
Vol.:(0123456789)

Science and Engineering Ethics (2021) 27:72
https://doi.org/10.1007/s11948-021-00350-5

1 3

ORIGINAL RESEARCH/SCHOLARSHIP

Correctness and Completeness of Programming
Instructions for Traffic Circulation

Daniela Glavaničová1  · Matteo Pascucci2 

Received: 12 November 2020 / Accepted: 28 October 2021 / Published online: 22 November 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
In the present article we exploit the logical notions of correctness and completeness
to provide an analysis of some fundamental problems that can be encountered by a
software developer when transforming norms for traffic circulation into program-
ming instructions. Relying on this analysis, we then introduce a question and answer
procedure that can be helpful, in case of an accident, to clarify which components of
an existing framework should be revised and to what extent software developers can
be held responsible.

Keywords  Autonomous vehicles · Encoding rules · Framework revision · Question
and answer procedure · Responsibility

Introduction

The possible large-scale release of autonomous vehicles (hereafter, AVs) in the
coming years is currently the object of an intense debate between different com-
munities. One of the main issues is understanding how our existing normative sys-
tems and infrastructures for traffic circulation have to change in order to accom-
modate AVs (see, for instance, Douma and Palodichuk 2012). This change will
be hopefully reached at the end of a gradual procedure, in which several tests will
serve the purpose of detecting and correcting defects of existent frameworks, and
will involve vehicles with an increasing level of automation. For instance, in the
United States, the National Highway Traffic Safety Administration currently (June

 *	 Matteo Pascucci
	 matteopascucci.academia@gmail.com

	 Daniela Glavaničová
	 daniela.glavanicova@gmail.com

1	 Department of Logic and Methodology of Sciences, Faculty of Arts, Comenius University
in Bratislava, Gondova 2, 811 02 Bratislava, Slovak Republic

2	 Department of Analytic Philosophy, Institute of Philosophy, Slovak Academy of Sciences,
Klemensova 19, 813 64 Bratislava, Slovak Republic

http://orcid.org/0000-0002-4189-9281
http://orcid.org/0000-0003-4867-4082
http://crossmark.crossref.org/dialog/?doi=10.1007/s11948-021-00350-5&domain=pdf

	 D. Glavaničová, M. Pascucci

1 3

72  Page 2 of 16

2021) distinguishes between five progressive levels of driving assistance technology
(as well as a zero level that represents standard vehicles with no automation): this
taxonomy describes the foreseen “road to full automation”.1 At Level 1, vehicles
are designed with driving assistance features that affect one function at a time. At
Level 2, more than one function can be simultaneously controlled by a driving assis-
tance system. At Level 3, an automated system can perform all driving tasks under
particular circumstances; however, the human driver is expected to take control if
needed, and thus to constantly monitor the environment. At Level 4, there are cer-
tain circumstances under which the vehicle monitors the environment completely on
its own, although in others it may require the human driver to intervene. Finally, at
Level 5, the vehicle is able to perform all relevant driving functions on its own under
all circumstances, so the human driver is never asked to take control.

Our main focus here will be on the fifth level of driving assistance technology,
which corresponds to full automation; the other four levels involve partial automa-
tion only. We will call vehicles of Level 5 fully autonomous vehicles (hereafter,
FAVs) and vehicles of Levels 1-4 partially autonomous vehicles (hereafter, PAVs).
Standard vehicles (hereafter, SVs) correspond to vehicles of Level 0. It is sometimes
pointed out that FAVs are the long-term objective of the car industry, while PAVs,
equipped with devices that have an increasing impact on driving functions, will be
released in the initial development stages in order to test the results achieved and to
correct possible defects. For this reason, our discussion of FAVs will include occa-
sional references to PAVs as well.

Much attention has been paid to the ethical decisions that an autonomous vehi-
cle is expected to take, as well as to whether these decisions have to be in accord-
ance with some underlying ethical theory and whether they have to be the same
for all cars. A detailed survey is offered in Nyholm (2018a) and Nyholm (2018c),
as well as in Coeckelbergh (2016). However, here we will reflect on an even more
fundamental issue: how can one detect possible defects in an existing framework
for traffic circulation and revise it in order to gradually make room for an increas-
ingly automated circulation? Understanding where the flaws lie is also the first step
towards fairly attributing responsibility to the various parties involved. Our inquiry
will focus on some general problems that, in principle, affect any proposal to trans-
form norms for traffic circulation into programming instructions.

We will base our analysis on the following three core components, which can
be located at a very high level of abstraction: (i) the set of norms that a machine is
expected to observe, (ii) the output of a machine’s procedure to acquire norms (i.e.,
the norms that the machine actually learns), and (iii) the set of actions that a machine
actually performs. We will refer to these three components as: the expected norms,
the learned norms and the performed actions. A mismatch between these three com-
ponents can be causally relevant to an accident; when it is properly detected, it can
be used as evidence to correct defects of the framework and to clarify responsibility
issues.

1  https://​www.​nhtsa.​gov/​techn​ology-​innov​ation/​autom​ated-​vehic​les-​safety#​topic-​road-​self-​drivi​ng.

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety#topic-road-self-driving

1 3

Correctness and Completeness of Programming... Page 3 of 16  72

It is important to stress from the beginning that software developers have to
encode two different levels of norms, one representing traffic conventions and the
other instantiating ethical principles. Traffic conventions are described in a highway
code and depend on the country, type of road, etc. Ethical principles protect vari-
ous parties from various perspectives. To balance these perspectives, we will follow
the intriguing idea of a complex moral assessment suggested by Epting (2019). As
indicated above, however, we will not enter into the domain of ethics. Our argu-
ments are not based on any particular ethical theory; we rather aim at contributing
to the development of general guidelines for revising an existing framework (or for
developing a new framework), which can be based on any ethical theory whatsoever.

The article is arranged as follows. In "Properties of an Encoding and Priorities
Among Rules", we will discuss norms governing traffic circulation and problems
associated with their encoding. Our analysis will stress the importance of issues
concerning the correctness and completeness of the encoding, two notions that are
inherited from the context of formal logic and that, in our opinion, can be fruitfully
exploited in this area. In fact, they witness that defects of an encoding can be of a
different kind. In "A Question and Answer Procedure for Investigations", we will
describe a question and answer decision procedure that shows how the conceptual
framework developed can be put to work in investigations into undesired events that
occur within traffic circulation. Our procedure is a preliminary tool aimed at clarify-
ing which components of an existing framework for traffic circulation failed to work
in the case of an accident, and to what extent any of the parties involved—in particu-
lar, the software developers—can be held responsible. The latter issue will be the
focus of "Insights Into Responsibility Attribution".

Properties of an Encoding and Priorities Among Rules

The main task allocated to a software developer consists in transforming the set of
norms that a vehicle is expected to observe into a set of rules learnt by the machine
and governing its behaviour. In our opinion, it is important to highlight two prelimi-
nary points about this. The first point is that there is always a human behind an AV.
Indeed, despite their name, AVs behave on the basis of how they are designed and
programmed, as well as on the basis of the infrastructure in which they are supposed
to circulate. This is the case both for machines programmed via deductive methods
and for those programmed via non-deductive methods since, in any case, the set of
norms that a machine learns depends on the way in which the learning procedure is
designed by humans. Thus, when we examine what happens to AVs on the road, we
ultimately have to go back to some human decisions and how these decisions are
implemented.

The second point is that AVs have to deal with uncertain scenarios. In this
regard, the software of an AV has to compensate for a human’s ability to foresee
possibly dangerous scenarios during circulation, an aspect that is frequently men-
tioned in traffic regulations and not easily translatable (if at all) into a set of rules.
For instance, when an unexpected obstacle suddenly appears, the machine has to
follow strategies for trajectory replanning that aim at simulating what we would

	 D. Glavaničová, M. Pascucci

1 3

72  Page 4 of 16

expect a human driver to do in those circumstances (Subosits and Gerdes 2019).
Moreover, sensors used by an AV to gather information about the environment have
limited capabilities, and the AV’s decisions need to take into account uncertainty
about what could happen in the immediate future (Thornton 2018). Of course, this
is a delicate issue and the decision taken by a machine cannot be expected, per se, to
always ensure an optimal result. As a matter of fact, in similar scenarios we would
not even expect humans to make choices able to ensure optimal outcomes. This also
means that state uncertainty leading to a decision has to be taken into account in
order to reasonably attribute responsibility in cases of accidents.

Now, taking the two points made above for granted, we will take a closer look at
the basic features of an encoding, by which we mean any procedure of transform-
ing the set of norms that a machine is expected to observe during circulation into
the set of norms that a machine actually learns and that, subsequently, guide the
machine’s behaviour. Thus, our analysis of an encoding relies on the relation among
the three core components mentioned in Sect. 1: expected norms, learned norms and
performed actions.

Norms for AVs are usually specified by some agency which is authorized by
the state where cars circulate, such as the National Highway Traffic Safety Admin-
istration (2013) in the US. We can imagine that these norms can be theoretically
grouped according to the set of circumstances to which they are supposed to apply.
For instance, let us assume that � is a consistent set of norms and that it is intended
to apply to a set of circumstances � during traffic circulation. An encoding of �
is a set of instructions � which should aim to satisfy two fundamental properties
of correctness and completeness, when given as input to a machine � that is not
affected by malfunctioning or external interference (e.g., by hackers). We provide
rigorous definitions of these two properties below, accompanied by some comments.
The notion of instruction employed in the definitions is assumed to have a broad
meaning, encompassing both deductive and non-deductive rules. On the basis of
this assumption, we will hereafter use the terms ‘instruction’ and ‘learned norm’ as
interchangeable.

Definition 1  (Correctness of the encoded norms) A set of instructions � governing
the behaviour of a machine � correctly encodes a set of norms � applicable to a set
of circumstances � if and only if there is no � ∈ � in which compliance with � leads
� to violate �.

Thus, correctness means here that all learned norms are also expected norms.
Correctness with respect to a set of norms � is a very general property. In fact,
it may be satisfied by different sets of instructions, each allowing for a certain
range of possible actions of a machine. In particular, two sets of instructions �

1

and �
2
 may both be correct with respect to a set of norms � , even though the range

of possible actions of a machine under �
1
 is larger than under �

2
 . The following

simple scenario (formulated in terms of single instructions and of a single norm)
exemplifies this point. Let � and � be two cars circulating on a road r; moreover,
let �

1
 and �

2
 be instructions given to � and to � , respectively. While �

1
 allows � to

1 3

Correctness and Completeness of Programming... Page 5 of 16  72

travel at a speed up to 100 km/h, �
2
 allows � to travel at a speed up to 80 km/h: �

has an additional range of speed options if compared with � . Despite this differ-
ence, compliance with the received instruction ensures that neither � nor � will
ever violate a norm stating that the speed limit on r is 120 km/h.

Definition 2  (Completeness of the encoded norms) A set of instructions � governing
the behaviour of a machine � completely encodes a set of norms � applicable to a set
of circumstances � if and only if, for every � ∈ � , � enables � to comply with � in �.

Thus, completeness means here that learned norms are sufficient for the machine
to get a representation of all expected norms in all relevant circumstances. Also in
this case, it is worth observing that completeness with respect to a set of norms �
may be satisfied by different sets of instructions, each allowing for a certain range
of possible actions of the machine. However, all these alternative sets will share a
common core of instructions that are followed by the machine whenever it complies
with � . The difference between two complete sets of instructions will rather rely on
the representation of norms that are not in � . Most importantly, this entails that, if
� is the set of all norms applicable to traffic circulation, then two complete sets of
instructions with respect to � will diverge on aspects that are not fundamental to cir-
culation (e.g., specific settings for passenger comfort).

Ensuring the completeness of a set of instructions is certainly a hard challenge
for software developers, especially when the set of norms � to be encoded is very
large. Arguably, it is a problem that can never be solved in its full generality, due
to the extreme variety of possible scenarios during traffic circulation. Yet, further
reflection on the set � of the relevant circumstances to which a set of norms �
applies could provide some hints towards a way of addressing this problem that
would be at least satisfactory. In fact, a machine � is often authorized to find itself
only in some of the relevant circumstances to which a set of norms � applies. This
is traditionally the case in frameworks for traffic circulation. For instance, some
standard vehicles cannot circulate on (or have limited access to) controlled-access
highways; therefore, even if � is a set of norms applying to all sorts of highways,
such vehicles have to comply with � only in a restricted subset of all the relevant
circumstances. The future circulation of various categories of autonomous vehi-
cles could be likewise differentiated, depending on the way in which each cat-
egory is designed; accordingly, the general problem of formulating (correct and)
complete instructions to encode a set of norms could be decomposed into specific
problems for each category of vehicles. Moreover, in order to deal with complete-
ness issues in computational models of traffic circulation during a test phase, one
could start with the analysis of a small subset of all the relevant circumstances
for a given set of norms and, subsequently, expand this set in a gradual way, with
the analysis of new circumstances. For instance, at the beginning one could focus
on one category of vehicles, one category of streets and a limited set of possibly
interacting parties. Checking whether completeness could be achieved with a set
of instructions in such context would still be difficult, but comparatively much
easier than in contexts with unrestricted options. Then, once a sufficient level of

	 D. Glavaničová, M. Pascucci

1 3

72  Page 6 of 16

approximation to the desired outcome would be reached, one could stepwise add
other categories of vehicles/streets/interacting parties and check the result.

However, there is also another aspect of the problem to deal with. In fact, Defini-
tions 1 and 2, taken on their own, do not take into account the internal structure of
sets of norms. Let us assume that the specified set � corresponds to the set of all
norms mentioned in a certain legal text regulating traffic circulation, such as a high-
way code. A correct and complete encoding of all the norms of a highway code in
the sense specified above is not enough to ensure a safe circulation of AVs in high-
ways. Indeed, while two norms having the same surface structure (e.g., an obliga-
tion) will be codified in the same way, the importance of their content might differ.
Thus, some norms contained in a highway code need to take priority over others
when they are transformed into instructions. This is not only the case between two
norms � and �′ such that � explicitly represents an exception to �′ (or a reparation for
the violation of �′ ), but also between two norms � and �′ that are not immediately
interrelated. For the mentioned reasons, an encoding should also aim to satisfy the
following two properties (for the sake of simplicity, we assume a one-one corre-
spondence between expected norms and learned norms (i.e., instructions governing
a machine’s behaviour; from a logical perspective, this correspondence can easily
be obtained by replacing a set of instructions with a unique instruction representing
their conjunction):

Definition 3  (Correctness of the encoded hierarchy) For no pair of instructions �
1

and �
2
 , such that �

1
 encodes a norm �

1
 and �

2
 encodes a norm �

2
 , the following holds:

–	 �
1
 overrides �

2
 while �

1
 does not override �

2
.

Correctness here means that the hierarchy among learned norms does not add any
priority relation to the hierarchy of expected norms.

Definition 4  (Completeness of the encoded hierarchy) For no pair of instructions �
1

and �
2
 , such that �

1
 encodes a norm �

1
 and �

2
 encodes a norm �

2
 , the following holds:

–	 �
1
 does not override �

2
 while �

1
 overrides �

2
.

Completeness here means that the hierarchy among expected norms is fully
reproduced by the hierarchy of learned norms.

Another problem is due to norms that apply to specific traffic circumstances but
are not directly expressed in a highway code. For instance, norms concerning the
safety conditions of the various parties involved in traffic circulation, such as those
prescribing the protection of pedestrians’ lives. Drivers of SVs are normally aware
that similar norms are in effect, due to their background knowledge, and they also
know that these norms are more important than others that are explicitly mentioned
in the highway code.

1 3

Correctness and Completeness of Programming... Page 7 of 16  72

Let us consider, as an example of some of the issues discussed, a scenario taking
place on a road in Italy. A pedestrian decides to cross the road at a point where there
is no zebra-crossing and a driver of an SV is approaching the pedestrian. The pedes-
trian starts crossing the road without giving precedence to the car. Shortly after,
the driver detects the pedestrian and realizes that the only way to avoid an accident
would be to temporarily move to the emergency lane. Article 141(2) of the Italian
Highway Code says that a driver has to always maintain control of her vehicle and
be able to perform all necessary actions in safety conditions, especially halting the
vehicle within the limits of her visibility and in front of any obstacle that can be
foreseen.2 From this generic norm, one can infer the specific norm that drivers have
to avoid hitting pedestrians crossing the road, even if the latter happen to behave in a
way that is forbidden. In our scenario the pedestrian is actually behaving in a forbid-
den way, since crossing a road outside the zebra-crossing and without giving prec-
edence to cars represents a violation of Article 190(5) of the Italian Highway Code.
Finally, Article 3(15) of the Code says that drivers of SVs are not allowed to use
the emergency lane, except in the case of emergency stops (and other articles of the
Code say that an emergency stop can take place either when the driver is no longer
able to drive, due to a sudden physical impairment, or when the vehicle undergoes
some sudden technical malfunction). If the driver knows that the norm prescribing
the safeguarding of pedestrians’ lives is more important than the norm that forbids
travelling in the emergency lane (as we would expect), she can take the right deci-
sion to prevent an accident.

By contrast, how can we expect an FAV to take the right decision in an analo-
gous situation? A program can compensate for the lack of any human driver’s ability
to intervene only via an appropriate ordering among the learned norms. In deduc-
tive programming approaches this may mean assigning a different weight to differ-
ent commands. In non-deductive programming approaches this may mean associ-
ating additional rewards to the machine’s desired behaviour while formulating the
decision-making algorithm. In general, one has to distinguish, at least, between two
levels of norms: those that represent conventions of traffic circulation (such as not
travelling in the emergency lane) and those that represent fundamental ethical prin-
ciples (such as safeguarding pedestrians’ lives). We think that rules of the second
level should always take priority over rules of the first level when there is a conflict,
since, as the example discussed above shows, this can make a difference in terms of
protecting the lives of certain parties involved in traffic circulation.3 We also want to
stress that the suggested priority is completely independent of any underlying ethical
theory. Clearly, such a priority issue should be clarified already at the level of norms

2  The text of The Italian Highway Code (Codice della Strada) is available online at https://​www.​norma​
ttiva.​it/​uri-​res/​N2Ls?​urn:​nir:​stato:​legge:​1992;​495!vig=.
3  Of course, there are very important ethical principles that cannot be expected to take priority in the
case of a conflict with traffic conventions, and hence cannot be included in the class of fundamental prin-
ciples in this particular context. For instance, the principle of minimizing emissions of pollutant gas is
extremely important for environmental issues, but it can never force one to contravene traffic conven-
tions. It should rather be observed as far as possible in addition to all traffic conventions.

https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:legge:1992;495%21vig=
https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:legge:1992;495%21vig=

	 D. Glavaničová, M. Pascucci

1 3

72  Page 8 of 16

that we expect a machine to comply with (expected norms), hence before a machine
learns the principles actually guiding its behaviour (learned norms).

Ethical principles, both fundamental and non-fundamental ones for traffic circula-
tion, are usually expressed as very generic norms in highway codes (if at all), and for
this reason it is harder to transform them into programming instructions. In order to
address this problem, a software developer should be provided with rules (i.e., expected
norms) that instantiate ethical principles in specific circumstances. Consider the princi-
ple of safeguarding a pedestrian’s life: in the example just discussed it would be instan-
tiated by a specific norm prescribing use of the emergency lane if that is the only way
of avoiding a pedestrian detected on the road. This also means that norms expressing
ethical principles will be codified via a set of circumstance-based instructions cor-
responding to the set of circumstance-based norms. It is fair to assume that software
developers will only have to deal with the final output of the theoretical analysis aimed
at converting ethical principles into circumstance-based expected norms. Therefore,
any mistake in this procedure will be beyond their range of responsibility.

Conflicts among norms instantiating ethical principles have to be settled by estab-
lishing a priority among these principles. Understanding the context-dependent priority
of ethical principles is certainly beyond the set of tasks that can be allocated to a soft-
ware developer. For instance, there might be rules concerning the protection of human
life, rules concerning the protection of private property, rules concerning nature pres-
ervation, rules concerning the preservation of cultural artifacts, and so forth. Following
Epting, we hold that an approach of complex moral assessment can help to identify all
sorts of ethical principles and how they can be prioritized (Epting 2019, p. 396):

Implementing AVs in today’s cities could affect vulnerable people, and they
will also affect the public, nonhumans, future generations, and historically and
culturally significant artifacts. Each of these groups deserves consideration for
different reasons, but they do not equally require it.

We endorse the core insight of the above passage, that implementing AVs requires
establishing priority among various rules rooted in different ethical considerations.
Another view we share with Epting is that the order of priorities is not absolute.
One source of this relativity is that cities differ. Implementing AVs in an ancient
city would differ radically from implementing AVs in a modern city, or in a village
near a nature reserve. For instance, imagine that the Parthenon is to be demolished
in order to facilitate the transportation of a certain group of vulnerable people. In
that context, we might want to set our priorities differently. Notice, however, that
this relativity does not affect what takes priority within a certain category (e.g.,
which buildings are rated as more important and which are rated as less important);
it rather affects which categories take priority. In other words, it can be justifiable to
prioritize one category over another in a certain context, despite the fact that the lat-
ter category is usually prioritized.

1 3

Correctness and Completeness of Programming... Page 9 of 16  72

A Question and Answer Procedure for Investigations

The idea of two levels of rules for AVs and the specification of a class of fundamen-
tal ethical principles can be exploited to establish a first fundamental priority rela-
tion among learned norms. Furthermore, a complex moral assessment in the sense
of Epting (2019) helps to refine the hierarchy by adding context-dependent priorities
among ethical principles. The result of this procedure can be used to provide some
guidelines for assessing and revising an existing framework; moreover, it provides
ground for attributing responsibility when something goes wrong in the circulation
of AVs. Since our focus is on FAVs, we will not deal with issues related to the liabil-
ity of drivers who are able to take temporary control of cars. In this section we will
describe a question and answer procedure which is intended to help establish the
mentioned guidelines. Clearly, our procedure is not intended to determine once and
for all all possible sources of flaws in the framework or who is responsible for what;
it rather provides a strategy to examine events and leaves open the possibility that
further evidence is needed to make corrections and reach normative conclusions.
Thus, it can be regarded as a starting point for building a rigorous decision proce-
dure for investigations based on the theoretical framework that we have laid down in
the previous sections.

Before describing the procedure, we stress a methodological point. In order to
look for potential causes of undesired events involving AVs, one can proceed by
relying either on direct experience of real-life scenarios or on computational simula-
tions of real-life scenarios. In both cases, anyway, one acquires experimental evi-
dence that can be used to assess the functioning of the overall framework designed
for the circulation of AVs. Thus, a procedure like the one described below can be
used for corroborating a model of traffic circulation either before or during its real-
life implementation.

The procedure starts with input information about something that went wrong in
(a simulation of) a scenario � and chooses a particular machine, which we can call
�
1
 , to examine. The first question employed in the procedure targets the core prob-

lem of norm encoding: whether �
1
 was able to act in accordance with the learned

norms applicable to � . In other words, this amounts to asking whether performed
actions give rise to any compliance issues with respect to learned norms. We will
label this question as ( �� ), the affirmative answer as ( ��+ ) and the negative answer
as ( ��− ). For this question we will first analyse the affirmative answer, whereas we
will normally proceed in the opposite order for other questions.

(��+ ) The car �
1
 was able to act in accordance with all learned norms (appli-

cable to � ). This means that there is something wrong with the set of norms that
�
1
 learned or that there was external interference. The information available is not

yet sufficient to draw any conclusion on flaws of the framework that have to be cor-
rected or to make any liability judgement.

Without loss of generality, the procedure can be arranged in such a way that it
first checks any problems due to the set of learned norms, and later any problems
due to external interference. Accordingly, the next objective is to find reasons for the
mentioned problems. However, since learned norms should encode expected norms,

	 D. Glavaničová, M. Pascucci

1 3

72  Page 10 of 16

at this stage it is convenient to go back to the root of the theoretical framework and
check whether there are already issues in the set of expected norms. Therefore, the
second question employed by the procedure is whether the norms �

1
 was expected to

follow in � are consistent ( ��).
(��− ) The set of expected norms is not consistent. In this case, there is a mistake

made by people to whom the task of specifying norms for AVs was allocated. For
instance, the problems might boil down to a decision taken either by a committee of
experts on ethical principles, or by a committee of experts on traffic conventions. A
subset of the relevant norms has to be revised to eliminate the discovered inconsist-
ency. One can look at the available evidence in order to determine to what extent the
experts’ mistake could have been prevented, and whether any liability proposal can
be made at this stage.

(��+ ) The set of expected norms is consistent. In this case, there are two possi-
bilities: (i) if we assume that the set of expected norms regulating the circulation of
AVs in a certain context is sufficient to cover all possible scenarios, as we currently
do in the case of norms regulating the circulation of SVs (e.g., the Italian Highway
Code, plus the set of ethical principles referred therein, is assumed to be sufficient to
cover all possible scenarios arising in Italian roads), then experts on ethical princi-
ples or on traffic conventions can be ruled out as possible bearers of responsibility,
and the problems encountered are more likely due to the encoding of the norms. By
contrast, (ii) if we get rid of such an assumption, the mentioned experts can still be
held responsible for undesired events. This second possibility may arise in cases of
moral uncertainty due to original features brought into the framework by AVs, an
aspect that is further addressed below in answer (��−�) of the procedure.

Since encoding norms is a task that includes several components, we need to look
at these components in order to determine to what extent software developers can be
held responsible for what happened. This is a crucial part of investigations aimed at
detecting possible flaws in an existing framework, since different flaws may lead to
different outputs of the procedure. In other words: what we want to stress is that not
all defects of a framework are of the same kind. More specifically, we will proceed
by distinguishing between encoding problems related to correctness and encoding
problems related to completeness. We will argue that, in some cases, correctness and
completeness issues make a difference with respect to responsibility. These notions
can be used both with reference to sets of norms (see Definitions 1 and 2) and with
reference to hierarchies (see Definitions 3 and 4). We then proceed by discussing
hierarchies, since problems with this component can again lead investigations back
to the root of the framework (as when sets of norms are inconsistent). Thus, the
next question employed by the procedure is whether the encoding of the hierarchy
of norms produced the desired results ( �� ), namely, whether its output matches
the hierarchy among expected norms. We first consider the negative answer, which
amounts to a mistake made by software developers, and then the positive answer,
which opens the possibility of questioning the original hierarchy of norms.

(��− ) The hierarchy of learned norms does not match the hierarchy of expected
norms. There are two sub-cases, depending on whether the issue is due to correct-
ness (a) or completeness (b).

1 3

Correctness and Completeness of Programming... Page 11 of 16  72

(��−� ) The hierarchy of expected norms is not correctly encoded in instruc-
tions. We think that in this case there are ingredients to potentially consider software
developers responsible for what happened (yet, these ingredients might still be insuf-
ficient for a proper responsibility ascription). Indeed, consider two instructions �

1
 and

�
2
 , which encode two norms �

1
 and �

2
 , respectively. A decision that �

1
 has to take

priority over �
2
 , while the relevant normative text does not indicate a corresponding

priority of �
1
 over �

2
 , looks unmotivated.

(��−� ) The hierarchy of expected norms is not completely encoded in instruc-
tions. At a first glance, one might be tempted to apply the same criteria used in
( ��−� ) and conclude that software developers are likely liable for what happened,
since they failed to recognize a priority relation among the norms (see Definition 4).
However, sometimes such relations are not explicit in the text in which the norms
are described (e.g., a highway code or, even more significantly, a list of ethical prin-
ciples). Hence liability is a more delicate issue in this case, and there might be some
ambiguity in the original source of the norms: this needs to be taken into account in
any overall evaluation of the encoding.

(��+ ) The hierarchy of norms is encoded as expected. We then need to look for
further criteria in order to understand what caused the problem encountered in our
scenario �.

At this point, we consider the two levels of norms that have to be encoded and
proceed by analysing the higher level, the one involving ethical principles. There-
fore, the fourth question we ask is whether the encoding of norms instantiating ethi-
cal principles produced the expected results ( ��).

(��− ) The learned norms on fundamental ethical principles do not match the
expected ones. Again, we need to analyse both correctness (a) and completeness (b)
issues.

(��−� ) The expected norms on fundamental ethical principles are not encoded
correctly. This means that there is at least one instruction provided to the machine
which directly conflicts with a norm that instantiates an ethical principle. On the
one hand, we would be inclined to say that software developers are somehow liable
for what happened. On the other hand, encoding ethical principles correctly is not
an easy task. Indeed, as we have said, these principles have to be converted into
circumstance-specific norms; and the latter, in turn, have to be converted into a set
of circumstance-specific instructions. Such a conversion procedure is error-prone, in
the sense that the original meaning of a generic norm � concerning ethical principles
might be lost along the way. In our opinion, a software developer can be held liable
for a mismatch between a circumstance-specific norm (the penultimate element of
the conversion) and its codifying instruction (the last element), but not for a mis-
match between a generic norm and the set of its codifying instructions.

(��−� ) The expected norms on fundamental ethical principles are not encoded
completely. Since instantiating norms for fundamental ethical principles exhaus-
tively is even more difficult than specifying some correct circumstance-specific
instance, we think that when the provided instructions do not completely cover all
possible circumstances, programmers are generally not liable to sanctions. This
view is endorsed by Goodall (2014, p. 99), while discussing the implementation of
ethical theories via programming instructions: “Rules can be added or clarified to

	 D. Glavaničová, M. Pascucci

1 3

72  Page 12 of 16

cover different situations, but it is unclear if any set of rules could encompass all
situations.”4 In the case of moral uncertainty about a particular kind of scenario, an
even more fundamental problem emerges: there might be a set of circumstances that
remain, from the beginning, normatively unsettled (see, e.g., the discussion by Bhar-
gava and Kim 2017).

(��+ ) The learned norms on fundamental ethical principles match the expected
ones. Ruling out problems due to the encoding of norms concerning ethical princi-
ples, the next step is to look at the encoding of norms of the first level.

The fifth question we ask is thus whether conventions of traffic circulation are
encoded in an appropriate way ( ��).

(��− ) The learned norms on conventions of traffic circulation do not match the
expected ones. This is either a problem of correctness (a) or a problem of complete-
ness (b).

(��−� ) The expected norms on conventions of traffic circulation are not encoded
correctly. This means that there is at least one instruction provided to the machine
which directly conflicts with a traffic convention. Here software developers seem to
be liable for the mistake, since conventions of traffic circulation are clearly specified
in the adopted highway code, and their encoding is far less puzzling than the encod-
ing of norms concerning ethical principles. However, as usual, one should carefully
consider the specific mistake made.

(��−� ) The expected norms on conventions of traffic circulation are not encoded
completely. We can basically apply the same criteria used in ( ��−� ). The idea is
that, ultimately, any software unable to encode at least conventions on traffic circula-
tion in a faithful and exhaustive way has to be regarded as a non-excusable flaw of
the framework.

(��+ ) The learned norms on conventions of traffic circulation match the expected
ones. The investigation needs to proceed further.

At this point it seems that the reason for what happened is that the car was unable
to follow all the instructions, namely that there was a mismatch between learned
norms and performed actions. Therefore, we need to go back to the first question
and analyse what follows from a negative answer.

(��− ) The car �
1
 was unable to act in accordance with all learned norms (appli-

cable to � ). We need to look at other candidates for attributing responsibility, since
the software developers, apparently, fulfilled all their duties.

There might have been some problem due to �
1
 ’s hardware, or other AVs involved

in the scenario, or the infrastructure in which the AVs were circulating, or some

4  In addition to our comments on Definitions 1 and 2, a. possible way of addressing this issue is, in
our opinion, thinking of frameworks for AVs as analogous to frameworks designed for the circulation
of some automated means of public transportation. For instance, consider the case of automated trains:
they have a limited capability of spatial motion due to the presence of tracks and, for this reason, their
behaviour can be more easily foreseen. Similarly, early frameworks for AVs could allow these vehicles to
perform a limited amount of spatial moves and to have limited forms of interactions among them, all of
which would be easy to foresee and well regimented by the available software. This would also require
keeping AVs separated from other vehicles and human agents (cyclists, pedestrians, etc.) in such early
stages, in order to avoid any unforeseen event due to the other categories of road users.

1 3

Correctness and Completeness of Programming... Page 13 of 16  72

unforeseen event in which AVs played no active role. Each of these cases gives
rise to new questions that complete the procedure. We will analyse this part of the
investigation more concisely, since our aim was to focus on the duties of software
developers.

We first ask whether �
1
 was designed appropriately ( �� ). A negative answer

( ��− ) means that the manufacturers made some mistake, so they could be liable to
some sanction. A positive answer ( ��+ ) leads one to the next stage of the inquiry,
that is, what was the behaviour of the other AVs involved in the scenario? At this
point one has to ask questions ( ��)-(�� ) for each of the other AVs. These questions
have to be iterated finitely many times, since the number of cars involved in the sce-
nario is finite. If in every case one ends by reaching the answer ( ��+ ), then the next
step is to ask whether the infrastructure for traffic circulation was appropriate ( �� ).
A negative answer to the latter question ( ��− ) means that the civil engineers who
created the infrastructure for traffic circulation did something wrong, so they might
be held accountable. A positive answer to the latter question ( ��+ ) rules out the lia-
bility of the civil engineers. The last option is to check whether any unforeseen event
interfered with the behaviour of the AVs involved (e.g., a bolt of lightning struck a
car, or a pedestrian crossed the road in a thoughtless way). This corresponds to the
final question ( �� ). In the case of a positive answer ( ��+ ), all the categories of peo-
ple involved in setting up the circulation of AVs are not liable to sanctions, and there
might be some non-AV party involved in the accident who bears responsibility (e.g.,
a pedestrian or an SV). In the case of a negative answer ( ��− ), the event remains
unexplained on the basis of the current normative system, so the normative system
should be revised to take similar scenarios into account.

Insights Into Responsibility Attribution

Various possible bearers of responsibility have been suggested as a solution to the
problems around responsibility in the context of autonomous vehicles. The pre-
sent focus is, however, rather narrow: responsibility of a software developer. Given
this, the aim of this section is two-fold: (i) to clarify what kinds of responsibility
the software developers can bear; and (ii) to use the proposed question and answer
procedure to shed some light on cases when the software developers (should) bear
responsibility.

To begin with, a software developer can bear historic responsibility for something
that has happened or a future-oriented prospective responsibility (on this distinction,
see Cane 2002, Ch. 2). They can be responsible for bad things, as well as for neutral
or even good things. Furthermore, they can be responsible in the legal, moral, or
causal sense.

Considering the above options, let us note that our prime focus will be on pro-
spective responsibility understood as task allocation, and on historic responsibility
understood as the ascription of a causal contribution. In our opinion, these notions
are a good starting point for evaluating a framework for automated circulation, for
two reasons. First, delineating how duties are distributed among the various par-
ties involved in preparing the framework is fundamental to understanding which

	 D. Glavaničová, M. Pascucci

1 3

72  Page 14 of 16

component has to be improved if anything fails to work. Second, causal responsi-
bility can provide a basis for attributing moral responsibility or legal liability. As
White and Baum (2017, p. 66) observe, “in general, the law punishes those who
have caused harm, particularly the harm that could and should have been avoided.”

As far as moral and legal responsibility are concerned, we will briefly discuss
which notions of such responsibility of the software developers enter the picture.
Software developers can be understood as individual or collective entities. If the
former treatment is assumed, there are the following options, which are due to the
general understanding of individual responsibility: an individual can be morally or
legally responsible for an intentional wrongdoing, for negligent or reckless wrong,
and can be strictly responsible.5

For instance, a software developer can intentionally encode the hierarchy of
norms incorrectly. To give a more concrete example, imagine a scenario from Lin
(2014): “An autonomous car is facing an imminent crash. It could select one of two
targets to swerve into: either a motorcyclist who is wearing a helmet or a motorcy-
clist who is not. What’s the right way to program the car?” Now imagine that the
hierarchy of norms indicates a preference to safeguarding parties that comply with
the norms (hence, the motorcyclist wearing a helmet). Imagine further that the soft-
ware developer in question has a partner motorcyclist who intentionally never wears
a helmet. They reflect this in the encoding and thereby encode the hierarchy incor-
rectly, shifting the priority. This would be a case of intentional wrongdoing.

Alternatively, it might happen that a software developer is not sure how to read
the hierarchy of norms they are encoding: should it be understood in a way that a
motorcyclist who is wearing a helmet or a motorcyclist who is not wearing it should
be preferred in the case of an accident? Let us assume they could, in principle, con-
sult an expert who would surely help to settle the matter, but they do not: the devel-
oper, well aware of the risk, decides to proceed the way they think is more likely.
This can be understood as an individual recklessness.

Another alternative still is that a software developer for some reason does not
maintain the required standard of care (for instance, an insufficient amount of check-
ing is done). As a consequence, they fail to encode the hierarchy of norms in a cor-
rect way. This can be understood as a case of negligence.

Or imagine that there was no intentional wrongdoing, no recklessness, no neg-
ligence: a software developer did their best. But still some norms are not correctly
encoded, and this has fatal consequences. This can be understood as a case of strict
responsibility; on strict responsibility (or rather, strict answerability), moral and
criminal, see Duff (2009).

If there is not a single software developer responsible for a clearly defined part of
the encoding, but a whole group of them working together, collective responsibility
might be a good alternative to individual responsibility.6

6  Collective responsibility then can be understood as boiling down to individual responsibility, or as irre-
ducible collective. For the former approach, see Narveson (2002); for the latter, see Isaacs (2011).

5  We note here already that there is no consensus on how to define these notions precisely; nevertheless,
our points will be neutral in the way that they will carry over to various proposals in the literature.

1 3

Correctness and Completeness of Programming... Page 15 of 16  72

To give an example, imagine that one software developer takes care of norms
regulating preferences in the context of a car crash with respect to the vulnerability
of those involved; another one takes care of all norms regulating the behaviour of an
AV with respect to the presence of individuals (not) wearing protective equipment,
such as helmets; a group of others take care of norms regulating the presence of
motorcyclists in the traffic, and so forth. The encoding of the norms under discus-
sion can thus be a result of a joint work of several individuals. In that case, one can
still assign responsibility to the individuals for their contributions, but only to some
extent. When it comes to all undesired outcomes that cannot be attributed to any
individuals, a space opens for collective responsibility (or alternatively, for respon-
sibility gaps).

Final Remarks

In this paper we have employed two notions taken from formal logic – correctness
and completeness – to detect (and group) mistakes in an existing framework for
traffic circulation. We have developed a theoretical framework that is based on the
the notions of ‘expected norms’ (that is, the norms that we expect AVs to comply
with), ‘learned norms’ (that is, the norms that AVs actually learn via any program-
ming approach, either deductive or non-deductive), and ‘performed actions’ (that is
the actions actually performed by AVs). Our analysis has addressed possible mis-
matches between these three components which are shared by different frameworks.
Naturally, detecting and grouping mistakes in an existing framework for traffic cir-
culation is a promising starting point for improving this framework. This is the first
advantage of the proposed theoretical work.

The second advantage is that our analysis can shed some light also on the respon-
sibility ascription in the context of AVs, albeit in a limited extent only. Throughout
the paper, we have focused primarily on the role played by a software developer,
and in turn, on responsibility that might attach to this party. We have clarified that a
software developer might be treated as an individual or as a collective entity. In both
cases, we have sketched the kinds of responsibility that can be attributed to soft-
ware developers, ranging from intentional wrongdoing, recklessness, or negligence
to strict responsibility.

Acknowledgements  Daniela Glavaničová was supported by the Slovak Research and Development
Agency under the contract no. APVV-170057 and VEGA 1/0197/20. Matteo Pascucci was supported
by the Štefan Schwarz Fund for the project “A fine-grained analysis of Hohfeldian concepts” (2020-
2022) and by the VEGA Grant No. 2/0117/19. The authors thank their colleagues at the Department of
Analytic Philosophy of the Slovak Academy of Sciences for useful comments on this work.

Author Contributions  The contents of the article are the result of a joint research work of the two authors.

	 D. Glavaničová, M. Pascucci

1 3

72  Page 16 of 16

References

Bhargava, V., & Kim, T.W. (2017). Autonomous vehicles and moral uncertainty. In: P. Lin, K. Abney,
& R. Jenkins (Eds.), Robot ethics 2.0. From autonomous cars to artificial intelligence (pp. 5–19).
Oxford University Press.

Cane, P. (2002). Responsibility in law and morality. Hart Publishing.
Coeckelbergh, M. (2016). Responsibility and the moral phenomenonology of using self-driving cars.

Applied Artificial Intelligence, 30(8), 748–757.
Douma, F., & Palodichuk, S. A. (2012). Criminal liability issues created by autonomous vehicles. Santa

Clara Law Review, 52(4), 1157–1169.
Duff, A. (2009). Legal and moral responsibility. Philosophy Compass, 4(6), 978–986.
Eliot, L. (2019). Key to driverless cars, Operational Design Domains (ODD), here’s what they are, woes

too. Medium, April 19.
Epting, S. (2019). Automated vehicles and transportation justice. Philosophy & Technology, 32(3), 389–403.
Friedrich, B. (2016). The effect of autonomous vehicles on traffic. In M. Maurer, J. C. Gerdes, B. Lenz, &

H. Winner (Eds.), Autonomous driving (pp. 317–334). Springer.
Goodall, N.J. (2014). Machine ethics and automated vehicles. In: G. Meyer, & S. Beiker (Eds.), Road

vehicle automation (pp. 93–102). Springer.
Grunwald, A. (2016). Societal risk constellations for autonomous driving. Analysis, historical context

and assessment. In M. Maurer, J. C. Gerdes, B. Lenz, & H. Winner (Eds.), Autonomous driving (pp.
641–663). Springer.

Gurney, J. (2017). Applying a reasonable driver standard to accidents caused by autonomous vehicles. In:
P. Lin, K. Abney, & R. Jenkins (Eds.), Robot ethics 2.0 (pp. 51–65). Oxford University Press.

Hevelke, A., & Nida-Rümelin, J. (2015). Responsibility for crashes of autonomous vehicles: An ethical
analysis. Science and Engineering Ethics, 21(3), 619–630.

Isaacs, T. (2011). Moral responsibility in collective contexts. Oxford University Press.
Lin, P. (2013). The ethics of saving lives with autonomous cars are far murkier than you think. Wired. July 30.
Lin, P. (2014). The robot car of tomorrow may just be programmed to hit you. Wired. May 6.
Lin, P. (2016). Why ethics matters for autonomous cars. In M. Maurer, J. C. Gerdes, B. Lenz, & H. Win-

ner (Eds.), Autonomous driving (pp. 69–85). Springer.
Loh, W., & Loh, J. (2017). Autonomy and responsibility in hybrid systems. In: P. Lin, K. Abney, & R.

Jenkins (Eds.), Robot ethics 2.0 (pp. 35–50). Oxford University Press.
Marchant, G. E., & Lindor, R. A. (2012). The coming collision between autonomous vehicles and the

liability system. Santa Clara Law Review, 52(4), 1321–1340.
McFarland, M. (2015). Google’s chief of self-driving cars downplays ‘the trolley problem’. The Washing-

ton Post, December 1.
Narveson, J. (2002). Collective responsibility. The Journal of Ethics, 6(2), 179–198.
National Highway Traffic Safety Administration (2013). Preliminary Statement of Policy concerning

Automated Vehicles. 12–14 May.
Nyholm, S. (2018a). The ethics of crashes with self-driving cars: a roadmap, I. Philosophy Compass, e12507.
Nyholm, S. (2018). The ethics of crashes with self-driving cars: a roadmap. II. Philosophy Compass, e12506
Nyholm, S. (2018). Attributing agency to automated systems: Reflections on human-robot collaborations

and responsibility loci. Science and Engineering Ethics, 24, 1201–1219.
Siddiqui, F. (2019). What self-driving cars can’t recognize may be a matter of life and death. The Wash-

ington Post, November 11.
Subosits, J. K., & Gerdes, J. C. (2019). From the racetrack to the road: Real-time trajectory replanning for

autonomous driving. IEEE Transactions on Intelligent Vehicles, 4(2), 309–320.
Taylor, M. (2016). Self-driving Mercedes-Benzes will prioritize occupant safety over pedestrians. Car

and Driver, October 7.
Thornton, S.M. (2018). Autonomous vehicle speed control for safe navigation of occluded pedestrian

crosswalk. Available at: arxiv:​1802.​06314
White, T.N., & Baum, S.D. (2017). Liability for present and future robotics technology. In: Lin, P.,

Abney, K., & Jenkins R. (eds.), Robot ethics 2.0 (pp. 66–79). Oxford University Press.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1802.06314

	Correctness and Completeness of Programming Instructions for Traffic Circulation
	Abstract
	Introduction
	Properties of an Encoding and Priorities Among Rules
	A Question and Answer Procedure for Investigations
	Insights Into Responsibility Attribution
	Final Remarks
	Acknowledgements
	References

