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Abstract
In this modern era, people are paying more attention to adopting healthy lifestyles and suitable nutritional diets. To meet the 
increasing demand, new food sources are continuously being identified. The present review focuses on underutilized cereal 
crops, commonly known as pseudo-cereals (Buckwheat, Quinoa, and Amaranth), and their nutritional products. The nutri-
tional properties, amino acid profile, essential amino acid indices, protein efficiency ratio, nutritional index, and biological 
functions are higher in pseudo-cereals than other true crops. We comprehensively discussed pseudo-cereals’ characteristics 
and nutritional composition, bioactive components, and functional properties of pseudo-cereals. Also, the processing treat-
ments and applications of pseudo-cereals as dietary food were discussed. Finally, the current challenges in using pseudo-
cereals as dietary food supplements were analyzed, and recommendations were made for future studies.
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Introduction

The greatest challenge of human survival is to meet the food 
supply demand to the growing population, which is expected 
to rise 9.8 billion in 2050 (United Nation, 2017). It is also 
expected that the urbanized area will increase threefold by 
2030, which ultimately generate huge pressure on the avail-
able production area (d’Amour et al., 2017). Also, the global 
average daily intake of energy will be increased to 3000 
kcal by 2050. Protein as one of the main components of diet 
played a significant role in the development and physiologi-
cal functioning of all life forms. Due to increasing pressure 
to meet the protein demand, animal-based protein consump-
tion is expected to increase, ultimately increasing related 
environmental problems. This needs identification of new 
sources and their utilization as food products (Kaur et al., 
2022; Langyan et al., 2021a, 2022a).

Plant-based protein sources are extensively searched to 
meet the protein requirements. From nutritional aspects, the 

functionality and application of any food primarily depend 
on proteins. However, their availability in many foods is 
limited, and the requirements are meet from animal sources 
(Langyan et al., 2022b; Singh et al., 2022). Food security 
has been largely dependent on majorly used cereal crops 
such as rice, wheat, and corn. These grains are an important 
part of the human diet, yet they lack the essential micronu-
trients which lead to health concerns (Changan et al., 2017; 
Chaudhary et al., 2012; Kumar et al., 2014). Also, with an 
increasing population, it is more challenging to meet the 
food supply (Langyan et al., 2021b). Hence, the cultivation 
and utilization of pseudo-cereal crops with a high nutrition 
profile are of great significance.

Pseudo-cereals, such as buckwheat, amaranth, and qui-
noa, are considered as the richest sources of high-quality 
protein, carbohydrates, lipids, vitamins, minerals, and fibers, 
and also show the presence of bioactive compounds such 
as phenolic acids, flavonoids, saponins, etc. Pseudo-cereals 
have beneficial health-promoting effects against cardiovas-
cular diseases, cancer, diabetes, and high blood pressure, 
and have been used to develop novel functional food prod-
ucts (Priego-Poyato et al., 2021; Thakur & Kumar, 2019; 
Kalinova & Dadakova, 2009). Additionally, pseudo-cereals 
have no gluten content and hence widely used in gluten-
free formulations. Parameters such as protein efficiency 
ratio (PER) or net protein use (NPU), bioavailability or 
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digestibility, and index of protein’s nutritional quality, are 
much higher in pseudo-cereals as compared to cereals (Quan 
et al., 2018; Upasana & Yadav, 2022).

In today’s era, the globalization of agriculture and its 
industrialization led to many adverse effects, including high 
demand for energy, utilization of water, increasing greenhouse 
gasses (GHG), and climatic disturbances. Moreover, the agri-
cultural land is limited and is under continuous pressure due 
to different abiotic stresses like temperature, drought, heavy 
metal, and salinity stress. Additionally, the changes in the cli-
matic conditions also affect food security. However, pseudo-
cereals are mainly climate-resilient crops that could be grown 
in marginal lands not suitable for crops cultivation including 
low input benefits (Rodríguez et al., 2020).

Although pseudo-cereals are rich in the high level of 
protein, minerals, amino acids, and non-nutritive compo-
nents, yet their consumption and commercialization as food 
products are limited due to gaps in nutritional composition 
research and limited technologies for their processing and 
utilization. Also, the supply chain of pseudo-cereals is not 
well developed, which further limits the availability of these 
essential foods to the larger population. Hence, the present 
review comprehensively discusses the current status of these 
pseudo-cereals in terms of their nutrition and non-nutrition 
contents, biological functions, food products, processing 
technologies, applications, and also elucidated the gaps and 
challenges and provide recommendations for future work.

Pseudocereals: An Overview

Pseudo-cereal is one of any non-grasses plants that are usu-
ally used to make bread and other bakery products. The most 
common pseudo-cereal species known today are Chenopo-
dium quinoa sub sp. Quinoa (quinoa); Fagopyrum esculen-
tum (buckwheat); and Amaranth sps. (amaranth). The seeds 
of these species mostly resemble true cereals in terms of 
composition and function, and therefore, they are known as 
pseudo-cereals (Alvarez-Jubete et al., 2010a).

The South American Andean region (2000–4000 m asl) 
is known to be the native for quinoa species (Chenopodium 
quinoa Willd.). The weedy species of quinoa, known as 
Chenopodium album, is commonly referred to as pigweed 
in English and “Bathua” in Hindi. This species of quinoa is 
resistant to frost and grown in regions having less rainfall 
(300–400 mm). It has smaller seeds with diameter in the 
range of 1 to 2.5 mm and reaches up to 1 to 3 m high, while 
the roots dig up to 30 cm into the soil. The stem with a 
diameter of 3.5 cm is cylindrical in shape, having a branched 
stem with a variety of colors (white or yellow). The grain is 
covered with pericarp containing saponins and made up of 
two layers. Before consuming it as food, the saponins (bitter 

material) should be removed. Due to excellent adaptability, 
the quinoa production can be seen in various geographical 
regions around the world. It has been cultivated in Asia, 
mainly the Himalayas and Northern India plains produce 
higher yield. Additionally, the grains of quinoa produced 
in Japan contains large number of bioactive components as 
compared to other cereals as well as pseudo-cereals (Dabija 
et al., 2022; Mir et al., 2018; Pritham et al., 2021). Due to 
high nutritional composition, quinoa is known as “food for 
astronauts” (Yasui et al., 2016).

The buckwheat (Fagopyrum esculentum Monch) is 
originated in China, and then it was moved to Eastern and 
Central Europe by nomads. During thirteenth century, the 
buckwheat production has increased in Italy, Austria, and 
Germany, but thereafter its cultivation was lost due to the 
introduction of other cereal crops. Nowadays, the cultivation 
and utilization of buckwheat are continuously increasing due 
to increasing demand for the gluten-free diet, and hence the 
global production goes higher. The highest production of 
buckwheat (1.19 million tonnes) was recorded in Russia, 
followed by China and Ukraine (FAOSTAT, 2018). In Euro-
pean countries, the buckwheat is cultivated largely in Poland 
(72,096 MT), followed by France (124,217 MT), and there 
is very less production in Lithuania, Slovenia, Hungary, and 
Latvia. Japan is known to be the largest consumer of buck-
wheat, and it is consumed as the second food crop after rice. 
The buckwheat can be cultivated in different types of soil, 
and is considered as the highly nutritious crop containing 
high protein content (Upasana & Yadav, 2022).

Globally, there is a large biodiversity of amaranth, and 
among various varieties, Amaranth caudatus, Amaranth cru-
entus, and Amaranth hypochodriacus are majorly cultivated 
and grown for their seeds (Kaur et al., 2010). Generally, seeds 
of amaranth are convex in shape, having weight of 1.3 mg 
and diameter in a range of 1–1.5 mm. The amaranth crop is 
heat, drought, and pests resistant and also tolerates poor soils 
and arid conditions (Mir et al., 2018).

Pseudocereals: Nutritional 
and Anti‑Nutritional Components

Pseudocereals have recently, attracted the attention of vari-
ous researchers in food science and technologies as well as 
nutritionist due to higher nutritional composition. The nutri-
tional composition of the pseudo-cereals (amaranth, quinoa, 
and buckwheat) is given in the Table 1. The nutritive value 
of these pseudo cereals is even higher to that of the true 
cereals. Therefore, a nutritional composition comparison of 
pseudo cereals with trues cereals (wheat, rice and maize) is 
presented in the Table 2.
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Table 1  Principal nutritional composition of pseudocereals (quinoa, amaranth and buckwheat)

Nutritional composition Quinoa Amaranth Buckwheat References

Moisture (%, wet basis) 8.2–13.1 8.9–9.4 11 Alonso-Miravalles and O’Mahony (2018), 
Martínez-Villaluenga et al. (2020), Joshi et al. 
(2019), Lamothe et al. (2015)

Carbohydrates (% dry basis) 48.5–77.0 63.1–70.0 63.1–82.1
  Starch (% dry basis) 58.1–64.2 65.0–75.0 54.5–57.4
  Total dietary fiber (% dry basis) 7.0–26.5 2.7–17.3 17.8
  Insoluble (% total fiber) 78 78.0–86.0 70.3
  Soluble (% total fiber) 22 14.0–22.0 16

Crude protein (%) 9.1–16.7 13.1–21.5 5.7–14.2
Amino acid composition (g/100 g protein)
Essential amino acids
  Threonine 2.1–8.9 3.3–5.0 3.9–4.0 Joshi et al. (2019), Martínez-Villaluenga et al. 

(2020), Shukla et al. (2018)  Valine 0.8–6.1 3.9–5.0 2.3–6.1
  Phenylalanine 3.0–4.7 3.7–4.7 1.3–7.2
  Isoleucine 0.8–7.4 2.7–4.2 1.1–4.1
  Leucine 2.3–9.4 4.2–6.9 2.2–7.6
  Methionine 0.3–9.1 1.6–4.6 0.5–2.5
  Tryptophan 0.6–1.9 0.9–1.8 1.83
  Lysine 2.4–7.8 4.8–8.00 4.2–8.6

Non-essential amino acids
  Aspartate 8 7.3–10.7 7.6–16.6 Martínez-Villaluenga et al. (2020), Shukla et al. 

(2018), Dakhili et al. (2019)  Glutamate 13.2 14.4–17.7 23.2–24.4
  Serine 3.4–5.7 4.9–9.3 3.2–8.6
  Histidine 1.4–5.4 1.9–3.8 1.8–4.9
  Glycine 2.2–6.1 6.7–15.2 6.2–13.2
  Arginine 6.9–13.6 8.7–15.6 10–5-11.3
  Alanine 3.2–5.7 3.5–6.2 4.6–9.6
  Tyrosine 2.5–3.7 3.3–3.7 0.6–4.9
  Cysteine 0.1–2.7 2.1–3.6 0.8–3.5
  Proline 2.3–5.5 2.82–4.6 2.6–8.8

Lipids (% dry basis) 4.0–7.6 5.6–10.9 0.7–7.4 Joshi et al. (2019), Shukla et al. (2018)
Saturated fatty acid (% lipids) 15.5–29.0 20.1–30.9 18.8–19.5 Tien et al. (2018), Shukla et al. (2018), Martínez-

Villaluenga et al. (2020)  Lauric (C12:0) NA NA 0.02–0-04
  Myristic (C:14:0) NA NA 0.07–0.1
  Pentadecylic (C15:0) NA NA 0.05–0.06
  Palmitic (16:0) 9.3–10.7 18.8–20.2 13.2–18.5
  Margaric (17:0) NA NA 0.05–0.06
  Stearic (C18:0) 0.7–1.1 3.7–4.2 1.4–6.3
  Arachidic (C20:0) NA NA 1.1–1.2
  Behemic (C22:0) NA NA 1.1–1.3
  Lignoceric (C24:0) NA NA 0.7–0.8

Unsaturated fatty acid (% lipids) 71.0–84.5 61.0–87.3 80.1–80.9 Tien et al. (2018), Shukla et al. (2018), Martínez-
Villaluenga et al. (2020), Vera et al. (2019)  Palmitoleic (16:1) NA NA 0.15–0.20

  Oleic (18:1-9c) 15.7–31.1 22.7–31.8 35.7–47.9
  Vaccenic (18:1–11c) 1.3–1.7 1.4–2.00 NA
  Linoleic (18:2 ω-6) 44.9–58.6 37.1–45.9 31.4–44.6
  Linolenic (18:3 ω-3) 3.0–11.1 0.6–1.4 0.0–5.3
  Gondoic (C20:1) 0.6–1.6 0.2–0.3 1.8–3.1
  Erucic (C22:1) NA-1.5 NA-0.1 0.2–0.5
  ω-6/ω-3 4.7–19.6 33.0–68.9 NA
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Proteins

With the presence of essential amino acids, one can deter-
mine the protein’s nutritional quality. A lack of single amino 

acid results in diet leads to poor development, growth, and 
metabolic syndrome in humans and livestock. It has been 
reported that the protein content in pseudo-cereals is more 
than in cereals (Pirzadah & Malik, 2020). Interestingly, the 

Table 1  (continued)

Nutritional composition Quinoa Amaranth Buckwheat References

Mineral composition (mg/100 g, dry basis)
  Potassium 656–1475 290–434 450 Joshi et al. (2019), Martínez-Villaluenga et al. 

(2020), Coelho et al. (2018), Zhang and Xu 
(2017)

  Phosphorous 140–530 441–455 330–395.3
  Calcium 27.5–148.7 175–206 46.5–50.4
  Magnesium 207.0–502.0 254–266 390
  Sodium 11.0–31.0 0.6 NA
  Iron 1.1–16.7 12.0–17.4 11.8–14.9
  Zinc 0.8–4.8 3.7–5.20 2.1–2.4
  Manganese NA 4 1.2–1.8
  Copper 1.0–9.5 0.77 0.9–1.6

Vitamins (mg/100 g, dry basis)
  Vitamin B1 (thiamine) 0.3–0.4 0.01–0.1 0.1–3.3 Coelho et al. (2018), Joshi et al. (2019), Rybicka 

and Gliszczynska-Swiglo (2017), Martínez-
Villaluenga et al. (2020), Zhang and Xu (2017), 
Tang et al. (2016)

  Vitamin B2 (riboflavin) 0.3–0.4 0.04–0.41 0.06–10.6
  Vitamin B3 (niacin) 1.1–1.5 < 0.01–8.04 2.1–18.0
  Vitamin B6 (pyridoxine) 0.5 0.04–0.6 0.27–0.33
  Folate 0.18 0.05–0.07
  Vitamin E (mg/kg, dry basis) 24.7 15.4 9.5–16.4
  Total carotenoids (mg/kg, dry basis) 4.6–4.8 3.7–4.7
  Lutein 5.8–12.0 3.6–4.4 3.71
  Zeaxanthin 0.3–5.4 trace-0.3 NA
  β-carotene NA-1.1 NA 1.05

Functional properties
  Water holding capacity 3000 rpm, g water/g 

flour
1.57 ± 0.09 1.44 ± 0.10 1.13 ± 0.09 Mir et al. (2018)

  Water holding capacity 5000 rpm, g water/g 
flour

1.16 ± 0.06 1.05 ± 0.05 0.8 ± 0.09

  Fat adsorption capacity, g/g 1.2 ± 0.10 1.54 ± 0.12 1.33 ± 0.09
  Foam capacity, mL 3 ± 1 9 ± 2 3 ± 1
  Foam stability 30, % 100 ± 7 44 ± 3 100 ± 6
  Foam stability 60, % 100 ± 4 33 ± 3 100 ± 5
  Solvent retention capacity, %
  Water 134 ± 8 84 ± 5 84 ± 7
  Sucrose 166 ± 9 106 ± 5 114 ± 7
  Sodium carbonate 131 ± 8 99 ± 4 84 ± 8
  Lactic acid 140 ± 8 98 ± 4 84 ± 8

Table 2  Nutritional composition 
comparison of pseudocereals 
with the comparable cereals

Compiled from USDA, 2022, National Nutrient Database for Standard Reference, Alonso-Miravalles and 
O’Mahony (2018); Martínez-Villaluenga et al. (2020); Joshi et al. (2019); Shukla et al. (2018)

Nutritional composition Quinoa Amaranth Buckwheat Maize Rice Wheat

Carbohydrates % 48.5–77.0 63.1–70.0 63.1–82.1 80.8 79.08 74.6
Total dietary fiber 7.0–26.5 2.7–17.3 17.8 4.3 0.5 3
Crude protein (%) 9.1–16.7 13.1–21.5 5.7–14.2 6.2 6.94 12
Fat (% dry basis) 4.0–7.6 5.6–10.9 0.7–7.4 1.74 1.3 1.7
Energy (Kcal/100 g) 341 333 346 338 353 309
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lysine that is poorly distributed in cereal proteins is found 
higher in pseudo-cereals. Amaranth and quinoa also con-
tain a high amount of histidine and arginine, which are 
good for children's and infants’ nutrition. Recently, it has 
been observed that proteins present in quinoa can provide 
many essential amino acids such as histidine (210%), lysine 
(132.22%), isoleucine (107.33%), methionine + cysteine 
(157.72%), threonine (177.82%), phenylalanine + tyros-
ine (247.63%), valine (107.43%), and tryptophan (15.83%) 
for adult nutrition (Mir et al., 2018). The sulfur-containing 
amino acids like methionine and cysteine are also present in 
higher concentrations in pseudo-cereals compared to com-
monly used cereals like rice, sorghum, and wheat. It has been 
reported that the leaf of quinoa is considered the best source 
of protein that can be used in fodder and in pharmaceutical 
industries (Martínez-Villaluenga et al., 2020). The process-
ing techniques like fermentation and popping showed posi-
tive effect on amaranth grains. It has been reported that pop-
ping enhances the total lysine content of amaranth grains, 
which is higher than commonly used cereals. However, there 
is a limitation of using fermentation and popping methods 
as they are linked with reducing exogenous factors (e.g., 
trypsin, phytate, and tannin inhibitors), thereby decreasing 
the digestibility of proteins. Pseudo-cereals also contain stor-
age proteins of different properties and structures, such as 
albumins (2S) and globulins (11S and 13S).

Carbohydrates

In carbohydrates, starch, a major energy source, is a 
biopolymeric component in plant parts (seeds, tubers, 
and grains) that is generally found in the seed’s perisp-
erm in simple or spherical shapes (Garg et al., 2020). 
Quinoa contains carbohydrates ranging from 67–74% of 
its dry weight; however, the content of amylose is lower 
(11%) than cereals. Starch granules of quinoa are smaller 
in diameter than maize and wheat, and exhibited higher 
temperature of gelatinization (e.g., 57–64 °C). Other car-
bohydrates are usually present in very low amounts. These 
includes, monosaccharides (2%), disaccharides (2.3%), 
pentosans (2.9–3.6%), and crude fiber (2.5–3.9%). It has 
been reported that starch extracted from quinoa is help-
ful in those applications where breakability reduction and 
binding improvement are needed (Jan et al., 2016). Com-
pared to amaranth and quinoa, buckwheat contains a large 
amount of starch and provides higher energy. For example, 
100 g of grains of buckwheat gives the energy of 343 cal.

Dietary Fiber

The concept of dietary fibers is less known in pseudo-
cereals. Quinoa and amaranth are considered as health-
promoting pseudo-cereals due to high nutritional content. 

In one of the studies, the overall composition of seeds of 
amaranth contains dietary fiber ranging from 8 to 16%, 
and out of this, approximately 33–44% were considered as 
soluble fibers. Compared to quinoa and amaranth, dietary 
fiber content is higher in the seeds of buckwheat (Alvarez-
Jubete et al., 2010b). The composition of monosaccharides 
in insoluble fibers of amaranth was recorded as 57% glucose, 
9% xylose, 22% arabinose, 6% galactose, 4% rhamnose, 2% 
mannose, and 1% fucose. The insoluble dietary fibers of 
amaranth and quinoa are composed of homogalacturonans 
dispersed with RG-I stretch. The amaranth contains a higher 
fraction of soluble dietary fiber content than quinoa. Solu-
ble fibers of quinoa are mainly consisted of arabinans and 
homogalacturonans. In contrast, soluble fiber present in 
amaranth consisted of branched xyloglucans, having side 
chains of disaccharide and trisaccharide, and has different 
fermentative and physiological properties (Mir et al., 2018).

Minerals and Vitamins

In general, minerals such as iron, magnesium, and calcium 
are present in less amounts in gluten-free foods and prod-
ucts. Pseudo-cereals such as quinoa, amaranth, and buck-
wheat are excellent sources of magnesium; calcium, iron, 
and other vital minerals (Alvarez-Jubete et al., 2010a). The 
highest amount of minerals is present in amaranth, followed 
by quinoa and buckwheat. Vitamins played a major role in 
almost every physiological function. The content of thia-
mine is more in amaranth as compared to wheat. Amarnath 
and quinoa are excellent pseudo-cereals for vitamin C, ribo-
flavin, vitamin E, and folic acid contents, whereas Tartary 
buckwheat seeds contain higher content of vitamins B2 and 
B6 (Patil & Jena, 2020).

Fatty Acids

Pseudo-cereals have the highest number of fatty acids com-
pared to other cereal crops, mainly characterized by a large 
amount of unsaturated fatty acids (linolenic acid). The high-
est amount of linoleic acid was found in amaranth and qui-
noa, whereas the oleic acid level and eicosenoic acid were 
found highest in buckwheat (Dziadek et al., 2016). The level 
of eicosnoic acid and erucic acid was also reported higher 
in quinoa. Among saturated fatty acids, palmitic acid was 
reported higher in amaranth, followed by buckwheat and qui-
noa (Bock et al., 2021). Polyunsaturated fatty acids improve 
insulin sensitivity and also cure cardiovascular diseases, oste-
oporosis, cancer, autoimmune, and inflammatory diseases. 
A high quantity of squalene was found in amaranth, which 
is widely used in cosmetic and pharmaceutical applications. 
The content of lipid present in quinoa and amaranth is 2–3 
times higher than wheat and buckwheat (Mir et al., 2018).
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Anti‑Nutrient Components

Various anti-nutrient components are present in pseudo-
cereals. These commonly include polyphenols, which are 
reported higher in pseudo-cereals than other cereals. Phe-
nolic acid was found higher in buckwheat, followed by qui-
noa and amaranth. Among the phenolic acids, gallic acid, 
dihydroxybenzoic acid, vanillic acid, caffeic acid, o-coumaric 
acid, and rutin were commonly reported in pseudo-cereals 
(Dziadek et al., 2016). Anthocyanins and flavonoids are 
other polyphenolic compounds present in pseudo-cereals. 
The higher content of anthocyanin and flavonoids is present 
in buckwheat, followed by quinoa, and amaranth (Mir et al., 
2018). Pseudo-cereals also contain saponins, phytosterols, 
phytoecdysteroids, polysaccharides, tannins, oxalates, and 
phytates (Fig. 1) (Hernández-Ledesma, 2019).

Bioactive Properties of Pseudocereals

Reports have been published on various bioactivities of 
pseudocereals, which majorly include antitumor, antioxi-
dant, hypoglycaemic, ACE inhibitory, antimicrobial, and 

hypolipidemic effects (Table 2, Fig. 2). It has been observed 
that in countries where a high number of cereal crops are 
consumed, the risk of several diseases related to the meta-
bolic functions has been greatly reduced. Lectins present in 
pseudo-cereals activated the innate defense mechanism, pre-
venting cancer and obesity. On the other hand, protease inhib-
itors also have potent ACE inhibitors and anti-inflammatory 
properties and were closely linked with anti-hypertensive 
effects (Langyan et al., 2022a). Dietary saponins form insolu-
ble cholesterol complexes, thereby lowering plasma choles-
terol levels and decreasing the occurrence of cardiovascular 
diseases. Also, phenolic compounds like flavonoids, tannins, 
and phenolic acids, having a significant role in the pigmenta-
tion of seeds showed higher antioxidant activity (Giusti et al., 
2017). The bioactivities of small peptides present in pseudo-
cereals are mainly released from enzymatic hydrolysis by 
various proteases such as pepsin, trypsin, chymotrypsin, 
alcalase, papain, pancreatin, thermolysin, and flavourzyme 
(Awika & Duodu, 2017). These peptides have various bioac-
tivities such as antioxidant, antifungal, antitumoral, and ACE 
inhibition activity, and are also used for different purposes, 
like food supplements, functional food ingredients, and nutra-
ceuticals (Table 3) (Awika & Duodu, 2017; Das et al., 2020).

Fig. 1  Major antinutrients available in the pseudocereals. Compiled from Popova and Mihaylova (2019) and National Center for Biotechnologi-
cal Information (NCBI, 2022)
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Pseudo-cereals, mainly quinoa, buckwheat, and amaranth, 
showed antidiabetic, anti-hypertensive, antioxidant, anti-
inflammatory, immunoregulatory, anticancer, neuroprotec-
tive, and anti-microbial activity (Table 3). These bioactivities 
are mainly exerted by the protein hydrolysate or the isolated 
peptides by various mechanisms. For instance, the antidia-
betic activity of pseudo-cereals is mainly due to inhibition 
of dipeptidyl peptidase IV (DPP-IV) and α-amylase and 
α-glucosidase activity, anti-hypertensive due to angiotensin-
I-converting enzyme inhibition, and hypocholesterolemic 
effect due to inhibition of pancreatic lipase and HMG-CoA 
reductase activity (Del Hierro et al., 2021; Nongonierma 
et al., 2015; Sánchez-López et al., 2021; Soares et al., 2015; 
Vilcacundo et al., 2017; Zieliński et al., 2020).

Pseudo-cereals have also been tested clinically against 
different disease conditions and/or to fulfill the nutrients 
requirements. Quinoa and quinoa-based products (e.g., bis-
cuits, crackers, brioche, sponge cake, baguette bread, sliced 
bread, and pasta) have been tested and found effective in 
preventing type-2 diabetes mellitus in the diabetic patient 
with age > 65 years (NCT04529317 dated Sept’ 2016). Also, 
buckwheat was found effective in lowering the blood glu-
cose level in diabetic adults (NCT00841503). It has also 
been reported that quinoa effectively reduced weight and 
other complications (e.g., glycemic index) in overweight 
persons (NCT02621502). Biscuits made from quinoa were 
found effective in preventing cardiovascular risk markers in 
older patients (NCT03291548). The probiotic potential of 
quinoa milk was investigated in adults and found to change 
the composition of oral and intestinal flora. Due to its high 
level of amino acids and free from lactose, gluten, and cho-
lesterol, the fermented quinoa milk provides a more effective 
probiotic effect (NCT04280731).

Irritable bowel syndrome (IBS) is one of the most com-
mon challenges in digestion and after that avoidance of 
nutritious food products. In a clinical study, the Sourdough 

wheat bread, regular yeast baked toast bread, and gluten-
free diet containing quinoa were tested in adults. It was 
found that the gluten-free diet containing quinoa prevents 
IBS and provides a nutritious diet as compared to others 
(NCT02572908). Chenopodium formosanum and buckwheat 
extract drink were found effective in preventing the aging 
effect (NCT04237818). Buckwheat honey was prepared 
and tested for its preventive effect against cough with acute 
upper respiratory tract infection in adults. It was found that 
the buckwheat honey significantly reduced the frequency 
and severity of cough compared to placebo (NCT01062256). 
Food prepared with olive, buckwheat, peas, and chestnut 
flour was found effective in modifying the gut microbiota 
and the cholesterol metabolism in obese and hypercholester-
emic patients (NCT02664428). Amaranth flour improved 
diet quality and iron intake in children (12–59 months), thus 
preventing anemia (NCT01224535).

Processing Techniques of Pseudocereals

For improving the nutritional quality of pseudo-cereals and 
inactivating/eliminating the compounds that interfere with 
the digestibility of protein, various processing techniques 
such as cooking, soaking, dehulling, microwave, irradiation, 
extrusion, and fermentation have been used. During food 
processing, heat treatment has been widely used for differ-
ent purposes like sterilization, enhancing texture and flavor, 
destroying toxic microorganisms, and improving functional 
and physical properties. The effect of processing techniques 
on the nutrients (carbohydrates, protein, oil, dietary fiber, 
etc.) and anti-nutrients (phytates, oxalates, saponins, etc.) in 
the pseudo cereals is presented in Table 4. These processing 
methods are useful in improving the protein quality and the 
digestibility of proteins. However, some adverse effects like 
protein degradation have also been reported due to thermal 
processing, affecting the bioavailability of essential amino 
acids. Several studies postulate the effects of food process-
ing on the digestibility and nutritional properties of proteins 
from pseudo-cereals. These commonly include conventional 
grain processing (milling, roasting, drying, cooking, baking) 
and bioprocessing (enzyme-assisted processing, fermenta-
tion, biorefinery). Some of them are used during the pro-
cessing of pseudo-cereals and are discussed below.

Cooking

Cooking, being one of the most important and common 
process, influences nutrients bioavailability, nutritional 
value, and digestibility (Kalpanadevi & Mohan, 2013). 
With the presence of heat-labile compounds in uncooked 
proteins, the digestibility of protein is low. Hence, cooking 

Fig. 2  Bioactivities reported from pseudo-cereals
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Table 4  Effect of processing techniques on the nutrients/antinutrient in the pseudocereals

Pseudo cereals Nutrients/antinutrient Effect of the processing technique Reference

Quinoa Nutrients
Protein Soaking and germination significantly 

increased the content
Thakur et al. (2021a), Jan et al. (2017)

Crude Fibre Soaking and germination significantly 
increased the content

Shreeja et al. (2021), Thakur et al. 
(2021a), Jan et al. (2017)

Phenols Soaking and germination significantly 
increased the content

Thakur et al. (2021a), Alvarez-Jubete 
et al. (2010a)

Fat Soaking and germination significantly 
reduced the content

Sindhu et al. (2019), Shreeja et al. (2021), 
Chauhan et al. (2015) and Xu et al. 
(2017)

Carbohydrates Soaking and germination significantly 
reduced the content

Thakur et al. (2021a) 

Minerals Zn, Fe, Mn, Cu content increased after 
soaking and germination

Demir and Bilgiçli (2020), Thakur et al. 
(2021a)

Antinutrients
Phytate Cooking, soaking, fermentation and 

germination reduced the phytate content
Demir and Bilgiçli (2020), Thakur et al. 

(2021a)
Tannins Rinsing in water, soaking and germination 

reduced the content
Borges et al. (2010); Thakur et al. (2021a)

Saponins Dry (roasting, heat treatment) and wet 
techniques (washing in the alkaline 
water) decreased the saponins

Ruiz et al. (2017); Maradini et al. (2017)

Trypsin Inhibitors Boiling, cooking and heat treatments 
decreased the Trypsin Inhibitors

Borges et al. (2010)

Amaranth Nutrients
Protein Soaking and germination significantly 

increased the content
Thakur et al. (2021b); Sindhu et al. (2019)

Crude Fibre Soaking and germination significantly 
increased the content

Shreeja et al. (2021); Thakur et al. 
(2021b)

Phenols Soaking and germination significantly 
increased the content

Thakur et al. (2021b), Cornejo et al. 
(2019); Zhang et al. (2015)

Fat Soaking and germination significantly 
reduced the content

Sindhu et al. (2019); Shreeja et al. (2021); 
Cornejo et al. (2019)

Carbohydrates Soaking and germination significantly 
reduced the content

 Thakur et al. (2021b)

Minerals Zn, Fe, Mn, Cu content increased after 
soaking and germination

Guardianelli et al. (2019); Thakur et al. 
(2021b)

Antinutrients
Phytate Cooking, soaking, popping and germination 

reduced the phytate content
Ferreira and Arêas (2010); Thakur et al. 

(2021b)
Tannins Rinsing in water, soaking and germination 

reduced the content
Siwatch et al. (2019); Sindhu et al. (2019); 

Thakur et al. (2021b)
Trypsin, amylase and chymotrypsin, 

Inhibitors
Boiling, cooking, popping and heat 

treatments decreased the Trypsin 
Inhibitors

Ferreira and Arêas (2010); Borges et al. 
(2010)

Buckwheat Nutrients
Protein Soaking and germination significantly 

increased the content
 Thakur et al. (2021a)

Crude Fibre Soaking and germination significantly 
increased the content

Shreeja et al. (2021), Thakur et al. 
(2021a)

Phenols Soaking and germination significantly 
increased the content

Zhang et al. (2015), Thakur et al. (2021a)

Fat Soaking and germination significantly 
reduced the content

Sindhu et al. (2019), Thakur et al. 
(2021a), Shreeja et al. (2021), Chauhan 
et al. (2015), Xu et al. (2017)
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has several effects on the digestibility of proteins like dena-
turation of proteins or reducing the protein resistance from 
the enzymatic activity and interacting proteins with non-
protein components, which further affect the digestibility. 
The cooking method also destroys the protease inhibitors, 
and unfavorable compounds are leaching out and improve 
digestibility. It also eliminates trypsin inhibitors and 
reduces the content of phytic acid and tannins ((Fawale 
et al., 2017). In extrusion cooking, the high temperature 
and pressure were applied, resulting in high shear forces and 
very short cooking time. The high heat and pressure cause 
protein denaturation, while the nutrients are retained due 
to very low exposure time. A high shear force is required 
for pseudo-cereals compared to rice and wheat processing 
due to high lipid and lower amylose content. In amaranth 
and quinoa, the fat content is higher, and thus it needs to be 
blended with flour having low-fat content, such as rice or 
maize. Also, these pseudo-cereals need an additional defat-
ting step before extrusion cooking. In buckwheat, the fat 
content is lower and could be directly used for extrusion 
cooking. Maize blended with amaranth or quinoa under-
goes extrusion cooking to produce expanded extrudates, 
with lower tocopherol and fatty acid content, while the phe-
nolic compounds and folate are partially affected (Ramos 
Diaz et al., 2017). The extrusion cooking also affected the 
physical and biochemical properties of the pseudo-cereals. 
For instance, the quinoa under extrusion cooking increased 
the protein crosslinking and the soluble fiber content, while 
some essential amino acids such as valine and methionine 
were slightly reduced (Kuktaite et al., 2021). Due to the 
presence of aggregated starch compounds in quinoa, the 
starch is not completely gelatinized after extrusion cooking, 
which can be overcome by adding sufficient water during 
the extrusion cooking following drying of the extrudates 
(Kuktaite et al., 2021). After cooking, the prepared extru-
dates were milled and showed improved water solubility, 

protein solubility, oil binding, and foaming properties 
(Espinosa-Ramírez et al., 2021).

Steaming and boiling are the two most common cooking 
processes used for most foods, including pseudo-cereals. In 
a study, both these cooking methods were analyzed for their 
effect on the mineral content of quinoa, amaranth, buck-
wheat, and rice. It was found that during steaming quinoa, 
the manganese, phosphorus, and iron retain 100%. On the 
other hand, in all the pseudo-cereals, the mineral content in 
steaming and boiling processes showed no significant differ-
ences (Mota et al., 2016). The effect of roasting and boiling 
on amaranth and quinoa seeds was profound as it increases 
the bioavailability of minerals, dietary fibers, and phenolics 
(Repo-Carrasco-Valencia et al., 2010). Also, it was found 
that roasting improved the gruel viscosity of amaranth as 
compared to raw and popped grain (Muyonga et al., 2014).

Microwave and Irradiation

Microwave energy utilizes electromagnetic waves having 
a frequency between 300 MHz and 300 GHz. It is non-
ionizing radiation that continuously generates heat because 
of molecular motion in the product (Divekar et al., 2017). 
It generally improves functional properties like foaming, 
emulsifying, and water and oil holding capacity. This 
method inactivates protease inhibitors, reduces bioactive 
compounds concentration, and enhances protein quality 
(Vagadia et al., 2018). Irradiation is a safe method where 
food is exposed in ionizable radiations with a specific time 
interval and environment under controllable conditions. It 
can help avoid various diseases caused by microbes and 
remove unfavorable compounds, hence improving the pro-
tein quality. However, it has a negative impact on protein 
digestibility as it degrades specific amino acids (like sulfur 
and aromatic amino acids).

Table 4  (continued)

Pseudo cereals Nutrients/antinutrient Effect of the processing technique Reference

Carbohydrates Soaking and germination significantly 
reduced the content

 Thakur et al. (2021a)

Minerals Zn, Fe, Mn, Cu content increased after 
soaking and germination

Pongrac et al. (2016)

Antinutrients
Phytate Cooking, soaking, fermentation and 

germination reduced the phytate content
Zhang et al. (2015)

Tannins Rinsing in water, soaking and germination 
reduced the content

 Thakur et al. (2021b)

Trypsin and alpha-amylase activity 
Inhibitors

Boiling, cooking, sprouting and heat 
treatments decreased the Trypsin 
Inhibitors

Handoyo et al. (2006)
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Germination

Germination is the absorption of water by dormant/dry 
seeds, leading to embryonic axis elongation. During ger-
mination, mostly hydrolytic enzymes result in biochemi-
cal changes, modify structural properties, and enhance the 
nutritional value, thereby reduce antinutritional factors by 
leaching or enzymatic activity. With the improvement of 
the digestibility of proteins after the germination process, a 
reduction in phytic acid and polyphenols content in germi-
nated seedlings were recorded along with an increase in the 
protein solubility (Albarracín et al., 2015).

Water soaking before germination played a major role in 
the development and growth and the nutritional character-
istics of the germinated plant. As such, the slightly acidic 
electrolyzed water was tested in buckwheat and showed an 
increase in the GABA, rutin, glutamic acid decarboxylase 
(GAD), and phenylalanine ammonialyase (PAL) activity 
(Hao et al., 2016).

Drying

Several drying methods are used for the removal of water 
molecules present in the food. These methods include hot 
air-, sun-, freeze-, spray-, and vacuum-drying. Among them, 
spray-drying is widely used in the food industry to enhance 
the shelf-life of food. Spray drying mainly uses high tem-
peratures, decrease heat-labile substances within the proteins 
and affecting the digestibility and functional properties of 
the protein. Hot air spraying is mostly used to dry liquid 
foods through moisture vaporization and hence leaves the 
particulate matter in the form of powder. The freeze-drying 
process undergoes sublimation, which helps increase aggre-
gations and protein–protein interactions. Also, improve the 
digestibility of proteins and enhance various functional prop-
erties like solubility of the protein, water-holding capacity, 
foaming, and emulsifying properties (Tontul et al., 2018).

Fermentation

It is the process that utilizes several microorganisms such 
as yeasts and bacteria that help to improve the nutritional 
quality of crops. It also enhances the texture, aroma, and 
flavor of bakery foods. It increases protein availability, 
functionality, and eliminate undesirable compounds. Fer-
mentation also played a major role in improving the bio-
availability and digestibility of nutrients (Fawale et al., 
2017). Pseudo-cereals are mainly used for bread making; 
however, due to lower palatability, it have been fermented 
with P. pentosaceus, E. faecalis, W. cibaria, L. plantarum, 
L. salivarius, L. rhamnosus, and L. paracasei (Capuani 

et al., 2013; Rocchetti et al., 2019a, b; Zieliński et al., 2017, 
2019). The lactic acid bacteria fermentation improves the 
palatability and aroma of pseudo-cereal products. With the 
help of L. paracasei and L. plantarum, Tartar buckwheat 
flour was fermented and showed antidiabetic activity (Feng 
et al., 2018). Also, it has been reported that with the help 
of lactic acid bacteria, the quinoa pasta product was made, 
which further improved the vitamin and mineral content 
in a mouse model (Carrizo et al., 2020). Also, lactic acid 
bacteria fermentation improves the antioxidant and phe-
nolic content of pseudo-cereals (Bustos et al., 2017). A 
bread prepared using amaranth (Amaranthus caudatus, 
grown in India), quinoa (Chenopodium quinoa, grown 
in Canada), and buckwheat grains (Fagopyrum esculen-
tum Moench, grown in China) and yeast was analyzed for 
vitamin E content. It was found that the bread prepared 
using quinoa has the highest content of vitamin E (alpha-
tocopherol), whereas amaranth bread contained the highest 
beta and delta-tocopherol content. Gamma-tocopherol con-
tent was highest in both buckwheat and quinoa. It was also 
recorded that the vitamin E content in the pseudo-cereals 
made bread was higher than the bread made from wheat 
(Alvarez-Jubete et al., 2009). Also, the loss in the vitamin 
E content during high-temperature baking was reported, 
and pseudo-cereals bread showed lower loss than wheat 
bread. Among them, the lowest loss in vitamin E content 
was recorded in quinoa bread.

The bread made from gluten-free pseudo-cereals uses 
processing techniques such as sourdough technology, high 
hydrostatic pressure, milling, and non-conventional baking 
methods (Bender & Schönlechner, 2020; Sciarini et al., 
2020). It has been found that sourdough improved the 
quality of buckwheat and amaranth bread (Bender et al., 
2018; Houben et al., 2010). In recent years, ohmic heat-
ing has been used in the baking process and has provided 
significant functionality and digestibility compared to the 
conventional process Bender et al., 2019. The milling pro-
cess, including hammer mill followed by cyclonic quinoa 
and buckwheat, resulted in the production of finest parti-
cle size that ultimately increased the quality of the bread 
(Sciarini et al., 2020).

It has also been reported that sourdough fermentation is 
suitable for decreasing saponins’ level and improving the 
rheology and sensory attributes (Bolívar-Monsalve et al., 
2018). During fermentation, the amino acid, soluble fibers, 
phenolics, and antioxidant activity were markedly increased 
in quinoa sourdough, which later improved the bread quality 
(Rizzello et al., 2016). Fermentation of pseudo-cereals with 
Lb. plantarum improves the free amino acid content, gamma-
aminobutyric acid (GABA), and phenolic compound while 
decreasing starch hydrolysis (Coda et al., 2010). The sour 
dough fermented quinoa flour increases the protein, amino 
acids, dietary fiber content, antioxidant activity, and tenacity 
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and elasticity of pasta, thereby improved its functional and 
mechanical quality (Lorusso et al., 2017). The sourdough 
fermentation of amaranth flour using lactic acid bacteria 
improve the rheology (viscosity and elasticity) (Houben 
et al., 2010). The buckwheat sourdough increased the amino 
acid, magnesium, dietary fibers, phenolic while decreas-
ing the phytic acid and tannins content, thereby extending 
the shelf-life and increasing the overall quality of the bread 
(Alvarez-Jubete et al., 2010b; Moroni et al., 2012). The muf-
fin prepared by fermented buckwheat flour showed higher 
content of macro and micronutrients (WronkoWska, 2016).

In a study, Lactobacillus plantarum  299v® was used for 
the fermentation of quinoa, canihua, and amaranth grains 
and flours. It was found that the fermentation process 
increases the phytate degradation and that too higher in the 
flours than grains. The addition of Lactobacillus plantarum 
 299v® increased the lactic acid production during fermenta-
tion, and increased the pH and endogenous phytase activity. 
Also, the bioavailability of minerals was increased during 
fermentation (Castro-Alba et al., 2019).

Applications of Pseudocereals

The advancement on nutritional value and processing 
methods, various potential applications of pseudocereals 
in dietary food have been recognized. Pseudocereals are 
highly nutritious due to its high nutraceutical potential, and 
are used in gluten-free product development. Moreover, the 
proteins present in pseudo-cereals are the richest source 
of essential amino acids useful in the pharmaceutical and 
food products. Several studies have showed the potential 
applications of pseudo-cereals in the developing gluten-
free and nutrient-rich products, like bread, confectionary 
items, pasta, biscuits, etc. Gluten-free bread also contains 
a higher amount of polyphenol compounds, and hence they 
impart an antioxidative effect. Whole amaranth flour has 
also been utilized for the production of gluten-free biscuits 
having higher protein content. The grains of amaranth and 
quinoa have been widely utilized in making soups, bever-
ages, porridges, sauces, soufflés, and sweets. The leaf of 
quinoa is considered the best source of protein that can be 
used in fodder and food and pharmaceutical industries. Also, 
the bioactive peptides present in pseudo-cereals are used for 
different purposes like food supplements, functional food 
ingredients, and nutraceuticals.

Although many products free from gluten are accessible 
nowadays from the market; however, a greater number of 
those products have poor quality in terms of nutrients (Mir 
et al., 2018). In many studies, it has been reported that the 
levels of vitamin B, proteins, and fibers are low in gluten-
free bakery products compared with gluten-containing bak-
ery products (Thakur et al., 2021a). Thus, there is a need 
to improvise the development of bakery products free from 

gluten, matching the nutritional composition with gluten-
containing products. Niland and Cash (2018) observed and 
reported that a diet free from gluten helps in the restora-
tion of health and improves quality of people suffering from 
celiac diseases. As compared to the normal healthy person, 
the person with celiac disease, herpetiformis, wheat aller-
gies, dermatitis, gluten sensitivity, and gluten ataxia has a 
lesser fiber intake from the food, and hence should strictly 
take a gluten-free diet (Thakur et al., 2021b). People suf-
fering from celiac disease have difficulties in searching for 
gluten-free products in the market due to high prices of food 
products, poor sensory features, and shortage and unavail-
ability of a variety of foods, which leads to strictly adhere to 
a gluten-free diet (Alvarez-Jubete et al., 2010b).

Studies have been conducted to improve the quality of 
gluten-free products using enzymes, emulsifiers, or hydro-
colloids. The flour made from pseudo-cereals (quinoa, ama-
ranth, and buckwheat) was used to produce gluten-free bread 
compared with those produced from potato and rice starch 
(Alvarez-Jubete et al., 2010b). Pseudo-cereals enhanced 
the antioxidant activity and increased fiber, protein, iron, 
calcium, polyphenol, and vitamin E contents of gluten-free 
bread. Also, nutrient-dense materials derived from pseudo-
cereals have increased nutritional composition and also help 
in bread preparation with good sensory and physical proper-
ties (Capriles & Arêas, 2014). Along with some amount of 
buckwheat flour to rice-based and corn starch-based flour 
for the preparation of gluten-free products, the antioxidant 
capacity and nutritional value were increased (Alvarez-
Jubete et al., 2010b). Cheese bread, along with the addi-
tion of 10% amaranth flour enhances the levels of dietary 
fiber, proteins, and iron contents of bread. One of the studies 
reported that the bread produced from the flour of tartary 
buckwheat was linked with the reduction in rutin during pro-
cessing, the concentration of quercetin remained stable, and 
the product showed overall strong antioxidant activity. The 
consumption of quinoa increased almost 3 times in the last 8 
years (FAOSTAT, 2013). Quinoa and amaranth together are 
rich in copper, iron, zinc, and manganese, and also reported 
that the content of magnesium and phosphorus may contrib-
ute almost 55% of the daily intake of nutrients from food (do 
Nascimento et al., 2014).

Challenges and Future Outlook

Instead of the various benefits of pseudo-cereals, yet sev-
eral challenges related to its cultivation, anti-nutrients and 
inclusion of these crops into modern food system, includes 
agronomic factors (yield and growth), social (lack of aware-
ness and low esteem), economic (marketing constraints) as 
well as technological (seeds processing and genetic fac-
tors) challenges are existing (Priego-Poyato et al., 2021). 
One of the reasons that decline the cultivation of crops is 
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poorly characterized agronomic analysis. Besides agro-
nomic challenges, there is a limitation at the genetic level 
like self-incompatibility that limits trait improvement and 
breeding. Similarly, flower abortion and seed shattering 
are other drawbacks in tartary and common buckwheat that 
limits their production yield. Other factors like limitation in 
traditional knowledge reduce cultivation and production of 
pseudo-cereals (Pirzadah & Malik, 2020).

There are many health concerns linked with the intake of 
dietary proteins derived from pseudo-cereals. Antinutrients 
present in plant food are naturally produced by plants and 
further interfere with absorption, digestion, and utilization 
of nutrients present in the food (Popova & Mihaylova, 2019). 
Major anti-nutritional components in quinoa are saponins 
and, mainly responsible for lowering down the mineral 
absorption. Another class is phytic acid, forming insoluble 
chelate with magnesium, iron, zinc, or calcium (Pirzadah 
& Malik, 2020). Furthermore, oxalates are another group 
of compounds posing the challenge to accept the pseudo 
cereals as the food as these can cause irritation in the gas-
trointestinal tract after ingestion. These include maldiges-
tion of proteins (protease and trypsin inhibitors), and car-
bohydrates (alpha-amylase inhibitors), malabsorption of 
minerals (oxalates phytates and tannins), autoimmunity and 
leaky gut (e.g., some saponins and lectins), inflammation, 
behavioral effects, and gut dysfunction (when converting 
cereal gliadins to exorphins), and also exert interference with 
thyroid iodine uptake (goitrogens) (Popova & Mihaylova, 
2019). These adverse effects of antinutrients are generally 
seen in animals when consumed unprocessed proteins from 
cereal crops. However, they also exerted beneficial health 
effects. For instance, at a lower level of lectins, phytates, 
enzyme inhibitors, saponins, and phenolic compounds, there 
was a reduction in plasma cholesterol, blood glucose, and 
triglycerides levels. In addition, saponins have a major role 
in the functioning of the liver and decrease agglutination of 
platelets. While some saponins, and also protease inhibitors, 
phytates, phytoestrogens, and lignans, might help in reduc-
ing cancer risk (Popova & Mihaylova, 2019).

Additionally, tannins also have antimicrobial effects. To 
reduce the concentration of antinutrients in pseudo-cereals 
and their adverse effects, various processing techniques 
such as fermentation, soaking, gamma irradiation, sprout-
ing (germination), and heating have been adopted (Popova & 
Mihaylova, 2019). These processing techniques also remove 
most of the antinutrients like phytates, glucosinolates, erucic 
acid, and insoluble fiber from canola proteins that further 
improve and increase the digestibility and bioavailability 
(Fleddermann et al., 2013).

Technological interventions are required for generating 
desirable trait including climate-resilient crops with high 
nutritional composition, through available genetic resources. 
Studies on agro-morphological (seed shattering, abiotic, 

biotic stress), nutritional (trait-specific germplasm), yield 
related traits, post-harvest technologies are required for fur-
ther utilization of the information in the crop improvement 
program. Furthermore, these programs should be easily 
accessible to the marginal farmers as well as the breeders 
through a common platform. (Rodríguez et al., 2020). Exten-
sion activities and awareness programs for dissemination of 
knowledge on the nutritional superiority of these pseudo 
cereals should be conducted and popularized. Market poten-
tial of the value-added products of these crops should be 
explored and documented in order to make pseudo cereals 
more profitable when compared to other cereal crops. Wider 
choice through varieties in terms of nutrition, low-input, 
climate-resilient should be offered through access to the 
seed. Next, sustainability of these activities can be ensured 
through community seed bank, capacity building, increas-
ing income and livelihood, social acceptability and synergy 
starting from production till marketing. These crops should 
get the place in the national food basket through national 
policies in order to improve the nutritional surveillance. 
There is a strong need for the international funding so as 
to explore the hidden potential of these pseudo-cereals to 
mitigate the hidden hunger.

Conclusions

The research on pseudo-cereals, especially quinoa, buck-
wheat, and amaranth has been continuously increasing as 
gluten-free, nutritious, and functional food products. Along 
with the gluten-free features, pseudo-cereals also contain 
high-quality proteins, dietary fibers, minerals like calcium 
and iron, and phenolic compounds. They also showed bio 
functional activities as antitumor, antioxidant, hypoglycae-
mic, anti-hypertensive, antimicrobial, and hypolipidemic. 
Also, clinical trials revealed their effective uses as health 
and dietary food supplements. In addition, various process-
ing methods such as germination, cooking, soaking, fer-
mentation, popping, etc., helps in enhancing the nutritional 
value of grains and make processed gluten-free products 
like bread, pasta, and confectionary food items. However, 
in the market, there is still limited availability of gluten-free 
products. Therefore, more research is needed to exploit and 
search the functionalities of pseudo-cereals and their food 
products formulations.
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