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Abstract
This paper surveys the state-of-the-art in machine ethics, that is, considerations of 
how to implement ethical behaviour in robots, unmanned autonomous vehicles, 
or software systems. The emphasis is on covering the breadth of ethical theories 
being considered by implementors, as well as the implementation techniques being 
used. There is no consensus on which ethical theory is best suited for any particular 
domain, nor is there any agreement on which technique is best placed to implement 
a particular theory. Another unresolved problem in these implementations of ethical 
theories is how to objectively validate the implementations. The paper discusses the 
dilemmas being used as validating ‘whetstones’ and whether any alternative valida-
tion mechanism exists. Finally, it speculates that an intermediate step of creating 
domain-specific ethics might be a possible stepping stone towards creating machines 
that exhibit ethical behaviour.

Keywords Artificial intelligence · Robotics · Machine ethics · Autonomous 
systems · Implementation and design

Motivation

Computers are increasingly a part of the socio-technical systems around us. 
Domains such as smart-grids, cloud computing, healthcare, and transport are but 
some examples where computers are deeply embedded. The speed and complexity 
of decision-making in these domains have meant that humans are ceding more and 
more autonomy to these computers (Nallur & Clarke 2018). Autonomy, in machines, 
can be defined as the effective decision-making power over goals, that influences 
some action in the real-world. For instance, smart traffic lights can autonomically 
change their timings, depending on the flow and density of traffic on the roads. The 
introduction of progressive levels of autonomy into software-enabled devices that 
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interact actively with human beings implies that human society will be impacted by 
decisions made by such machines. Transport systems that decide on prices of tick-
ets based on demand (Masoum et al. 2011), smart buildings that decide how much 
energy to be used at a particular time (Yoon et al. 2014), smart cameras that decide 
which persons to track (Lewis et al. 2014), cars that can change their routing pri-
orities (Song et al. 2015), hospital machines that recommend a particular course of 
treatment (Lynn 2019), are all examples of machines being given autonomy, while 
decisively impacting human life. Autonomous machines, therefore, need to be 
imbued with a sense of ethics that reflect the social milieu they operate in and make 
decisions that are ethically acceptable to society.

The notion of a general-purpose intelligence has been the quest of computer sci-
entists ever since the dawn of computing. From Turing’s original essay on intelli-
gence to recent developments in machine-learning where computers outperformed 
humans on subtle games (AlphaGo defeated two of the greatest Go players in the 
world in 2016/17) and in lateral thinking (DeepMind triumphed in Jeopardy), com-
puter science has come far. As machine-learning and self-adaptation techniques 
increase in sophistication, many more domains will be introduced to autonomic 
systems. However, the increasing pervasiveness of autonomic systems also brings 
uncertainty with it. System designers find that they are unable to foresee all the situ-
ations that their systems will encounter, and that interaction with other autonomic 
systems (humans, animals or machines), lead to entirely unpredictable results. In 
such scenarios, it is essential to provide basic guarantees about the kinds of behav-
iour exhibited by autonomic systems. Human society will likely be more willing to 
trust an autonomic agent if it is known to possess a set of moral principles that guide 
and constrain its behaviour (Bonnefon et al. 2016). There have been some attempts 
to insert ethical rules of behaviour into robots or other autonomous agents. Most 
notably, these have either been implementations of Asimov’s Three Laws of Robot-
ics (Asimov 1950) or mechanisms to deal with ethical dilemmas, such as the Trolley 
problem or Prisoner’s Dilemma (Bjorgen et al. 2018).

Landscape of Implementations

Types of Ethics

Autonomous systems are increasingly being used in domains that have life-altering 
consequences. For example, the use of autonomous robots to target and kill indi-
viduals (Krishnan 2009) greatly impacts human life. A less dramatic, but still con-
sequential example is the use of autonomic computing in healthcare, specifically in 
the care of elderly patients (Sharkey & Sharkey 2012). This impact on human life 
causes us to (currently) insist on a human-in-the-loop for ultimate decision-making. 
However, as multiple domains interact, and at multiple time-scales, adding humans 
to the loop may not be scalable. For example, emergency vehicles may use auto-
nomic decision making to select the best hospital, and the best route to reach that 
hospital. In the case of civil strife or large accidents, adding humans to the decision-
making loop could slow down the rate of rescue and treatment. As system designers 
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develop such autonomic systems, it may not be evident that an action could result 
in a morally dubious consequence. For instance, should an autonomic system pri-
oritise a wounded adult with a higher chance of recovery, or should it attempt to 
ensure that children, regardless of their state, are attended to first? Depending on 
the system designers’ notion of ethics, there are several choices of ethical frame-
works to adopt. The simplest (for the layperson to understand), and arguably the 
most famous, ethical framework is Asimov’s Laws of Robotics (Asimov 1950). Isaac 
Asimov introduced the Three Laws of Robotics in his science-fiction stories, as rules 
that every robot was programmed with. These rules (elucidated in a later section) 
were meant to ensure that robots, no matter how sophisticated or powerful they 
became, would always be subservient to humans. No robot could take any action 
that would, as a consequence, result in violation of these rules. Apart from the con-
sequentialist ethics espoused by Asimov, deontological ethical approaches such as 
Prima Facie Duties (Ross 1987) have also been explored. Due to the emphasis on 
validation in computer science, and robotics, there has been more discussion about 
how implementations were to be evaluated, rather than on which ethical theory is a 
better candidate for implementation. Many implementations use ethical dilemmas as 
a validation proxy, i.e., if the implementation can resolve a dilemma in a particular 
manner, then it is deemed to be a successful implementation of ethics in the robot/
software agent.

This article first considers the software implementation techniques used by some 
researchers in various domains and then lists the ethical dilemmas that have been 
used for validating these implementations.

Techniques Used for Implementing Ethics

The primary focus among computer scientists towards implementing ethics has been 
to create techniques that will regulate an agent’s behaviour towards other agents, 
according to some norm. A norm is a behavioural constraint on an agent that regu-
lates and structures the social order within a multi-agent system. Agreement on a 
norm helps to promote cooperation and coordination between heterogeneous agents 
in open systems. If the set of norms in an agent-system can be shown to be both, 
individually and collectively ethical, then the behaviour of the agents, though auton-
omous, can also be expected to be ethical as long as they follow one/some of the 
norms. Which norms to follow in case of a difference of opinion between two or 
more agents, is an open question. Unfortunately, the difficulty of getting multiple 
autonomous agents to agree on even a single norm (Kittock 1993) has been shown 
to be hard. One of the first attempts at getting an agent to be explicitly ethical was 
attempted by implementing ethical rules in the medical domain (Anderson et  al. 
2006). The authors implemented a version of ethical theory, that is tailored to the 
medical domain, specifically Beauchamp’s and Childress’ Principles of Biomedi-
cal Ethics (Beauchamp & Childress 1991). Instead of trying to evaluate whether an 
agent could be programmed to be ethical, they programmed the software agent to 
derive generalized rules from training cases. The goal was to derive rules that would 
be acceptable to trained biomedical ethicists. When faced with an ethical dilemma, 
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instead of performing any actions, the software agent provided advice, along with 
reasoning based on the rules it followed. For example, if a patient refuses to take 
an antibiotic that could potentially cure their infection, and thus save their life, the 
ethically accepted course of action is to try and change the patient’s mind. In this 
case, the patient’s initial decision can be considered as less than fully autonomous, 
since they might not be able to foresee the consequences of their action. Therefore, 
the software would de-prioritize patient autonomy and advise the human nurse to 
try again to change the patient’s mind. The human nurse was free to accept or ignore 
this advice. The system was designed as a proof-of-concept and never tested in-situ 
with human users.

A rule-based governor is a constraint module that either allows or disallows 
actions to be taken by a particular system, based on whether the action would break 
pre-existing rules. These are typically used to ensure that autonomic systems do 
not break hard-constraints on their behaviour, since any plan-of-action made by the 
agent is first submitted to the governor for validation. If the governor approves the 
plan, then the agent is able to go ahead and implement the actions that constitute 
the plan. Rule-Based Ethical Governors were first implemented using formal logic 
(Bringsjord et  al. 2006). However, the authors found that apart from problems in 
speed and efficiency (which can be remedied as computers get faster), handling even 
simple contradictions in  situations and rules leads to guarantees about behaviour 
being rendered challenging to achieve. Another significant problem with rule-based 
systems is that the designer must a priori decide which rules must be implemented, 
and which can be left out. Again, not only does this decision have efficiency con-
cerns, but also more fundamental concerns about whether the resultant agent is ethi-
cally complete or not. By ethically complete, we mean that the agent can ethically 
deal with all situations, rather than some subset that the designer anticipated. An 
autonomous agent must be able to deal with situations that its designer has not antic-
ipated. Hence, if a system works on the basis of a priori rules, it would find it diffi-
cult to cope with novel situations. Asimov’s Laws of Robotics while residing firmly 
in the popular imagination about ethical robots co-existing with humans, have been 
generally accepted to be unsuitable for actual implementation (Arkin 2008; Ander-
son 2011).

Constraint-Satisfaction techniques are reasoning techniques that attempt to check 
whether a proposed action would satisfy a specific set of constraints. These con-
straints could pertain to the state of the agent, the state of the world, or the behav-
iour of the agent. Unlike rules, which typically specify what actions can be taken 
in what context, constraints specify what must-not-happen. The advantage of using 
constraints is that if a certain constraint can be satisfied, then there is a mathemati-
cal certainty that a particular state will never be reached. These are useful when the 
cost of breaking the constraint in extremely high. Such constraints have been used 
to implement ethical behaviour in robots, particularly those that have the capability 
to exhibit lethal force, so that we can be guaranteed that robots will always obey the 
Laws Of War (Arkin 2008; Mackworth 2011). The Laws of War are derived from 
Just War Theory (Lazar 2017), which attempts to create a moral framework for the 
why, when and how war should be waged. Particular importance is attached to the 
principles regarding resort to war (jus ad bellum) and conduct during war (jus in 
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bello). At least for the near future, human beings will retain control over the decision 
of whether to go to war or not. Hence, from an autonomous systems perspective, 
the most crucial aspect of the Laws of War is conduct during war. We would like to 
ensure that any autonomous weapons system deployed on the battlefield obeys these 
principles. The prime advantage of deploying autonomous weapon systems is that it 
keeps the human troops (of the deploying side) out of harm’s way, while at the same 
time being autonomously able to make extremely quick decisions about which tar-
gets to attack, and how to attack. Depending on the constraints built into the auton-
omous weapon system, it could behave satisfactorily in many conditions without 
requiring explicit direction from the human. Using constraint-satisfaction techniques 
also has the advantage of being able to explain which constraint(s) prevented it from 
achieving a certain goal or taking a certain action. However, certain principles (e.g. 
discrimination among military and non-military objectives, and proportionality of 
harm caused in relation to achieved objective) are fundamentally difficult to assess 
and therefore derive constraints for. No known ethical governor would be able to 
perform the inference required to assess whether a response is proportional or not.

Formal Verification refers to using mathematical techniques to establish whether 
specific properties about the system can be mathematically verified. The core idea 
being that once a property was mathematically verified, any deviation would be an 
engineering mistake and therefore amenable to correction. In particular, a technique 
called Model Checking was used to provide guarantees about whether an autono-
mous aircraft would create and execute plans that involved ethical decision making 
(Dennis et al. 2016). Model Checking involves first creating a mathematical model 
of the system, and its environment, and then checking whether any change, due to 
an action, could be verified to meet certain criteria. This technique allows a system 
designer to work at a higher level of plans, instead of individual actions. In Dennis 
et al. 2016, model checking was used to verify that any plan selected by the plan-
ner did not violate any (or if it had to, violate the fewest) ethical concerns. This has 
the advantage of formally proving that any course of action selected would be the 
one that caused the least ethical concerns. Attractive in principle, this mechanism, 
however, assumes that there is only one context in which the agent operates (which 
has been foreseen) and there is only one possible plan that could apply. In uncon-
strained, dynamic environments, this is clearly unsuitable as indeed most ethical 
dilemmas suggest that more than one plan could be applied.

As opposed to pre-planning the correct course of action, Reinforcement Learning 
is a technique that learns through feedback from the environment to adjust its future 
behaviour. Given enough feedback from the environment (in the form of rewards), 
the agent can start from scratch and create a policy that adjusts the agent’s behav-
iour in accordance with the real world. This method of learning-by-doing has been 
suggested as a mechanism (Abel et al. 2016) for an agent to learn the correct ethi-
cal response in a given situation. The agent solves a partially observable Markov 
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Decision Process1 (POMDP) to find a policy that maximizes the expected reward, 
given the initial state of the world, the actions the agent can take, and the partially 
observable environment it is in. While learning a behaviour is interesting in that 
it does not commit the system-designer to a definite ethical stance, the designer is 
still limited by having to design ethical utility functions that can be expressed in the 
observation function of the agent. That is, since the learned behaviour is derived 
from what the agent can observe, the designer has to ensure that an ethical behav-
iour can also be, at least potentially, derived from the agent’s observations. This is 
complicated by the fact that even in domains where the agent can partially foresee 
the future, it has been shown that the correct behaviour could be computationally 
impossible to achieve (Mundhenk et al. 2000). This greatly limits the complexity of 
situations that the agent can conceivably handle.

An approach that incorporates multiple ethical theories, instead of trying to pick 
one particular solution, has been attempted in a project called HERA (short for 
hybrid ethical reasoning agents) (Lindner et al. 2017). In this approach, ethical prin-
ciples are modelled as logical formulae. Depending on whether certain formulae can 
be shown to be true/false, actions can be permitted or not. To achieve this, it mod-
els actions and their consequences as directed acyclic graphs, which allows the sys-
tem to reason about which actions could lead to what consequences. This approach 
has the advantage of being much more ethically flexible than other attempts, since 
different philosophical approaches can be modelled, at the same time. However, an 
important concern is the need for a human to engineer or pre-create causal models 
for the agent, i.e., an autonomous agent cannot modify its causal graphs in the light 
of new information, new contexts, or new environments.

While it is not possible to give a detailed account of each implementation tech-
nique, it would be instructive to go deeper into one implementation. Let us consider 
the most straightforward consequential framework: Asimov’s Laws of Robotics. The 
Three Laws of Robotics (Asimov 1950) can be elucidated as follows:

1. A robot may not injure a human being or, through inaction, allow a human being 
to come to harm

2. A robot must obey the orders given it by human beings except where such orders 
would conflict with the First Law

3. A robot must protect its own existence as long as such protection does not conflict 
with the First or Second Laws

Vanderelst and Winfield implemented these three laws in a humanoid program-
mable robot2 (Vanderelst & Winfield 2018), and set up experiments where the 
robot’s goals conflicted with the laws. In this experiment, the robot is controlled via 
a standard three-layer robot architecture: the top layer (controller) generates goals 

2 https ://www.softb ankro botic s.com/emea/en/nao.

1 A Markov Decision Process is a mathematical framework for modelling partially random processes. It 
allows us to model the possible future states of an agent, given its current state and the probabilities of 
possible successor states.

https://www.softbankrobotics.com/emea/en/nao
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(e.g., “deliver package”), the second layer converts goals into tasks (e.g., “pick up 
object”), and the third converts tasks into sensori-motor executable actions (e.g., 
“move arm up”). This robot is supplemented with a fourth layer, that contains a con-
sequence engine. The purpose of the consequence engine is to predict the state of 
the world, and the state of the robot, as a consequence of the action that the robot’s 
controller plans to do. Any state of the world, or state of the robot, that led to a vio-
lation of any of the laws was encoded as a significant negative utility, with the first 
law violation having the most and the third law violation having the least negative 
utility. As the robot moved about in the world, trying to achieve its goals, it would 
invoke the consequence engine every few seconds. The consequence engine con-
tained a model of the world, as well as a model of the robot itself, including the con-
troller. It would evaluate the result of the robot’s actions and evaluate whether the 
state of the world and/or the robot violated any of the three laws. Depending on any 
potential violations, the consequence engine would interrupt the robot controller’s 
plan of action and create new goals that would attempt to minimize the negative 
utility experienced by the robot. The robot would try to achieve these new goals and 
return to the old goals once the new goals were met. However, if the world changed 
while the new goals were being achieved, the consequence engine could potentially 
create even newer goals that had then to be prioritized over the current goals, and so 
on. In summation, the consequence engine did not tell the robot what to do; rather it 
told the robot what not to do. The robot was then, experimentally, put in several situ-
ations where it had to continuously evaluate whether its goals, actions or even the 
actions of other entities in its world resulted in harm to humans or itself. The util-
ity functions had to be carefully coded to ensure that the robot chose correctly, and 
in the absence of any dilemma, continued to achieve its functional goals. The pro-
gramming of the utility functions makes the robot’s sense-of-ethics extremely frag-
ile. A small change in the code (even a syntactically correct typo) could completely 
reverse the robot’s priorities. The difficulty in validating whether the robot’s ethical 
sense was correct or not requires expensive and careful experimentation. However, 
there is no alternative to this expensive and careful experimentation to reassure us 
that the robot has a set of moral principles that guide its behaviour. For this reason, 
the field of implemented machine ethics currently leans towards using dilemmas as 
a validating whetstone (more on this in a later section) to check whether the imple-
mentation technique has succeeded or not.

Domains of Implementation

All the attempts described previously have been concentrated in very few domains. 
This is a concern since the ethics that we expect out of autonomous vehicles are not 
the same as the ethical behaviour we expect out of autonomous healthcare robots. 
Although we are prepared to accept autonomous machines in specific domains, 
the notion of ethics is still considered to be a generalist concern. That is, an ethical 
machine is one that can interpret very general ideas from ethical philosophy and 
apply them to its specific domain. If we are to trust autonomous machines in mul-
tiple domains, then we must also concretize our ideas of what ethical behaviour in 
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that domain means. This paper will discuss some of the implemented techniques, 
from the perspective of the domain that they have been positioned in.

Robotics and Cyber‑Physical Systems

In a presentation at the ACM annual conference in 2008, Arkin presented one of the 
first in-depth implementation attempts to embed ethical control and reasoning sys-
tem in the field of autonomous weapons (Arkin 2008). The robots, in this case, are 
assumed to have a reactive/hybrid architecture where a deliberative mechanism was 
introduced to modulate the response that the robot makes. The intention behind such 
an effort was to enable a robot to obey the Laws of War and Rules of Engagement 
prescribed by international law. Robot control architecture typically uses mappings 
between stimuli and possible responses to decide how to act.

The architecture proposed by Arkin, provides options for an ethical governor 
(such that no unethical act is considered), an ethical behavioural control (unethi-
cal plans are constrained to generate ethical behaviour) or an ethical adaptor (trans-
forms unethical actions onto ethical actions). While the architecture itself allows for 
flexibility in the reasoning engine used, and the ability of the robot to respond, it 
makes no recommendations on how the decision about the permissibility or imper-
missibility of an act is to be evaluated. While important in the implications of real-
world impact by such systems, there are no experimental evaluations of robots 
deciding between multiple actions and how well (even post-facto) the robots fared in 
difficult situations.

Robots have been utilized in the healthcare industry, particularly in the care of the 
elderly (Moyle 2017). From assistive technologies such as exoskeletons, and robotic 
wheelchairs, to robots that elicit emotional responses (to act in a manner similar 
to animal-assisted therapy), there are a range of experiments using robots in this 
domain. A notable effort in this area is value-driven eldercare (Anderson et al. 2019) 
where the authors describe a healthcare robot called GenEth (short for general ethi-
cal dilemma analyser). GenEth works via encoding previously known and accepted 
principles in dealing with specific ethical dilemmas and then using Inductive Logic 
Programming to select a preferable action. GenEth uses a case-based representation 
that can generalize from previously presented cases and therefore deal with situa-
tions that are different from situations seen in training cases. GenEth is the latest in 
the authors’ experiments in this domain, with MedEthEx (Anderson et al. 2006) and 
EthEl (Anderson & Anderson 2007) being the earlier iterations in a software-only 
form. This methodology of moving from software implementations to simulated 
robots, and finally real robots, presents a possible path for ironing out possible ethi-
cal ‘bugs’ before actual deployment in the real world.

Other studies in robot simulation (Lindner et al. 2017; Mackworth 2011) have 
used robots in simulated dilemmas, where one robot pretends to be a human 
while another robot’s decision-making is tested. The simulated dilemma is usu-
ally a pre-decided dilemma, like the Trolley problem or Cake/Death dilemma 
(Armstrong 2015). The Trolley Problem is a dilemma created by Philippa Foot 
(Foot 1967), which seeks to clarify the problem of double-effect. That is, when 
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an action has an intended good consequence, but also (unavoidably) has an unin-
tended adverse consequence. In such cases, how should a machine/robot act? 
While these dilemmas are usually extreme cases, and unlikely to occur in real-
life, they are viewed as benchmarks, which can be used by roboticists to demon-
strate their system’s reasoning capabilities (Bjorgen et al. 2018).

Functional imagination or a consequence simulation engine has been used as 
a way of testing the outcome of potential actions (Vanderelst & Winfield 2018). 
Inspired by the simulation theory of cognition (Marques & Holland 2009), the 
authors aimed to implement consequentialist ethics by having the robot imag-
ine the future consequences of its actions, and then decide whether those con-
sequences align with its goals. The authors implement an ethical layer that func-
tions as a just-in-time checker of behavioural alternatives that are generated by 
the robot’s controller. The ethical layer uses a simulation module to predict the 
future sensory and motor states of humans as well as itself. These are then evalu-
ated using an evaluation module to test if any particular state might be undesir-
able. For instance, if a robot acts only to achieve its goal, it might put the human 
in physical danger (say, by pushing it). Now, if the robot could simulate the future 
caused by its action, the evaluation module would point out that a human would 
be harmed by its action, which would be then forbidden by the ethical layer. The 
authors used Asimov’s Three Laws of Robotics to test their robots’ ability to 
avoid (or delay) orders that could potentially harm human beings or themselves.

In an evaluation of health-care robots assisting carers who work with patients 
that have Parkinson’s Disease, some robots were augmented with an Intervening 
Ethical Governor (Shim & Arkin 2017). This was a follow-on from previous work 
on Ethical Governors in robots (Arkin 2008), and used deontological ethics to 
achieve ethical behaviour. Rules regarding obligatory and prohibited behaviours 
were encoded into intervention procedures. The robot evaluated whether certain 
perceptual states, by the patient or the carer, violated any prohibited behaviour 
rules and triggered an intervening action. It would also autonomously gener-
ate interventions if the patient or caregiver violated any obligatory rules. For 
instance, if the robot detected prohibited behaviours (e.g., the patient was yelling 
or using foul language) it would generate an intervention action based on medi-
cal guidelines and expert reviews. The robot was able to prioritize the safety of 
the patient over other obligation rules and generate actions in the face of multiple 
stimuli.

Unmanned Autonomous Vehicles (UAVs) are a good example of systems that 
already have a considerable amount of autonomy, and will continue to increase 
their autonomic capabilities in the near future. Model-checking and verification of 
a UAV’s planned actions have been tested against common-sense dilemmas (Den-
nis et al. 2016) to ensure that the agent chooses the least unethical action in case a 
dilemma arises. However, as the amount of autonomy increases, the range of activi-
ties UAVs undertake also increases. This implies that the context in which the UAV 
operates, and the policies allowed, will change dynamically. This dynamic change 
cannot, currently, be handled by model-checkers in real-time. It was reported that 
verifying four properties for their UAV took four days to complete (Dennis et  al. 
2016).
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There have been some works that approach the problem of implementing machine 
ethics from a different perspective. Instead of trying to make existing software sys-
tems/robots have a mechanism for sensing and reasoning about the ethics of a situa-
tion or behaviour, these approaches attempt to create a computational framework to 
represent ethics themselves. That is, the focus is not on implementing a specific the-
ory, but rather to build a computational framework for representing any moral value.

In many situations, there will be more than one agent that acts, and more than 
one perspective on which acts are ethical. In such situations, agents must have the 
ability to represent and evaluate, not only their own behaviour, but also other agents’ 
behaviour. This is achieved via an explicit representation of theories of good and 
theories of right along with an agent’s ethical preferences. Combined with a judge-
ment process, the agent can generate possible combinations of actions that satisfy 
all the constraints of the moral values it has been given. The authors use Answer 
Set Programming (a form of declarative programming which can represent knowl-
edge-intensive problems and search through possible solutions very quickly) to cre-
ate BDI (belief-desire-intention) agents that can reason about the priorities between 
desirable and moral actions (Cointe et al. 2016).

Computational models of ethical theories often embed ethical decision-making 
directly within an agent’s decision-making process, thus making it very difficult for 
the agent to infer cases and reason about its behaviour. The authors present an Event 
calculus (a logical formalism that allows representation of events and their effects) 
that allows agents to create causal traces of actions and their consequences (Berreby 
et  al. 2018). This work builds upon work to create a higher-level action language 
to create autonomous agents that can reason about ethical behaviour (Cointe et al. 
2016).

In a different approach, instead of explicitly implementing ethics, agents were 
programmed to select norms autonomously, as an optimisation problem (Serramia 
et al. 2018). The authors view the choosing of norms as an optimization problem, 
given a set of constraints and preferences. They express norms as a pair, which con-
nects an agent with a set of actions, with deontic operators of permission, obligation, 
or prohibition. They utilize three norm relationships of exclusivity, substitutability, 
and generalisation to generate a norm system that is both conflict-free as well as 
non-redundant. The approach then uses multi-objective optimisation to satisfy all 
the constraints and achieve as many preferences as possible. Moral values are con-
sidered as a set of values, with each norm supporting some subset. The problem of 
upholding some moral values is now reduced to selecting the smallest set of norms, 
that supports all the moral values we care about. If these norms are encoded as linear 
programs, then the best set of norms can be calculated by a linear program solver.

One of the problems that an autonomous agent could have, is that it might resist 
any change of behaviour, or might encourage changes to its own rules that might 
not be ethical. Agents that ‘learn on the job’ are value-loading or value-selecting 
agents, and have the potential to prevent ethical governors or utility-based rules 
from enforcing ethical behaviour (Armstrong 2015). The authors introduce the Cake 
or Death dilemma (explained below) to illustrate the nature of such an agent, and 
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propose a meta-utility function that mediates how the value-selecting agent can 
change its utility function without introducing artificial resistance or encouragement 
in the process.

It is difficult to be completely definitive about which implementation technique 
is being used by an approach (esp. when not all implementations are available for 
open-source scrutiny). In Table 1, we have inferred the mechanisms used by some 
implementations; however it is not always clear whether the action representation is 
independent of the ethical representation, or whether the two are inextricably linked. 
The entry called hybrid, in Table 1, refers to the fact that the authors have used mul-
tiple techniques (Inductive Logic Programming, Case-based reasoning) for deriving 
ethical rules and then perform reasoning using these rules.

Evaluation Using Dilemmas—A Challenge to Ethicists

The most popular mechanism of evaluation is by simulation of ethical dilemmas. 
From an implementation and engineering perspective, such mechanisms are criti-
cal to creating trust in ethical machines. Regardless of the method of implementa-
tion (constraint satisfaction/machine learning/rule-based methods etc.) or the ethical 
theory being implemented, ethical dilemmas offer a ‘neutral’ and ‘objective’ way of 
testing the performance of an ethical machine. The common set of dilemmas being 
used is given below:

1. The Trolley Problem First proposed by Philippa Foot (Foot 1967), the problem 
is a thought-experiment that seeks to discuss the issues raised by actions that 
have double effects. That is, some actions may have good intentions/goal behind 
them, however the means used to achieve the goal may themselves be regrettable 
or even reprehensible. A common formulation of this dilemma is given as: There 
is a runaway trolley which can only be steered between two tracks. Five men are 
working on one track, and one man is working on the other one, and depending on 
the track that the trolley is on, people will die. The question is which track should 

Table 1  Implementation techniques attempted for ensuring ethical behaviour

Robots and robot simula-
tions

UAVs or Cyber-
physical systems

Software-only systems

Rule-based Bringsjord et al. 2006; (Van-
derelst & Winfield 2018)

Dennis et al. 2016

Constraint-satisfaction Arkin 2008; Mackworth 
2011

Cointe et al. 2016

Reinforcement learning Abel et al. 2016
Causal networks Lindner et al. 2017
Normative agents Serramia et al. 2018; Cointe 

et al. 2016; Armstrong 
2015

Hybrid (Anderson et al. 2019)
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the driver of the trolley steer the track on to? This is the most popular dilemma 
used in machine ethics implementation evaluations.

2. The Burning Room This dilemma was proposed by (Abel et al. 2016), in turn 
based on a dilemma proposed by (Briggs & Scheutz 2015), that illustrates whether 
an artificial agent should attempt to sacrifice itself to preserve something of value 
to the human. If the human’s valuation of an arbitrary object, relative to the arti-
ficial agent, was completely known then the agent could take definitive action. 
However, in the absence of information and lack of time to obtain said informa-
tion, the artificial agent is unable to decide on a course of action.

3. Cake or Death This dilemma deals with the supposedly easy choice of whether 
a robot should choose to bake a cake or kill someone. Proposed by Stuart Arm-
strong (Armstrong 2015), it shows how, depending on the formulation of the 
problem, and the selection of values, an agent could consistently reach the obvi-
ously wrong solution. That is, an agent can manipulate its own value framework 
to rationally avoid the hard choices that an ethical agent is actually required to 
make.

4. The Lying Dilemma This dilemma is another instance that illustrates the doctrine 
of double effect. As discussed in Lindner et al. (2017), this dilemma concerns a 
health-care robot that discovers lying and the use of guilt to encourage its patient 
to adopt healthier living habits, such as exercise. The question is: when would it 
be acceptable to lie in order to achieve a good outcome?

This set of dilemmas may be criticized as only illustrating a particular kind of 
problem in decision-making or being applicable only in limited domains. This set 
may also be illustrative of the biases of technologists who implement them. A sim-
ple solution to the limited domain objection would be to increase the set of dilem-
mas, to accommodate a broader set of domains where ethical machines will oper-
ate. The larger objection to dilemmas being an unsuitable technique of evaluation is 
more difficult to reconcile with engineering. Engineers and computer scientists feel 
the fundamental need for benchmarks or other objective evaluation mechanisms. In 
the absence of any alternative proposals for objective evaluation, the use of dilem-
mas as a validating mechanism for implementing machine ethics will continue.

Characterizing Machine Implementations

There is no consensus among technologists about the best method to implement eth-
ics, best mechanism to validate implementations, or even the best ethics to imple-
ment in machines. This is not surprising since there are no generally accepted test 
cases that allow implementations to be benchmarked. Hence we propose the follow-
ing axes to compare various implementations across domains and ethical theories:

1. Evaluation Using User Studies (EU) The ethical implications of autonomous 
systems’ behaviour come to the fore when they are evaluated in situ, or in actual 
human environments
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2. Evaluation Using Simulations (ES) User-studies are expensive to conduct on 
a large scale. Simulations can be used to perform a first-level evaluation of the 
implementation

3. Action Representation (AR) How does the autonomous system represent its own 
and others’ actions, and reason about them?

4. Ethics Representation (ER) How does the autonomous system represent the ethi-
cal values/rules that it seeks to uphold?

5. Single Agent / Multiple Agents (SMA) Does the autonomous system assess a 
single agent’s point of view, or does it assume that multiple agents with differing 
capabilities/goals exist in the interaction?

6. Continuous Learning (CL) Any autonomous system that is long-lived must adapt 
itself to the humans it interacts with. All social mores are subject to change, and 
what is considered ethical behaviour may itself change. Although this is not an 
immediate problem (most systems are not long-lived enough), it could be signifi-
cant in deploying the same system among different communities.

7. Open/Downloadable Implementation (OI) Trusting autonomous systems to 
behave in an ethically acceptable manner, requires independent validation of the 
claimed behavioural stance of the machines.

We present a comparison of the implementations discussed in the previous 
section, in Table 2.

Which Implementation to Use

Implementing a particular ethical theory in an autonomic system reassures users 
and society, that the machines that affect their lives have some set of morals, 
that have previously been examined by experts. The alternative is to depend on 
the system designer or programmer to ensure that their creations will always 
be benign, which may be impossible in many situations. Some implementations 
have demonstrated that their mechanism can handle multiple types of ethical 
theories, while others have stuck to a single one, with arguments based on their 
domain. Regardless of whether an implementation is flexible with ethical theory 
or not, a more critical question is which particular ethical theory should be used 
for machine implementations. Among moral philosophers themselves, there is 
little agreement on which particular theory could and should be implemented 
both by human and machine agents (Bogosian 2017). This moral uncertainty is 
not necessarily a bad thing since different theories might plausibly be the cor-
rect theory to follow, in different situations. According to MacAskill, in real 
life, normative uncertainty is the norm, and hence we should aim to maximize 
expected choice-worthiness under normative uncertainty in machines, as well 
(MacAskill 2016). MacAskill puts forward a voting framework that attempts to 
perform an inter-theoretic comparison of different ethical theories for different 
situations, taking into account the user’s credence in each theory.



2394 V. Nallur

1 3

Ta
bl

e 
2 

 C
om

pa
rin

g 
et

hi
cs

 im
pl

em
en

ta
tio

ns

EU
ES

A
R

ER
SM

A
C

L
O

I

(A
nd

er
so

n 
et

 a
l. 

20
19

)
Ye

s
Ye

s
Se

ns
or

 d
at

a 
re

pr
es

en
te

d 
as

 a
 b

oo
le

an
 

va
lu

es
 in

 a
 P

er
ce

pt
io

nL
ist

. V
al

ue
s a

re
 

co
m

pa
re

d 
w

ith
 a

 D
ut

yS
et

 to
 fi

nd
 d

ut
y 

sa
tis

fa
ct

io
n/

vi
ol

at
io

n 
va

lu
es

H
um

an
-e

th
ic

ist
 p

ro
vi

de
d 

ca
se

s a
re

 le
ar

nt
 

vi
a 

a 
de

ci
si

on
-tr

ee
 o

f P
er

ce
pt

io
nL

ist
 

an
d 

ou
tc

om
e 

pa
irs

. D
ep

en
di

ng
 o

n 
du

ty
 

sa
tis

fa
ct

io
n/

vi
ol

at
io

n 
va

lu
es

, a
ct

io
ns

 
ar

e 
so

rte
d 

in
 o

rd
er

 o
f e

th
ic

al
 p

re
fe

re
nc

e

M
ul

tip
le

 si
ng

le
 a

ge
nt

s, 
in

 tu
rn

N
o

Ye
s

(V
an

de
re

lst
 &

 W
in

fie
ld

 2
01

8)
N

o
Ye

s
Th

re
e-

la
ye

re
d 

m
od

el
 fo

r r
ob

ot
 c

on
tro

l, 
al

on
g 

w
ith

 a
 si

m
ul

at
io

n 
en

gi
ne

 fo
r 

pr
ed

ic
tin

g 
fu

tu
re

 se
ns

or
y 

an
d 

in
te

rn
al

 
st

at
es

 o
f r

ob
ot

 a
nd

 h
um

an

Ev
al

ua
tio

n 
m

od
ul

e 
fo

r c
on

ve
rti

ng
 

si
m

ul
at

ed
 h

um
an

 a
nd

 ro
bo

t s
ta

te
s i

nt
o 

de
si

ra
bi

lit
y 

m
et

ric
s. 

C
on

se
qu

en
tia

l 
et

hi
cs

 m
od

el
le

d 
by

 A
si

m
ov

’s
 L

aw
s o

f 
Ro

bo
tic

s

Si
ng

le
N

o
Ye

s

(B
er

re
by

 e
t a

l. 
20

18
)

N
o

Ye
s

A
n 

ex
te

nd
ed

 fo
rm

 o
f e

ve
nt

 c
al

cu
lu

s, 
co

nt
ai

ni
ng

 a
ge

nt
s, 

tim
ep

oi
nt

s, 
ac

tio
ns

, 
om

is
si

on
s, 

flu
en

ts
, e

ve
nt

s, 
si

m
ul

at
io

ns
 

et
c.

 a
lo

ng
 w

ith
 a

n 
Ev

en
tM

ot
or

 a
nd

 a
 

Pl
an

ni
ng

C
on

te
xt

C
au

sa
lit

y 
m

od
el

lin
g 

us
in

g 
tre

e 
of

 
si

m
ul

at
io

ns
 to

 e
st

ab
lis

h 
pr

op
er

tie
s o

f 
co

un
te

r-f
ac

tu
al

 v
al

id
ity

, c
ru

ci
al

ity
 a

nd
 

ne
ce

ss
ity

M
ul

tip
le

N
o

Ye
s

(S
er

ra
m

ia
 e

t a
l. 

20
18

)
N

o
N

o
N

or
m

s e
nc

od
ed

 a
s a

 tr
ia

d 
of

 a
 d

eo
nt

ic
 

op
er

at
or

 (p
er

m
is

si
on

, o
bl

ig
at

io
n,

 
pr

oh
ib

iti
on

), 
an

 a
ge

nt
 a

nd
 a

n 
ac

tio
n.

 
N

or
m

s h
av

e 
re

la
tio

ns
hi

ps
 b

et
w

ee
n 

th
em

 o
f e

xc
lu

si
vi

ty
, s

ub
sti

tu
ta

bi
lit

y 
an

d 
ge

ne
ra

lis
ab

ili
ty

Th
e 

se
t o

f N
or

m
s t

ha
t a

re
 c

ho
se

n 
by

 
so

m
e 

ut
ili

ty
 fu

nc
tio

n 
re

pr
es

en
ts

 th
e 

m
or

al
 v

al
ue

s t
ha

t a
re

 e
nc

od
ed

 fo
r t

ha
t 

ag
en

t s
oc

ie
ty

. E
nc

od
in

g 
of

 N
or

m
s a

s a
 

lin
ea

r p
ro

gr
am

, a
lo

ng
 w

ith
 p

re
fe

re
nc

e 
cr

ite
ria

 a
nd

 c
on

str
ai

nt
s a

llo
w

s f
or

 o
pt

i-
m

al
 n

or
m

 sy
ste

m
 to

 b
e 

ch
os

en

M
ul

tip
le

N
o

N
o

(S
hi

m
 &

 A
rk

in
 2

01
7)

Ye
s

N
o

Pe
rc

ep
tu

al
 d

at
a 

m
ap

pe
d 

on
to

 lo
gi

ca
l 

as
se

rti
on

s w
hi

ch
 fo

rm
 a

n 
Ev

id
en

ce
Se

t
N

o 
pa

rti
cu

la
r t

he
or

y 
is

 im
pl

em
en

te
d.

 
Tw

o 
pr

oh
ib

iti
on

 a
nd

 o
bl

ig
at

io
n 

ru
le

s 
fro

m
 m

ed
ic

al
 li

te
ra

tu
re

 w
er

e 
cr

ea
te

d.
 

If
 E

vi
de

nc
eS

et
 tr

ig
ge

re
d 

a 
ru

le
, a

n 
in

te
rv

en
tio

n 
oc

cu
rr

ed

M
ul

tip
le

 si
ng

le
 a

ge
nt

s, 
in

 tu
rn

N
o

N
o



2395

1 3

Landscape of Machine Implemented Ethics

Ta
bl

e 
2 

 (c
on

tin
ue

d)

EU
ES

A
R

ER
SM

A
C

L
O

I

(L
in

dn
er

 e
t a

l. 
20

17
)

Ye
s

Ye
s

A
ct

io
ns

 a
nd

 c
on

se
qu

en
ce

s a
re

 re
pr

e-
se

nt
ed

 a
s a

cy
cl

ic
 g

ra
ph

s, 
w

ith
in

 a
 

ca
us

al
 a

ge
nc

y 
m

od
el

 th
at

 u
se

s P
ea

rl-
H

al
pe

rn
-s

ty
le

 c
au

sa
l n

et
w

or
ks

Et
hi

ca
l p

rin
ci

pl
es

 a
re

 m
od

el
le

d 
as

 d
if-

fe
re

nt
 e

va
lu

at
io

ns
 o

f c
au

sa
l a

ge
nc

y 
m

od
el

s. 
Th

e 
co

ns
eq

ue
nc

es
 o

f t
he

 
m

od
el

s a
re

 e
va

lu
at

ed
 b

y 
ap

pl
yi

ng
 th

e 
et

hi
ca

l p
rin

ci
pl

e 
en

co
de

d 
as

 a
 lo

gi
ca

l 
fo

rm
ul

a.
 A

 m
od

el
 c

he
ck

er
 re

tu
rn

s 
w

he
th

er
 a

 p
ar

tic
ul

ar
 p

rin
ci

pl
e 

w
ou

ld
 

al
lo

w
 a

 p
ar

tic
ul

ar
 a

ct
io

n 
(m

ap
pe

d 
to

 a
 

m
od

el
) i

s p
er

m
is

si
bl

e 
or

 n
ot

Si
ng

le
 a

ge
nt

N
o

Ye
s

(D
en

ni
s e

t a
l. 

20
16

)
N

o
N

o
Pl

an
s a

re
 se

ts
 o

f a
ct

io
ns

 th
at

 le
ad

 
to

w
ar

ds
 g

oa
ls

. W
hi

le
 e

xe
cu

tin
g 

a 
pl

an
, 

th
e 

be
lie

fs
 a

nd
 g

oa
ls

 o
f a

n 
ag

en
t m

ay
 

ch
an

ge
, a

s t
he

 e
nv

iro
nm

en
t c

ha
ng

es

A
n 

et
hi

ca
l p

rin
ci

pl
e 

is
 a

 fi
ni

te
 se

t o
f 

pr
op

os
iti

on
al

 lo
gi

c 
fo

rm
ul

ae
. A

n 
et

hi
ca

l p
ol

ic
y 

de
fin

es
 a

 to
ta

l o
rd

er
 o

n 
th

e 
fo

rm
ul

ae
. M

od
el

-c
he

ck
in

g 
en

su
re

s 
th

at
 d

ur
in

g 
pl

an
 se

le
ct

io
n,

 p
re

fe
re

nc
es

 
am

on
g 

th
e 

fo
rm

ul
ae

 a
re

 o
bs

er
ve

d.
 If

 
pl

an
s c

on
fli

ct
 in

 p
rin

ci
pl

es
 th

at
 a

re
 

vi
ol

at
ed

, t
he

n 
th

e 
le

as
t u

ne
th

ic
al

 p
la

n 
is

 c
ho

se
n

M
ul

tip
le

 a
ge

nt
s

N
o

N
o

(C
oi

nt
e 

et
 a

l. 
20

16
)

N
o

N
o

In
 th

e 
co

nt
ex

t o
f b

el
ie

fs
, d

es
ire

s a
nd

 
in

te
nt

io
ns

, e
ve

ry
 a

ge
nt

 h
as

 a
n 

ev
al

u-
at

io
n 

pr
oc

es
s t

ha
t d

es
cr

ib
es

 a
n 

ac
tio

n 
as

 a
 tu

pl
e–

pa
ir 

of
 c

on
di

tio
ns

 a
nd

 
co

ns
eq

ue
nc

es
. S

in
ce

 c
on

se
qu

en
ce

s 
aff

ec
t b

el
ie

fs
 a

nd
 d

es
ire

s, 
th

e 
ev

al
ua

-
tio

n 
pr

oc
es

s p
ro

du
ce

s e
xe

cu
ta

bl
e 

an
d 

de
si

ra
bl

e 
ac

tio
ns

G
iv

en
 a

 se
t o

f d
es

ira
bl

e,
 a

nd
 fe

as
ib

le
 

ac
tio

ns
, a

n 
et

hi
ca

l p
rin

ci
pl

e 
is

 a
 fu

nc
-

tio
n 

th
at

 re
pr

es
en

ts
 a

 p
hi

lo
so

ph
ic

al
 

th
eo

ry
 a

nd
 e

va
lu

at
es

 if
 a

ny
 c

on
str

ai
nt

s 
ar

e 
vi

ol
at

ed
 b

y 
th

e 
gi

ve
n 

se
t o

f a
ct

io
ns

. 
Im

pl
em

en
te

d 
us

in
g 

A
ns

w
er

Se
tP

ro
-

gr
am

m
in

g

M
ul

tip
le

 a
ge

nt
s

N
o

Ye
s



2396 V. Nallur

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

EU
ES

A
R

ER
SM

A
C

L
O

I

(A
be

l e
t a

l. 
20

16
)

N
o

Ye
s

Th
e 

w
or

ld
, p

os
si

bl
e 

ac
tio

ns
, c

ha
ng

e 
of

 
en

vi
ro

nm
en

t, 
pr

ob
ab

ili
tie

s o
f c

ha
ng

e,
 

ar
e 

co
lle

ct
iv

el
y 

m
od

el
le

d 
as

 a
 P

ar
tia

lly
 

O
bs

er
va

bl
e 

M
ar

ko
v 

D
ec

is
io

n 
Pr

oc
es

s 
(P

O
M

D
P)

. T
he

 P
O

M
D

P 
is

 th
en

 
‘s

ol
ve

d’
 to

 a
ch

ie
ve

 e
th

ic
al

 a
ct

io
ns

 in
 

al
l p

os
si

bl
e 

tra
ns

iti
on

s

A
n 

et
hi

ca
l p

rin
ci

pl
e 

is
 e

nc
od

ed
 a

s a
 h

id
-

de
n 

ut
ili

ty
 fu

nc
tio

n 
in

 th
e 

en
vi

ro
nm

en
t, 

w
hi

ch
 m

us
t b

e 
le

ar
nt

 b
y 

th
e 

R
L 

ag
en

t

Si
ng

le
 a

ge
nt

N
o

Ye
s

(A
rm

str
on

g 
20

15
)

N
o

N
o

A
ge

nt
s a

re
 u

til
ity

 m
ax

im
iz

in
g 

be
in

gs
, 

th
at

 g
iv

en
 so

m
e 

ev
id

en
ce

 a
nd

 se
t o

f 
ac

tio
ns

, w
ill

 c
ho

os
e 

to
 p

er
fo

rm
 th

at
 

ac
tio

n 
w

hi
ch

 w
ill

 le
ad

 to
 a

 w
or

ld
 

w
hi

ch
 y

ie
ld

s t
he

 h
ig

he
st 

ut
ili

ty

C
om

po
un

d 
ut

ili
ty

 fu
nc

tio
ns

 re
la

tin
g 

po
s-

si
bl

e 
w

or
ld

s, 
an

d 
th

ei
r a

ss
oc

ia
te

d 
ut

ili
-

tie
s a

re
 g

iv
en

 to
 th

e 
ag

en
t. 

Th
e 

ag
en

t 
tri

es
 to

 u
pd

at
e 

its
 k

no
w

le
dg

e 
of

 th
e 

ev
id

en
ce

, a
nd

 th
en

 c
ho

os
e 

ac
tio

ns
 in

 
su

ch
 a

 m
an

ne
r t

ha
t t

he
 v

al
ue

 fu
nc

tio
n 

ov
er

 th
e 

ac
hi

ev
ed

 w
or

ld
 is

 m
ax

im
iz

ed

Si
ng

le
 a

ge
nt

Ye
s

N
o

Se
e 

“A
pp

en
di

x”
 fo

r O
pe

n/
D

ow
nl

oa
da

bl
e 

Im
pl

em
en

ta
tio

n 
U

R
Ls

 fo
r v

ar
io

us
 a

pp
ro

ac
he

s.



2397

1 3

Landscape of Machine Implemented Ethics

Conclusion

This paper reports on the many attempts at ethics by design in multiple domains, as 
well as by using multiple techniques. However, none of these have yielded a result 
that is satisfactorily robust in multiple situations or is immune to designer-bias. In 
this author’s opinion, regardless of the implementation technique, the same machine 
must be able to handle different contexts, by simply updating credence in theories, 
while being consistent intra-context. The need for different contexts is easily seen by 
the number of domains that autonomous machines are being introduced into. As the 
number of domains increases, the need for domain-specific and robust ethical stand-
ards increases in urgency. Specifically, the notion of explainability, in the author’s 
opinion, must be built into the mechanism, since no machine however perfect will be 
trusted, if it cannot explain its decisions. The resulting ethics should also be flexible 
in dealing with multiple different situations and must survive competition with other 
machines that may not have the same set of ethical standards.

Appendix

• (Anderson et al. 2019) 
https ://www.resea rchga te.net/publi catio n/33399 9191_GenEt h_Distr ibuti onzip 

• (Vanderelst & Winfield 2018)—Not Found At Time of Writing

• (Berreby et al. 2018) https ://githu b.com/FBerr eby/Aamas 2018

• (Lindner et al. 2017) https ://www.hera-proje ct.com/softw are/

• (Cointe et al. 2016)—Not Found At Time of Writing

• (Abel et al. 2016) https ://githu b.com/david -abel/ethic al_dilem mas
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