaper than fluoropolymers and have superior physic-
ochemical and mechanical qualities. Polysiloxanes are
used in a variety of applications ranging from space to
marine, with a market share of 17.2 billion dollars in
2017.108,109

Milne was the first to propose using polysiloxanes as
antifouling agents.110 Polysiloxanes have a smooth
surface and stable chemical characteristics and are
resistant to corrosion. However, siloxane chains have
low bonding strength as well as poor mechanical
qualities, and also they get easily torn and detached
from the substrate when subjected to a dynamic

50 µm

50 µm

10 µm

10 µm

(b)

(a)

Fig. 4: (a) SEM image of microgroove and (b) Micropit
pattern of SHS after 5 weeks88

5.685.68 μmμm (d)(c)

(b)

1 mm 1 mm

100 μm100 μm

(a)

Fig. 3: SEM images of samples after 150 days: (a and c)
indicates zinc oxide pure acrylic polyurethane while (b and
d) indicates pure acrylic polyurethane coating87
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environment.111 Polysiloxanes exhibit poor antifouling
performance in static conditions. PDMS (poly-
dimethylsiloxane) with low surface energy and small
Young’s modulus is more efficient than polysiloxanes.
PDMS is employed as a marine fouling release because
it fits in the fouling release zone criteria of the Baier
curve. In the late l960s, Baier gave the correlation
between polymer surface properties and relative adhe-
sion of fouling organisms, as shown in Fig. 5. Accord-
ing to the curve, relative adhesion is lowest when
surface energy is 20–30 mN m�1, often known as the
fouling release zone. Moreover, PDMS meets these
conditions as it reduces microfouling settlements on
the coated surface.112–114 Nontoxicity, cost-effective-
ness, good heat resistance, nonleaching property, and

long-term durability against ultraviolet irradiation are
all advantages of PDMS coatings.115 However, its main
drawback is poor mechanical potential, which can be
enhanced by adding nanofillers (Fig. 6).

Cavas et al.116 designed a PDMS-based FR coating
with MWCTs and graphene oxide (GO) reinforce-
ment. The antibiofouling performance and mechanical
properties of such nanocomposite coating were im-
proved with 0.5 wt% reinforcing elements. The char-
acteristics of PDMS with varying wt% of multiwall
carbon nanotubes (MWCNT) were investigated by
Koumoulos et al.117 They discovered a steady diffusion
of carbon nanotubes in the PDMS matrix which
improved the composite’s surface and mechanical
properties. As the wt% of (CNT) gets increased, the
surface’s mechanical capabilities get reduced due to
agglomeration of CNT in the polymer matrix, whereas
the hydrophobicity of the material gets enhanced. Carl
et al.118 investigated the incorporation of TiO2 and
carbon nanotubes (CNTs) in PDMS to ameliorate
(FR) characteristics against the mussel. Nanofillers
make larvae difficult to adhere onto the surface and
reduce adhesive bonding. As per the investigation, the
dispersion of TiO2 and CNTs also improved the
mechanical characteristics of the coatings. Roy
et al.119 used octa-methyl-cyclo-tetra-siloxane to make
a PDMS-sepiolite nanocomposite. The findings re-
vealed that the consistent interaction of PDMS-sepio-
lite with the polymer matrix improves the polymer’s
thermal, dynamic, and mechanical properties while
reduces the relative adhesion of fouling communities.

In another study, Irani et al.120 produced a PDMS
coating with MWCNTs varying wt% of 0.05, 0.1, and
0.2. As nanotubes were applied in small amounts, the
surface chemistry of the coating gets changed, there-
fore significantly improving fouling release properties
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and lowering adhesion strength by 67% compared to
the uncoated sample. Yang et al.121 developed FR
coating by reinforcing alumina in PDMS containing
phenyl methyl silicone oil. Upon testing it was found
that inclusion of alumina significantly improved the
coating elastic modulus and shore hardness but sacri-
ficed the antifouling performance. Zhao et al.122 used
an epoxy silicone prepolymer combined with PDMS to
make epoxy-modified silicone. The coating’s adher-
ence and mechanical properties are improved by
changing epoxy to silicone. Ba et al.123 used phenyl-
methyl silicone oil to create an FR coating on PDMS
(PSO). The addition of PSO improved the coating’s
antifouling capabilities by increasing its hydrophobicity
and reducing its elastic modulus. Padmavathi et al.124

used a wet chemical precipitation process to make
CuO nanoparticles, which were placed into a PDMS
FR surface to improve micro–macro-fouling. The
findings suggested that incorporating nanofillers into
a PDMS matrix could be a feasible antifouling method
to prevent algal fouling and larval colonization by
imparting toxicity at the surface through metal ion
release. Seo et al.125 proposed an environmentally
friendly oleamide-PDMS copolymer (OPC)-based
coating for antifouling and drag reduction. It is
reported that algae spores and mussels could not
adhere to the developed OPC surface due to its
slippery characteristics. The suggested OPC surface
coating can be used in various commercial products,
such as biomedical equipment, marine vehicles, and
water management.

Fouling-resistant coatings

Algae, bacteria, and protein discharge from marine
species can be prevented or inhibited by fouling-
resistant coatings.126–128 It is used mainly to modify the

surface of marine components to prevent unwanted
adherence. It involves high interfacial hydrated sur-
faces with a strong water network that inhibits foulants
from adhering and is usually formed by hydrophilic
polymers like polyethylene glycol (PEG) and zwitte-
rions.129 However, they swell in maritime environ-
ments, resulting in poor mechanical qualities that limit
their usage.

Polyethylene glycol (PEG)-based polymers

PEG is a nontoxic, extremely hydrophilic, and neu-
trally charged compound. It is used for coating because
of its antifouling solid potential to minimize unwanted
protein adsorption and cell adhesion. By forming
hydrogen bonds with water, PEG lowered interfacial
energy and inhibits the adhesion of larvae and
spores.130,131 PEG decomposes on the coated surface
due to autooxidation in the presence of oxygen and
transition metal ions.132

Perrin et al.133 produced an antifouling coating by
using a hydrosilylation procedure to covalently graft
PEG chains onto silazane polymers, as illustrated in
Fig. 7. The PEG-grafted coatings are very resistant to
Gram-negative Neisseria sp. and Gram-positive
Clostridium sp. bacteria compared to the pristine
polysiloxane surface. Similarly, Leckband et al.134

described two methods for creating PEG layers on
silicone surfaces, focusing on protein adsorption with
the macroscopic surface and adjusting the molecular
interaction between adsorbing proteins and the sur-
face. The modified surface shows antifouling proper-
ties, which can resist massive protein molecules.
Kingshott et al.135 found that PEG layer grafting
reduces Gram-negative bacteria adhesion and prevents
protein adsorption and consequent biofouling. Yang
et al.136 used the Michael addition reaction to make

Si(OEt)3

R= H,CH3

= PEG

R R H
N

H
N

CH3 CH3 CH3

Curing at RT

–H2O, –EtOH
–NH3, –H2

Clostridium

O O

O

O O

O

O O

OOO
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Nesseria

Fig. 7: PEG grafted network for marine biofouling133
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PEG-based hydrogels by incorporating polycarbonate.
These hydrogels were grafted on silicon rubber to
evaluate S. aureus antibacterial activity for a day. The
results demonstrated the presence of different S.
aureus on the rubber surface without coating. After
coating, nothing was found on the surface, indicating
that coating prevents surface fouling. Zhou et al.137

combined PEG of various molecular weights with alkyl
alcohol to create amphiphilic surfactants. The results
obtained show an amphiphilic-coated surface can be
employed for antifouling and foul-release coating,
potentially paving the way for a fluorine-free, ecolog-
ically acceptable foul-release polymeric coating. Due
to ether linkages, PEG is chemically unstable and
prone to degradation. In contrast, zwitterionic poly-
mers are chemically stable and most effective for
fouling applications to attach water molecules through
ionic interactions.

Zwitterionic polymers

PEG can be replaced with zwitterionic polymers.
Zwitterionic, unlike amphiphilic PEG, is a neutral
molecule with both positive and negative charges in its
structure, making it very hydrophilic.138,139 It has been
identified as a promising antifouling material due to its
ability to build a hydration shell via electrostatic
interactions, stronger than hydrogen bonds.140,141 Non-
specific adsorption at the solid/liquid interface can be
reduced thin or thick coating of zwitterionic compound
films.139 These materials are chemically stable and
inexpensive. Due to its remarkable antifouling prop-
erties, it has been used to develop antifouling surfaces
for biosensors, medical devices, and marine coatings
applications.142,143

Dai et al.101 created antifouling copolymers incor-
porating hydrolysis-induced zwitterionic monomer ter-
tiary carboxybetaine triisopropylsilyl ester acrylate
(TCBSA) copolymerized with methyl methacrylate
(MMA). It was noticed that the surface is resistant to
marine bacteria, algae, and diatoms in terms of
antifouling and protein resistance. Zhang et al.144

employed atom transfer radical polymerization
(ATRP) to graft zwitterionic sulfobetaine methacry-
late (SBMA) on glass surfaces to create a polymer
layer. Zwitterionic polymers completely prevent spores
from settling and reduce adhesion as well as form
biofilm in bacteria. Zwitterionic polymers have weak
mechanical properties and high water absorption and
are not directly employed as homopolymers. Wu
et al.145 developed copolymers with zwitterionic side
chains attached to the glass substrate via a reverse
addition-fragmentation chain transfer (RAFT) poly-
merization technique to solve this problem. The study
has outlined a simple but effective process to produce
nonfouling antifouling surfaces. Niu et al.146 designed
copolymers with adhesion and antifouling properties
for surface modification by combining the dopamine
methacrylamide (DMA) and the zwitterionic mono-

mer 2- methacryloyloxyethylphosphocholine (MPC). It
was found that copolymer-modified substrate has
outstanding antifouling performance in resisting pro-
tein adsorption and repelling oil attachments.

Role of inorganic nano-fillers in preventing
biofouling

Incorporating inorganic nano-fillers is often advanta-
geous to the coating mechanical properties such as
wear and scratch resistance and has more potential to
prevent biofouling. It increases cost savings while
improving mechanical, self-cleaning, and lotus effect
properties. 147,148 Self-cleaning nano-surfaces could
achieve fouling prevention on ship hulls with the lotus
effect, superhydrophobic surfaces with greater WCA,
and low surface-free energy parameters.149 Selim
et al.150 used an in situ approach to create a poly-
methyl/ZnO nanorod composite for a superhydropho-
bic surface and foul release (FR) antifouling coating
surface. The rough topography inhibits water from
pervading the surface. Including 0.5 wt% ZnO nano-
fillers in the silicone matrix promotes nonwettability
and surface roughness and reduces surface-free energy.
More significantly, nano-filler concentrations (up to 5
wt%) result in low water and fouling repellence due to
the clustering of nano-fillers, which generates gaps,
pinholes, and crevices on the matrix surface. It affects
coating adherence and performance against marine
organisms. The study developed a cost-effective and
environmentally friendly alternative for marine
antifouling coatings using nanofillers at a concentration
of 0.5 wt%. They offer favorable FR characteristics
with a maximum WCA of 158� and minimum free
energy of 11.25 mN/m. The bare silicone and dispersed
ZnO NR composites (0.5–5 wt%) were tested in sea
water for six months. The results are presented in
Fig. 8 which shows high fouling prevention at 0.5 wt%
due to low free surface energy and homogenous filler
dispersion.

Arukalam et al.151 coated Q235 steel with a perflu-
oro-decyl trichlorosilane (FDTS)-based hydrophobic
polydimethylsiloxane (PDMS)-ZnO nanocomposite
coating to achieve antifouling and anticorrosive prop-
erties. Due to their antibacterial characteristics and
hydrophobic nature, ZnO nanoparticles provide
antifouling and minimize hydrophobicity. The surface
energy of the coating was modified via FDTS, which
reduced the contact angle while enhancing antibio-
fouling and anticorrosive efficacy. Because the tri-
chloro group of FDTS grows and forms a hydroxyl
bond on the steel surface, the adhesion strength of
Q235 steel improves. Zhang et al.152 successfully used a
simple dipping approach to fabricate superhydropho-
bic TiO2 nanowire coating. The coated surface has
antifouling properties for organic solvents with a low
boiling point. The TiO2 nanowire allows damaged
coating surfaces to be easily regenerated and repaired.
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Using fluorinated silica (F-SiO2) particles as raw
material, Liu et al.153 designed an inorganic/organic
composite coating with good mechanical features. The
addition of F-SiO2 to composites results in a 27.7%
drag reduction. The application of graphene for pre-
venting marine biofouling is reviewed by Jin et al.,154

who observed that graphene incorporation on coated
surfaces improved mechanical strength and antifouling
characteristics, and created superhydrophobic sur-
faces that are environmentally friendly.

Anticorrosive paints to prevent biofouling
and corrosion

The depletion and failure of structures and compo-
nents are caused by physical, chemical, and certain
biological phenomena known as wear, erosion, and
corrosion. Several intricate elements frequently con-
tribute to marine corrosion. For instance, rapid liquid
flow and sand impact on surfaces cause erosion and
corrosion, and high-speed propeller rotation causes
rusting due to cavitation. In sea water, different salts,

such as magnesium chloride, potassium sulfate, mag-
nesium sulfate, and sodium chloride, are present that
significantly increase corrosive behavior due to the
increment of the electrical conductivity of seawater.
This phenomenon has been observed because the
dissolved salt conducts more ions in seawater, releasing
positively charged cations and negatively charged
anions. Furthermore, under the influence of waves
and seawater scouring, the surface seawater is suffi-
ciently rich in CO2 and O2 to touch the metal surface
thoroughly, enhancing the chemical and electrochem-
ical processes between the metal and seawater.155

Anticorrosive paint on superhydrophobic surfaces is
another superficial method to prevent corrosive behav-
ior and avoid fouling. Anticorrosive paint is a system
developed in which different layers are coated using
various coatings processes to influence the corrosive
properties.156 These individual coatings can be metal-
lic, inorganic, or organic, consisting of primer, topcoat,
and one or several intermediate coats, preventing high
material corrosion in marine environments. Nurani
et al.157 coated (20 9 25 9 0.3 cm3) mild steel speci-
men with anticorrosion and antifouling paint. Before
coating, the mild steel specimen was sandblasted. The

Before immersion
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A A1 A2

B1 B2

A3

After immersion for
45 days

After immersion for
45 days

After immersion for
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3 months
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B3B
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Fig. 8: (A, A1, A2, and A3) show foul release coating of bare PDMS; while (B, B1, B2, and B3) show (0.5 wt% NRs) for
silicone/ZnO nanocomposites and (C, C1, C2, and C3) show (5 wt% NRs) silicone/ZnO composite coating immersion in
seawater for six months150
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test specimens were immersed in splash and tidal zone
(0, 1, and 3 m from sea level) for a month, considering
various seawater parameters. It was found that after
antifouling coating, no fouling and corrosion took
place, whereas the bare mild steel sample got corroded
by 17 MPY. Similarly, in other studies, proactive water
grooming was used to improve the performance of ship
hull antifouling coating. Before coating, the surface
was groomed (cleaned) to free it from fouling.
Furthermore, an ablative copper antifouling coating,
silicone fouling release coating, epoxy coating, and
coating with PTFE solid sheer upon sample under-
went exposure to static seawater immersion situated at
East West of Florida for 120 days and grooming
intervals of 3, 6, 12, and 24 days. It was found that
grooming reduces the biofilm development on ablative
copper-coated samples.158 Various laboratory tests can
be performed on the samples to analyze the corrosion
behavior on coated samples, such as the physical,
chemical, and acid–alkali tests. The physical examina-
tions determine the degree of adhesion, hardness, and
flexibility. The chemical tests are based on the pre-
sumption that the pace at which paint pigments
dissolve in artificial aging solutions in the laboratory
accelerates at a rate similar to that of seawater. The
acid–alkali test depends on hydrochloric acid’s leach-
ing rate and pH value.

Conclusions

Marine biofouling is an issue that has received special
attention from scientists, engineers, biologists, and
other experts in diverse sectors. Collaborative work
with numerous advancements has led to the develop-
ment of antifouling technology based on various
surface treatments. Inspired by nature (like flora and
fauna), a researcher discovered antifouling technology
and applied it to remove biofouling. In this review,
various novel methods of advanced coating technology
to prevent biofouling are discussed, and the following
conclusions were drawn:

1. Biologically inspired superhydrophobic surface can
curtail biofouling by forming nonadhesive micro–
nano-grooves and nano-enclosed pores on the
surface.

2. Several foul-release coating materials such as
fluoropolymers, polysiloxanes, and PDMS can
prevent biofouling, but PDMS is found to be
efficient with low surface energy and small Young’s
modulus, and hence, it is highly effective in
preventing biofouling.

3. The addition of nanofiller to PDMS surfaces
resulted in a broad-spectrum antibacterial and
antifouling property, which improved biofouling
prevention in the marine environment.

4. PEG has been found to be effective as a surface
coating to minimize unwanted protein adsorption
and cell adhesion. In contrast, zwitterionic polymer

is slowly replacing PEG polymers because of its
better antifouling properties.

5. Inorganic nanoparticles are effectively used in
coatings which act as different foul release agents
and increase the coating mechanical properties,
wetting angle, and surface energy reduction.

6. Finally, widespread application on the basis of the
coating’s nature and level of toxicity is still a major
setback since the residues of these coatings are
entering the marine environment and directly/
indirectly may harm the ecosystems. Hence, addi-
tional research is recommended to determine the
best eco-friendly strategy that will benefit humans
and ecosystems.

7. It is also observed that corrosion in a laboratory
environment is limited to a small number of tests,
such as electrochemical, algae related and salt bath
tests. However, field test has a wide variety of
corrosion, such as sea water temperature, dissolved
oxygen, chloride concentration, and water flow
velocity.

Nevertheless, the present review has shown that
coatings can be tailored to improve the biofouling
ability and other mechanical properties. Further, a
wide range of nanoparticles are available that have
shown specific improvement in mechanical properties,
and structural integrity of composite nanocoatings.
Further, the composite coatings have shown remark-
able improvement in preventing biofouling, increase in
adhesion, superhydrophobicity, and adhesion property.
This review will also help the present researchers
working in this field and coating industries to explore
the advantages of composite layers and consider the
critical results mentioned in this paper.
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