
Science and Engineering Ethics (2001) 7, 221-230

Science and Engineering Ethics, Volume 7, Issue 2, 2001 221

Keywords: computer ethics, informatics, ����������	
�����������
��

ABSTRACT: Many problems in software development can be traced to a narrow
understanding of professional responsibility. The author examines ways in which
software developers have tried to avoid accepting responsibility for their work. After
cataloguing various types of responsibility avoidance, the author introduces an
expanded concept of positive responsibility. It is argued that the adoption of this sense
of positive responsibility will reduce many problems in software development.

INTRODUCTION

In the summer of 1991 a major telephone outage occurred in the United States because
an error was introduced when three lines of code were changed in a multi-million-line
signaling program. Because the three-line change was viewed as insignificant, it was
not tested. This type of interruption to software systems is too common. Not only are
systems interrupted but sometimes lives are lost because of software problems. A New
Jersey inmate under computer-monitored house arrest removed his electronic anklet.
“A computer detected the tampering. However, when it called a second computer to
report the incident, the first computer received a busy signal and never called back.”1

While free, the escapee committed murder. In another case innocent victims were shot
to death by the French police acting on an erroneous computer report.2 In 1986 two
cancer patients were killed because of a software error in a computer controlled X-ray
machine. Given the plethora of these kinds of stories, it is not surprising that
informatics and computing have not enjoyed a positive image.

��������	
������������	����
�������	�	�	���

����������������� ���������������	�����
����������
	�

* An earlier version of this paper was written for inclusion in S. Rogerson and T. W. Bynum, eds.,
Computer Ethics and Professional Responsibility, Blackwell, (in press). Prepublished here with
permission from the author and the editors.

Address for correspondence: Donald Gotterbarn, Professor, Computer and Information
Sciences, East Tennessee State University, Box 70711, Johnson City, TN 37614, USA;
gotterba@access.etsu.edu (email).
Published by Opragen Publications, POB 54, Guildford GU1 2YF, UK. http://www.opragen.co.uk

D. Gotterbarn

222 Science and Engineering Ethics, Volume 7, Issue 2, 2001

How can such problems result from the actions of moral software developers? The
existence of such cases is a problem, but that is not my major concern in this paper;
rather my concern is the narrow concept of responsibility which contributes to these
disasters. I argue that, although informatics has been undergoing a rapid development,
there has been only minimal corresponding development in the concept of
responsibility as it applies to computing practitioners (CPs). Computing is an emerging
profession that will not succeed until it has expanded its sense of responsibility. I
describe a broader concept of responsibility that is consistent with professionalism in
computing.

The focus of cases like the ones cited above is computer failures. In the early days
of computing, CPs sought immunity from blame for their failure to develop reliable
systems. CPs developed their own special language. Flaws in computer programs were
not errors introduced by the programmer but were “bugs” found in the program. Notice
how the emphasis is on finding the “bug” and not on determining how it got into the
program or taking preventative action so that similar “bugs” will not get into future
programs. Another favorite exculpatory euphemism used by CPs is “computer error”.
“I am not to blame. It was a computer error.” The developer sometimes attempts to
avoid responsibility for undesirable events by assigning the responsibility to the client
who failed to adequately specify what was “really” needed. If the specifications are
precise and the client cannot be used to exempt the developer from responsibility, the
fact that “no program can be proven to be error free” is used to excuse critical system
failures. And as a last resort, one can simply appeal to the complexity of the system.
Complex systems are expected to fail. This is like the engineering concept of an
“inevitable or normal accident”. This concept holds that as the complexity of a system
increases so does the likelihood of an accident. The accident should not be attributed to
anyone’s errors or failures to act. The implication of all of these excuses is that the
responsibility for these events is borne by the computer or the complexity of the system
rather than being borne by the developer of the computer system. This side-stepping of
responsibility by software developers is based on inaccurate computer science. The
problem here is more than bad science, these excuses are used to justify the
development of systems that are detrimental to society and these excuses inhibit the
development of computing as a profession.

 The news media like to emphasize catastrophic cases of software development.
This emphasis sometimes misleads us into ignoring questions of responsibility in more
common cases of software development. Let us look at a common example in
computing which can be used to illustrate a fuller, more positive concept of
responsibility.

AN INADEQUATE INTERFACE

Fred Consultant, a computer consultant, developed several quality computer systems
for the national government of NewLand. He attributed the quality of some of his
systems to the good working relationship he had established with potential system
users. The government of NewLand has an unnecessarily complex accounting system.

Informatics and Professional Responsibility

Science and Engineering Ethics, Volume 7, Issue 2, 2001 223

The system has so much overhead that administering it wastes significant amounts of
taxpayer’s money. Jim Midlevel, a local manager of this accounting system,
understood where the waste was in the system. Even though he did not understand the
day-to-day procedures of the system, he was able to design modifications to the
systems which would significantly reduce the overhead costs of running it. Jim
convinced his upper level management to implement his modifications to the system.
Because of Fred’s previous accomplishments his company was given the contract to
write the first stage of the more efficient accounting system that will be used by the
government and will save taxpayers a considerable amount of money. Fred met with
Jim to discuss the system and carefully studied the required inputs and outputs of the
revised system. Fred asked one of his best software engineers, Joanne Buildscreen to
design the user interface for the system. Joanne studied the required inputs to the
system and built an interface for the revised system. The system was developed and
shown to Jim Midlevel. Jim was satisfied that the accounting system and the interface
contained all of the functionality described in the requirements. The system passed its
acceptance test which proved that all stated requirements had been met. The system
was installed, but the user interface was so hard to use that the complaints of Jim’s staff
were heard by his upper level management. Because of these complaints, upper level
management decided that it would not invest any more money in the development of
the revised accounting system. To reduce staff complaints they would go back to the
original more expensive accounting system.

What is the net result of the development effort described in this case? There is
now a general ill will toward Fred’s company and NewLand’s officials do not give his
company many contracts. The original, expensive, accounting program is back in
place. The continued utilization of this program is a significant burden on the
taxpayers. The situation is worse than it had been before this project was undertaken,
because now there is little chance of ever modifying the system into a less expensive
system.

SIDE-STEPS: AVOIDING OR DODGING RESPONSIBILITY

One of the first questions to be asked about this undesirable situation is “Who is
responsible?” Generally this question is associated with seeking someone to blame for
the problem. One of the reasons why the “blame-game” is so popular is that once it
has been decided who is to blame, no one else needs to feel accountable for the
problem. Finding a scapegoat to bear the blame for all others who may be involved is
just as popular a model in computing as it is in literature.

I believe that there are two primary reasons why CPs side-step the assignment of
responsibility, especially after a system failure or a computer disaster. Both of these
reasons are errors grounded in misinterpretations of responsibility. These erroneous
reasons are the belief that software development is an ethically neutral activity and
belief in a malpractice model of responsibility.

D. Gotterbarn

224 Science and Engineering Ethics, Volume 7, Issue 2, 2001

Ethical Neutrality

The first error is that responsibility is not related to a CP because computing is
understood by many CPs as an ethically neutral practice. There are a number of factors
which contribute to this mistake. One factor contributing to why CPs find it reasonable
to look elsewhere for someone to blame is the way we train them in the university.
We train CPs to solve problems; and the examples we use, such as finding the least
common multiple (LCM) for a set of numbers, portrays computing as merely a
problem-solving exercise. The primary goal of the exercise is to solve the problem
exactly as it is presented to the CP. All energy (and responsibility) is focused on
finding a solution in an almost myopic fashion. This is analogous to the way people
approach crossword puzzles. Solving the puzzle is an interesting exercise, but it
generally lacks any significant consequences. There is no responsibility beyond solving
the puzzle, other than properly disposing of the paper on which it is written. The same
assumptions are made about solving computing problems.

 The crossword-puzzle approach to computing problems leads to a failure to realize
that computing is a service to the user of the computing artifact. This failure makes it
easy to assign blame elsewhere. If there is no responsibility, there is no blame or
accountability. The failure to see one’s responsibility has other significant
consequences. One result of the crossword-puzzle view is seen when we consider the
real case of a programmer who was asked to write a program that would raise and
lower a large X-ray device above the X-ray table, moving the machine to various fixed
positions on a vertical support pole. The programmer wrote and tested his solution to
this puzzle. It successfully and accurately moved the device to each of the positions
from the top of the support pole to the top of the table. The difficulty with this narrow
problem-solving approach was shown when, after installation, a X-ray technician told a
patient to get off the table after a X-ray was taken and then the technician set the height
of the device to “table-top-height”. The patient had not heard the technician and was
later found crushed to death between the machine and the table top. The programmer
solved a puzzle but didn’t consider any consequences of his solution to the user. If the
programmer had considered the broader context, rather than limiting his attention to
moving the X-ray machine on the pole, then he might have required an additional
confirmation when moving the machine to the table top.

This first misunderstanding of responsibility is dangerous in that it is used to justify
a lack of attention to anything beyond the job specification. The absurd degree to
which this side-step can be taken is illustrated in the following real case. A defense
contractor was asked to develop a portable shoulder-held anti-aircraft system. The
specifications required that the shoulder-held system be capable of destroying a
particular type of attack helicopter at 1000 yards with 97% efficiency. The system the
contractor developed did effectively destroy incoming helicopters. Its kill rate was
better than a 97%. It also had another feature. Because of a software error, the shoulder
held missile launcher occasionally overheated to the extent that it burned off vital
portions of the anatomy of the person holding the launcher. The extent of the burns
killed the person who launched the missile. The government was, of course,

Informatics and Professional Responsibility

Science and Engineering Ethics, Volume 7, Issue 2, 2001 225

dissatisfied with the product and declined to make the final payment to the contractor.
The company took the government to court over the final payment. The company
owners declared that they should be paid and that they are not responsible for the
deaths because the system they developed “is in full compliance with the specifications
given to them by the user”. The contractors viewed this problem like a crossword
puzzle. They solved a crossword puzzle exactly as it was presented to them, and they
denied any further responsibility.

Diffuse Responsibility

The second side-step error is based on the belief that responsibility is best understood
using a malpractice model which relates responsibility to legal blame and liability. It is
important to find the correct parties to blame in order to bring legal action against
them. Generally the concept of blame is tied to a direct action which brought about the
undesirable event. A typical approach to determining blame is to isolate the event
which immediately preceded and was causally related to the undesirable event, and
then blaming the party who brought about the preceding event. In the case of
NewLand’s inadequate interface, Joanne’s design of the interface screens was the
direct cause of the user’s dissatisfaction with the system. Joanne’s screens were the
immediate cause of the dissatisfaction so the tendency is to blame her. If the blame is
both severe and public, then others will feel excused from responsibility for the
unhappy event.

Joanne will not want to bear the blame and will point to other people’s failures as
contributing to the problem. This leads to the belief that one can avoid responsibility if
the blame can be diffused by being widely distributed. This second side-step is based
on the claim that individual software developers are too far from the event which
causes the problem. It also distributes the blame so widely that it becomes negligible or
cannot be clearly attributed.

This side-step is a paradoxical denial of responsibility since it starts by identifying
multiple locations of failure of responsibility, namely the particular irresponsible acts
of each member of the development team. This diffusion technique might be used in
the Inadequate Interface case. Fred did not behave responsibly because he did not
adequately understand the nature of the task.. Jim, because of his lack of specific
system details, should have coordinated the development activities with the system
users. Joanne should have shown preliminary screen designs to the system users.
Everyone failed to meet his or her responsibilities. This distribution of failure is then
used to deny legal fault or blame. The absurdity is that this identification of multiple
individuals failing to meet their system development obligations is also used to deny
each individual’s responsibility. Like the first side-step, this diffusion of responsibility
is a very dangerous practice. It follows from the diffusion side-step that whenever there
are many people contributing to a project, no individual will be held accountable for
their contributions to the project. If I am not responsible, then I have no prior
commitment to do a competent job or worry about the overall quality of a product.

D. Gotterbarn

226 Science and Engineering Ethics, Volume 7, Issue 2, 2001

The diffusion of responsibility has a corollary which Ladd3 has called “task
responsibility”, which ties responsibility to one narrowly defined task. An example of
task responsibility can be generated by giving more details from the “Inadequate
Interface” case. What was the problem that made the interface unusable? The multiple
input screens used in the new accounting system did contain fields for all the required
data, but the input sequence on the screens was not consistent with the structure of the
input forms used by the clerks. To enter the data from a single input form, the clerks
had to go back and forth between several screens. Using task responsibility, Joanne
would maintain that it is “not her job” to get copies of the input forms. If “they”
wanted the sequence of the data on the screens to match the input forms, then
“someone” should have provided her with sample input forms. It is not her job to get
the forms.

The association of responsibility with blame leads to a variety of excuses for not
being accountable. These excuses include:

a. Absence of a direct and immediate causal link to the unacceptable event,4
b. Denial of responsibility since a responsible act conflicts with one’s own self-

interest,5
c. Responsibility requires the ability to do otherwise but CPs do most of their work in

teams and for large organizations,6
d. Lack of strength-of-will to do what one thinks is right,5

e. Blaming the computer,4

f. Assuming that science is ethically neutral,
g. Microscopic vision.7

Both the neutrality and the diffusion side-stepping approaches to responsibility are
inconsistent with efforts to professionalize computer science and engineering. Any
profession should be strongly motivated to pursue the good of society. It should
understand its primary function as a service to society. To professionalize computing,
therefore, we need to revisit the concept of responsibility, separating it from the legal
concept of blame, and separating it from direct and immediate causes of undesirable
events. What sense of responsibility would meet these objections and mitigate the urge
for side-stepping?

POSITIVE AND NEGATIVE RESPONSIBILITY

The philosophical concept of “responsibility” is very rich and is frequently tied to
philosophical conundrums like “free will”. Philosophers have long been concerned
about the relationship between individual responsibility and free will. This concern
derives in part from the implicit connection of the concept of blame with the concept of
responsibility. If people have no free will then it is difficult to blame them for their
actions. In opposition to this dependency of “responsibility” on the concept of blame
and liability, Ladd distinguished the traditional sense of responsibility – which he calls
“negative responsibility” from “positive responsibility”. Negative responsibility deals

Informatics and Professional Responsibility

Science and Engineering Ethics, Volume 7, Issue 2, 2001 227

with or looks for that which exempts one from blame and liability. An exemption from
blame is an exemption from moral responsibility and an exemption from liability is an
exemption from legal responsibility. Negative responsibility is distinguished from
positive responsibility.

The concept of positive responsibility is consistent with many philosophies. One
can extend Ladd’s concept of positive responsibility to be justifiable under most
philosophical theories. Positive responsibility can be grounded in any of the classical
and contemporary theories. Such theories can be organized into a matrix created by the
intersection of two of the following dimensions: rules/consequences and
collective/individual.8

RULES CONSEQUENCES

COLLECTIVE Collective rule-based Collective consequentialist

INDIVIDUAL Individual rule-based Individual consequentialist

The emphasis in positive responsibility is on the virtue of having or being obliged to
have regard for the consequences of his or her actions on others. We can place this
sense of positive responsibility in each quadrant of the matrix. This sense of
responsibility can be founded in: collective rule-based ethics based on the logic of the
situation; individual rule-based ethics based on universal duties applicable to all;9

collective consequentialists like Mill providing the greatest good for the greatest
number; or individual consequentialists like Adam Smith who maintain that the social
welfare is advanced by individuals doing good acts which have good consequences for
society. No matter which ethical theory is used to justify positive responsibility, the
focus of positive responsibility is on what ought to be done rather than on blaming or
punishing others for irresponsible behavior.

Positive responsibility is not exclusive. It does not seek a single focus of blame.
Negative responsibility, on the other hand, seeks a single focus of blame who, once
found, exonerates all others from blame. With positive responsibility, saying that
Joanne is responsible and should be held accountable for her failings does not exclude
Fred. A virtue of positive responsibility is that several people can be responsible to
varying degrees. Not only can we attribute responsibility to Fred, but we can say that
he bears more of the responsibility in this case because he knew that Jim was only
working with limited knowledge of the system.

This point illustrates a second and more significant virtue of positive responsibility,
namely that it does not require either a proximate or direct cause. This extension of
causal influence beyond the immediate and proximate cause is more consistent with
assigning responsibility in the disasters that affect computing. Nancy Leveson,10 in her
article about the technical difficulties of the Therac-25 X-ray machine which led to
multiple deaths, concludes that because of the involvement of many hands,
responsibility for the Therac-25 incidents cannot be assigned. Leveson uses a limited-
negative concept of responsibility and after identifying failures of multiple software

D. Gotterbarn

228 Science and Engineering Ethics, Volume 7, Issue 2, 2001

engineering practices refers to the deaths that resulted as “accidents”. Nissenbaum11

correctly criticized such an approach to responsibility when she said, “If we respond to
complex cases by not pursuing blame and responsibility, we are effectively accepting
agentless mishaps and a general erosion of accountability.” The positive sense of
responsibility allows the distribution of responsibility to software development teams,
designers, etc. and can apply the concept of responsibility even to large development
teams. In the Therac-25 case there may not be a single locus of blame, but under
positive responsibility the developers are still responsible.

Any preliminary definition of responsibility starts from the presumption that others
are affected by the outcomes of CPs’ particular actions or failures to act. This
presumption is embodied in many codes of ethics of computing associations. Such
codes tend to organize responsibilities by the roles of the people involved. Most codes
talk about the CPs’ responsibilities to other professionals, to the client or employer, and
to society in general. Only a few codes include the obligations of CPs to students.
Although such codes try to recognize most of these relationships, most of them make
the mistake of not distinguishing employers, clients, and users. In Joanne’s case, her
employer was Fred, the client was Jim, and the users were the accounting clerks.
Because she stood in different relations to each of these parties, she owed them
different and perhaps conflicting obligations. Some recent codes, such as the Software
Engineering Code of Ethics and Professional Practice (SE)12 provide the CP with
techniques for adjudicating between conflicting obligations.

There are two types of responsibilities owed in all of these potential relations. One
type of positive responsibility is technically based and the other positive responsibility
is based on values. These two types of positive responsibility are both necessary for a
concept of professional responsibility.

Positive responsibility points both forward and backward. It points backward when
it identifies unmet obligations and what people ought to have done. Fred had an
obligation to meet with the clerks to understand the structure of the interface they
would need. This sense of responsibility goes beyond the malpractice model.
Responsibility is more than just blame, there should also be some lessons learned from
failures of responsibility. Thus there should be some lessons learned from the
Inadequate Interface case. As a result of this event, Fred is responsible for preventing
similar system’s development failures in the future. Knowledge of this kind of failure
and its consequences also places responsibility on other computer practitioners and
places responsibilities on the profession of computing as a whole. For example, the
activity of establishing computing standards of practice is justified by the forward
looking sense of positive responsibility of the CP and the responsibility of the
profession.

A RESPONSE TO AVOIDANCE

The concept of positive responsibility can be used to address several of the
responsibility-avoidance techniques referred to earlier. This broader concept of

Informatics and Professional Responsibility

Science and Engineering Ethics, Volume 7, Issue 2, 2001 229

responsibility meets the diffusion side-step and the positive aspect of this concept of
responsibility meets the malpractice side-step.

Positive Responsibility and the Profession of Computing

Computing is an emerging profession. Computing already bears several of the marks of
a profession. In order for computing to be a profession there must be some agreement
among its members of goals and objectives or ideology. This agreement is of two
kinds. One is technological and the other kind is moral. These match technical positive
responsibility and moral positive responsibility. In accordance with the malpractice
model, a CP has a responsibility to conform to good standards and operating
procedures of the profession. These are generally minimal standards embodied in
software development models and model software engineering curricula. This kind of
technical knowledge and skill does not distinguish a technician from a professional. To
make this distinction one must go beyond mere technical positive responsibility.

A Broader Sense of Responsibility

In a profession, the members pledge to use their skills for the good of society and not
to merely act as agents for the client doing whatever a client asks. This commitment is
generally embodied in a professional organization’s code of ethics. To be a
professional, one assumes another layer of responsibility beyond what has been
described in positive responsibility. The professional commits to a “higher degree of
care” for those affected by the computing product. Most occupations have a principle
of “due care” as a standard. For example, a plumber is responsible that the results of
his work will not injure his customers or users of the plumbing system. But the
plumber does not bear the responsibility to advise the customer of potential negative
impacts a new system may have on the customer’s business, customer’s quality of life,
or the environment. The concern to maximize the positive effects for those affected by
computing artifacts goes beyond mere “due care”, mere avoidance of direct harm. The
addition of this layer of responsibility to positive responsibility is what is necessary to
change a computing practitioner into a computing professional. The inadequate
interface met the contract specifications, but it did not meet the user’s needs. Although
the system technically was capable of doing all the required functions and met Jim
Midlevel’s requests, the computing professional had the responsibility to be sure that
the system met the user’s needs. The forward looking sense of positive responsibility
also means that the computer professional has the obligation to meet with upper-level
management in order to convince them to re-instate the new accounting system. The
computing professional has an obligation to the client, the users and the taxpayers.

This broader sense of responsibility goes beyond the malpractice model. It
incorporates moral responsibility and the ethically commendable. This concept of
professional responsibility can be used to address the above-mentioned ways used to
deny accountability. This sense of responsibility provides a way to address distributed
responsibility as well as diffusion of collective responsibility. The ability to deal with

D. Gotterbarn

230 Science and Engineering Ethics, Volume 7, Issue 2, 2001

collective responsibility is important because it enables meaningful discussion of the
“professional responsibility” of organizations which produce software and
organizations which represent computing professionals. It is clear that the computing
disasters mentioned at the beginning of this paper would not have occurred if
computing practitioners understood and adopted the positive sense of professional
responsibility. The recent development by software engineers of a code of ethics and
professional practice12 is an attempt to define for them this sense of professional
responsibility.

REFERENCES

1 Joch, A. (1995) How Software Doesn’t Work. Byte, December: 48-60
2 Vallee, J. (1982) The Network Revolution, And/Or Press, Berkeley, CA, USA.
3 Ladd, J. (1988) Computers and Moral Responsibility: A Framework for an Ethical Analysis, in:

Gould, Carol (ed.) The Information Web: Ethical and Social Implications of Computer
Networking, Westview Press.

4 Dunlop, C., et. al. (1991) Ethical Perspectives and Professional Responsibility, in: King, R. (ed.)
Computerization and Controversy: Value Conflicts and Social Choices, Academic Press,
California, USA.

5 Harris, C.E., et. al., eds. (1995) Engineering Ethics: Concepts and Cases, Wadsworth, USA.
6 Johnson, D. (1994) Computer Ethics, Prentice Hall., USA.
7 Davis, M. (1989) Explaining Wrongdoing, Journal of Social Philosophy, Spring/Fall: 74-90.
8 Laudon, K. (1995) Ethical Concepts and Information Technology, Communications of the ACM

38 (12): 33-40.
9 Ross, W.D. (1969) Moral Duties, Macmillan, USA.
10 Leveson, N., et. al. (1993) An Investigation of the Therac-25 Accidents, IEEE Computer

Magazine 26: 18-41.
11 Nissenbaum, H. (1994) Computing and Accountability, Communications of the ACM 37: 73-80.
12 SE “Software Engineering Code of Ethics and Professional Practice”, adopted by the IEEE-CS

and the ACM. (1998) http://computer.org/computer/code-of-ethics.pdf. Also republished in
Science and Engineering Ethics 7(2): 231-238.

