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Abstract
The growing demand for flaxseed as a source of healthy edible oil mandates the need for adopting novel strategies for pre-
serving its quantity and quality. Mechanical damage during harvest and handling is one of the important threats that can 
adversely affect the quality and viability of flaxseeds. Currently, mechanical damage assessment in grains is mainly per-
formed by human visual inspection, which is a subjective and time-consuming procedure. In this study, the authors propose 
to utilize radiographic imaging with the machine and deep learning tools to characterize the mechanical damage in flaxseeds 
intelligently. Images were acquired under four levels of mechanical damage, and two strategies were used to discriminate 
seeds’ damage: pattern recognition and convolutional neural network (CNN). In the former case, 69 morphological, color, 
and texture features were extracted. Various classifiers, namely, linear discriminant analysis (LDA), K-nearest neighbors 
(KNN), support vector machines (SVM), and decision trees were used for the analysis. SVM provided the best performance 
with a classification accuracy of 87.4%. Furthermore, the analysis of variance (ANOVA) F-test feature selection algorithm 
was utilized, and the 17 most effective features were selected to be used with an SVM classifier to classify seeds with 88.4% 
accuracy. In the case of CNN-based classifiers, six state-of-the-art architectures were employed including EfficientNet-B0, 
VGG19, Resnet18, MobileNet-v2, Inception-v3, and Xception. Among them, EfficientNet-B0 provided superior performance 
with a classification accuracy of 91.0%. The developed models’ high accuracy confirms the capabilities of radiographic 
imaging and artificial intelligence tools for rapid, reliable, and automated assessments of mechanical damage in flaxseeds.
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Introduction

Oilseeds are a prominent part of diets worldwide and are well-
known as the primary source of edible oil. Among oilseeds, 
flaxseeds are highly desirable due to the high contents of alpha-
linolenic acid (an omega-3 fatty acid), fiber, and plant lignans. 
The global trade value of flaxseed was 425.3 million US dol-
lars in 2021, with an expected compound annual growth rate of 
12.8% in 2021–2026 (Mordorintelligence, 2022). The growth 

in the market demand mandates minimizing the loss in quality 
and quantity of flaxseed throughout the supply chain. There-
fore, threats such as spoilage, insect infestation, and mechani-
cal stress should be closely monitored and mitigated. To this 
end, scholars have evaluated the effect of various potential 
contributing factors to control the aforementioned threats.

In the case of mechanical stress, damaged seeds may lose 
viability and yield or become susceptible to insect and fun-
gal infestation, ultimately downgrading sample quality and 
price. A detailed overview of the potential adverse effects of 
mechanical damage on seed properties can be found elsewhere 
(Chen et al., 2020). To minimize the mentioned problems, 
scientists have focused on exploring the effect of moisture 
content (MC) and/or impact stress on the breakage suscepti-
bility of various seeds (Erkinbaev et al., 2019; Khazaei et al., 
2008; Nadimi et al., 2022; Shahbazi, 2011; Shahbazi et al., 
2012, 2014, 2017). The published works have indicated that 
the appropriate selection of MC or maximum induced impact 
stress could minimize the mechanical damage to seeds.
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Despite several previous works in this domain, the 
majority of prior efforts investigated the effect of MC and 
impact energy (IE) on the exterior surfaces of the sam-
ples through a visual inspection (Erkinbaev et al., 2019; 
Khazaei et al., 2008; Shahbazi, 2011; Shahbazi et al., 2012, 
2014, 2017). However, visual inspection is cumbersome, 
slow, subjective, and limited to detecting apparent exter-
nal damage. Moreover, some studies revealed that seeds’ 
external and internal damage may not always be highly 
correlated (Nadimi et al., 2022). Hence, developing a rapid, 
reliable, and intelligent system that could automatically 
assess seeds’ mechanical damage beyond the surface has 
always been of great interest. In this regard, Nadimi et al. 
(2022) recently demonstrated the capabilities of radio-
graphic imaging and machine vision techniques in evalu-
ating internal mechanical damage to flaxseeds. Two simple 
percentile-based classification algorithms were developed 
using the gray level distributions of radiographic images 
of mechanically damaged flaxseeds to classify them into 
two broad groups of nil/low and medium/high damage. The 
authors suggested the implementation of advanced machine 
learning algorithms to better discriminate the mechanically 
damaged seeds, which was not in the scope of their study 
and hence was not explored (Nadimi et al., 2022).

The capability of state-of-the-art data analysis tools such 
as machine learning and deep learning in fruit and grain 
quality evaluation has been already demonstrated in sev-
eral works (Divyanth et al., 2022a; Erkinbaev et al., 2022; 
Hosainpour et al., 2022; Li et al., 2022; Nadimi et al., 2021; 
Sabzi et al., 2022). For instance, scholars have reported 
the applications of image processing (Anami et al., 2015; 
Chaugule & Mali, 2014; Cubero et al., 2011; Dubey et al., 
2006) and machine learning–based models in estimating the  
ripeness of fruits (Kangune et al., 2019; Kheiralipour et al., 
2022; Khojastehnazhand et al., 2019; Nanyam et al., 2012), 
identifying grain dockage (Paliwal et al., 2003; Sharma & 
Sawant, 2017), and segregating grain types (Arora et al., 
2020; Velesaca et al., 2021). Similarly, the efficacy of con-
volutional neural network (CNN) models to monitor grain 
quality, detect infestations, classify grain grades and types, 
and identify damaged kernels, has been reported in vari-
ous studies (Bhupendra et al., 2022; Cubero et al., 2011; 
Divyanth et al., 2022b; Velesaca et al., 2021). Despite the 
promising results, to our knowledge, there has not been any 
effort in utilizing the aforementioned techniques to assess 
mechanical damage in flaxseed, an economically impor-
tant nutraceutical and industrial oilseed. To address this 
knowledge gap, the present study aimed to employ machine 
learning and deep learning tools to classify mechanically 
damaged flaxseeds into four groups, viz., no damage (ND), 
low damage (LD), medium damage (MD), and high dam-
age (HD).

Materials and Methodology

Samples

The samples and radiographic images being used in this 
study were previously explained in detail elsewhere (Nadimi 
et al., 2022). In summary, flaxseeds at three levels of MC 
(6, 8, and 11.5%) were subjected to four different stress 
levels, viz., 0 (control), 2, 4, and 6 mJ forming 3 × 4 = 12 
treatments. For each treatment, three replicates of 100 seeds 
were imaged using a soft 2D X-ray imaging system (model: 
MX-20, Faxitron Bioptics, LLC, Tucson, AZ). Overall, 3600 
seeds (3 (MC) × 4 (stress levels) × 100 (seeds) × 3 (repli-
cates)) were imaged in this study.

Search Workflow

As illustrated in Fig. 1, the proposed image processing 
algorithm involved image pre-processing, image label-
ling, feature extraction/selection, and image classifica-
tion, which are discussed in the subsequent sections. All 
analyses were performed using MATLAB (R2022a, Math-
works Inc., Waltham, MA) software, with its statistics and 
machine learning, image processing, and deep learning 
toolboxes. The MATLAB application was run on Acer 
Nitro 5 Intel Core i5 9th Generation Laptop (32 GB/1 TB 
HDD/Windows 10 Home/GTX 1650 Graphics).

Fig. 1  Flow chart of the proposed machine vision algorithm for esti-
mating damage in the seeds
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Image Pre‑processing

The pre-processing of radiographic images (Fig. 2a) con-
sisted of five main steps (i) image enhancement using the 
imadjust function (Fig. 2b), (ii) image binarization through 
global thresholding (imbinarize) (Fig. 2c), (iii) applying 
morphological opening operation (image dilation followed 
by erosion) on the mask, (iv) obtaining the corresponding 
masked image (Fig. 2d), and (v) extraction of individual 
seeds (Fig. 2e) using bounding box coordinates (regionprops 
function) of the mask. Seeds with undesired segmentation 
(such as overlapping seeds) were removed from the data-
set (~ 4.6% of the entire data set). Table 1 summarizes the 
applied image pre-processing steps with the corresponding 
MATLAB functions.

Seed Labelling

To get a comprehensive prediction of the severity of dam-
age in flaxseeds, the individual seeds extracted from the 
“Image Pre-processing” section were carefully explored and  

segregated into four classes, i.e., ND, LD, MD, and HD. 
Damage usually was identified as a crack, or indentation 
detectable in radiographic images (see Fig. 3). The ND class 
represented sound/undamaged seeds (Fig. 3a), flaxseeds  
with slight damage (minor cracks) were assigned to LD 
(Fig. 3b), flaxseeds with multiple minor cracks and slight 
to medium indentations were assigned to MD (Fig. 3c), and 
HD seeds contained severe indentations and cracks (Fig. 3d). 
As expected, most of the ND seeds belonged to 0 mJ and/or 
2 mJ IE, many flaxseeds of the LD class were from 2 mJ or 
4 mJ IE categories, and most of the MD and HD seeds were 
impacted with 4 mJ and 6 mJ IE, respectively.

Seed Damage Analysis

As previously mentioned, algorithms needed to be devel-
oped to classify the flaxseeds into four classes, namely, 
ND, LD, MD, and HD. Two main strategies were deployed  
for this purpose—machine learning–based pattern recogni-
tion and a CNN-based approach (details are provided in the 

Fig. 2   Image processing pro-
cedure for extracting individual 
seeds from a group of 100 
seeds: (a) original image, (b) 
enhanced image, (c) binary 
mask, (d) background masked 
image, (e) individual flaxseed 
images. Samples shown here are 
non-impacted (control) seeds at 
8% MC

Table 1  Image pre-processing 
steps and parameter settings for 
MATLAB implementation

Image pre-processing technique MATLAB function Parameter settings

Image enhancement imadjust Contrast limits for input image—[0 1]
Image binarization imbinarize Method used to binarize image— “global”
Morphological opening imopen Structuring element shape—“disk”
Individual seeds extraction regionprops Desired property—“BoundingBox”
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sections “Machine Learning and Pattern Recognition” and 
“Convolutional Neural Network”).

The image distribution in the dataset was as follows: 1452 
images were in ND class, 723 in LD, 718 in MD, and 542 
in HD. About 70% of images in each class were reserved for 
training, while other images were used as the test dataset 
(Table 2 provides a detailed information on the dataset). The 
precision, recall, accuracy, and mean F1-score evaluation 
metrics were used to statistically analyze the classification 
performances. For a given class, precision is defined as the 
ratio of true positives (TP) to the total number of objects pre-
dicted for this class (TP + false positives (FP)), while recall 

is the ratio of TP to the actual number of objects in that class 
(TP + false negatives (FN)). The F1-score is the harmonic 
mean of precision and recall. Accuracy is the percentage of 
samples correctly classified (TP + true negatives (TN)) by 
the model. The equations of the abovementioned metrics are 
provided in Eqs. (1)–(4):

Machine Learning and Pattern Recognition

As mentioned in the “Introduction” section, several previous 
works have utilized image texture, morphology, and color 
(TMC) features to examine the quality of agri-food prod-
ucts (Kheiralipour et al., 2022; Sabzi et al., 2022). Herein, 
an analogous approach was used to explore the feasibility of 
such information to assess mechanical damage in flaxseeds. 
The gray level co-occurrence matrix (GLCM) and gray level 
run-length matrix (GLRM) were used to derive the textural 
features. The GLCM is a measure of how often various com-
binations of pixel values (or gray levels) occur in a gray scale 
digital image (Mall et al., 2019). GLRM, on the other hand, 
represents the occurrences of consecutive and collinear pix-
els of similar gray levels in the image (Preetha et al., 2018). 
Texture feature calculations use the contents of GLCM and 
GLRM to provide a measure of the variation in image texture 
(pixel values) at the pixel of interest. For feature extraction, 
only the region of interest (i.e., flaxseed) was used to extract 
information. The ROI was quantified into 16 gray levels 
(selected after trial-and-error on gray levels of 8, 16, 32, and 
64). For each quantized X-ray image, four GLCM and four 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)The F1 − score =
2 × Precision × Recall

Precision + Recall

(4)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 3  Sample X-ray images of flaxseeds from the four classes (a) ND, 
(b) LD, (c) MD, and (d) HD. Ovals indicate the damaged areas

Table 2  Class-wise image distribution of the flaxseed X-ray image 
dataset

Class Number of images in 
the training set

Number of images 
in the test set

Total 
number of 
images

ND 926 526 1452
LD 536 187 723
MD 533 185 718
HD 409 133 542
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GLRM matrices with the orientations Θj ∈ [0°, 45°, 90°, 135°] 
were computed. Four statistics, namely, variance/inertia, cor-
relation, uniformity, and homogeneity, were extracted from 
every GLCM matrix. From the GLRM matrices, 11 features 
were extracted, namely, short-run emphasis (SRE), long-run 
emphasis (LRE), gray level non-uniformity (GLN), run length 
non-uniformity (RLN), run percentage (RP), low gray level 
run emphasis (LGRE), high gray level run emphasis (HGRE), 
short-run low gray level emphasis (SRLGE), short-run high 
gray level emphasis (SRHGE), long-run low gray level 
emphasis (LRLGE), and long-run high gray level emphasis 
(LRHGE). The morphological features were the ROI’s regular 
area, convex area, perimeter, eccentricity, major axis length, 
minor axis length, and circularity. The mean and standard 
deviation (SD) of the pixel intensities in the gray-scale ROI 
were utilized as two additional color features. Thus, a total of 
69 features were extracted from each seed including 60 tex-
tural (4 features from GLCM × 4 orientations, and 11 features 
from GLRM × 4 orientations), seven morphological, and two 
color.

Machine learning algorithms, namely, linear discriminant 
analysis (LDA), K-nearest neighbors (KNN), support vec-
tor machines (SVMs), and decision trees were employed 
as classifiers on the above-derived features. The results of 
SVM have been discussed in detail in the “Results and Dis-
cussion” section due to its superior performance. The other 
classifiers’ results have been attached as supplementary 
material (Table S1).

It should be noted that non-linear kernel-based classifiers 
such as SVM have demonstrated advantages over other machine 
learning algorithms in many similar studies (Divyanth et al., 
2022b, c; Neelakantan, 2021; Sujatha et al., 2021; Wang & 
Paliwal, 2006) as these classifiers are known for their memory 
efficiency, faster prediction, and better computational complex-
ity. The TMC-extracted data were z-score normalized (with a 
mean of 0 and standard deviation of 1) and the “quadratic”  
kernel function was used for the SVM classifier (optimized 
using the Classification Learner app).

Initially, all the features were used to develop the classi-
fication model. However, since redundant features increase 
the complexity of the model, such features were eliminated 
through variable importance analysis. In this study, a well-
established statistical approach for means comparison, the 
analysis of variance (ANOVA) F-test algorithm was used to 
determine the optimal features (Johnson & Synovec, 2002; 
Kumar et  al., 2015; Pathan et  al., 2022). Subsequently, 
another SVM-based classification model was developed 
using only the optimum features.

Convolutional Neural Network

A typical CNN is designed using the following set of layers: 
convolution layers, which are defined by the convolution 

filters that extract semantic features from the previous lay-
ers; pooling layers, which reduce the dimensions of the data  
by connecting a group of neurons from the previous layer to 
a single neuron, thus minimizing the computational require-
ments and help in generalizing the features; and fully con-
nected layers, which process the activations/features in the 
form of flattened matrices to classify the image.

Herein, we used a transfer learning approach and evalu-
ated the performance of six pre-built powerful and popular 
deep convolutional networks, viz., EfficientNet-B0 (Tan & Le, 
2019), VGG19 (Simonyan & Zisserman, 2014), Resnet18 (He 
et al., 2015), MobileNet-v2 (Sandler et al., 2018), Inception-v3 
(Szegedy et al., 2014), and Xception (Chollet, 2016). Transfer 
learning offers reduced training time in differentiating between 
classes. The results of EfficientNet-B0 have been discussed in 
detail in the “Results and discussion” section due to its better 
performance. Results of other CNNs have been attached as 
supplementary material (Table S2) for comparison.

In the EfficientNet group of networks (Tan & Le, 2019), 
the three dimensions of width, depth, and resolution are 
scaled with a constant ratio (the technique is called the com-
pound scaling method), instead of arbitrarily scaling up. A 
new baseline network was created and then scaled up accord-
ing to the computational requirement. A compound scaling 
coefficient ϕ is defined that denotes the number of resources 
available to determine the scaling of � , � , and � , where 
depth (d) = � , width (w) = �� , and resolution (r) = �ϕ . The 
restraint (� × �2 × �2) ≈ 2 was enforced, such that the total 
floating-point operations per second (FLOPS) is not more 
than 2� for a given scaling factor. A grid search strategy was 
used to identify the relationship between different scaling 
dimensions of the baseline network under the fixed resource 
constraint.

In the network used in this study, the value of ϕ was set to 
1; hence, the values of � , � , and � were found to be 1.2, 1.1, 
and 1.15, respectively. The architecture comprises mobile 
inverted bottleneck convolutions (also called inverted resid-
ual blocks), where the skip connections are made between 
the narrow parts, i.e., the start and end of the block (intro-
duced in MobileNetv2 model (Sandler et al., 2018)). In the 
residual blocks, the first step widens the network using a 
1 × 1 convolution, which is followed by a 3 × 3 depth-wise 
convolution, and then a 1 × 1 convolution again to shrink 
the network to match the initial number of channels. The 
network was pre-trained on Imagenet dataset (Deng et al., 
2010) before training on our data.

The architecture of the CNN model is presented in Fig. 4. 
Since the last three layers in the original network are config-
ured for 1000 classes (number of classes in Imagenet), they 
were replaced by a new set of fully connected (FC) layer, 
softmax layer, and a classification layer corresponding to 
four output classes. To fit the input size of the network, the 
images were resized to a dimension of 224 × 224 pixels by 
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zero padding along the boundaries. Zero padding makes sure 
that the morphological representations of the ROI (like the 
area and perimeter) are not impaired, unlike interpolation-
based image resizing operations. Image geometry-based 
augmentation techniques, such as translation along x- and 
y-axes, random rotations (+ 90 to − 90), and x- and y-axes 
mirroring were specified in the training data. The stochastic  
gradient descent with momentum (sgdm) was chosen as the  
network training optimizer, with the following hyperparam-
eters: initial learn rate of 0.001; momentum of 0.9; weight 
decay factor of 0.0001; and a mini-batch size of 32. The 
maximum number of epochs was limited to 200, and an  
early stopping condition was enabled.

To evaluate the performance of the CNNs, the models’ 
accuracy (Eq. 4) and cross-entropy loss were assessed. 
The cross-entropy loss can be expressed as (Altuwaijri & 
Muhammad, 2022; Ji et al., 2022):

where n is the number of classes, ti is the correct (truth) label 
(either 0 or 1), and pi is the softmax probability for the ith 
class. More details on cross-entropy loss calculations are 
available elsewhere (Ji et al., 2022; Mahjoubi et al., 2022; 
Matlab Crossentropy, 2022; Yeung et al., 2022).

The details of CNN architectures for MobileNet, Incep-
tion, Resnet18, VGG19, and Xception can be found in the 
original research papers (Chollet, 2016; He et al., 2015; 
Sandler et al., 2018; Simonyan & Zisserman, 2014; Szegedy 
et al., 2014). Indeed, similar to the EfficientNet-B0 model 
described above, the final layers (FC, softmax, and classifica-
tion layers) were adjusted according to our 4-class data, and 
the images were resized based on the given network’s input 
size requirement.

(5)LCE = −
∑n

i=1
ti log(pi)

Results and Discussion

The internal and external damages in seeds were noticeable 
as darker regions in the X-ray images; i.e., the gray value 
at the impaired region was significantly less compared to 
the sound portions of the flaxseeds (see Fig. 3). As men-
tioned in the “Seed Damage Analysis” section, two different 
approaches were utilized to classify flaxseeds based on their 
severity of the damage.

Table 3 shows the results of the SVM classification mod-
els for classifying the mechanical damage in flaxseeds. The 
classifier using all the image features achieved an overall 
classification accuracy of 87.4%. The overall precision and 
recall for the model were 88.1% and 81.9%, respectively. 

Fig. 4  Schematic representa-
tion of the EfficientNet-B0 
CNN implemented for the 
classification of flaxseeds. 
Each block represents a mobile 
inverted bottleneck convolu-
tion (MBConv). The size of the 
feature map from each block 
is provided beside the arrow 
marks.
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Table 3  Analysis of classification results of SVM classifier on TMC 
extracted features on the test set

Class All features Selected 
features

Overall accuracy (%) - 87.4 88.4
Precision (%) ND 92.7 93.5

LD 70.8 73.7
MD 84.5 83.4
HD 92.2 93.5

Recall (%) ND 99.0 99.2
LD 72.7 74.9
MD 67.6 70.8
HD 89.5 88.7

F1-score (%) ND 95.8 95.9
LD 71.7 73.8
MD 75.0 76.9
HD 90.3 90.6
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The corresponding confusion matrix is provided in Fig. 5a. 
As anticipated, the flaxseeds of the ND class were classi-
fied with the highest precision of 92.7% and recall of 99.0%. 
From the confusion matrix, it can be observed that some 
seeds of the LD class were misclassified as ND and thus 
the reason for the LD class’s reduced recall value (72.7%). 
Also, its poor precision (70.8%) was due to the misclassifi-
cations from HD flaxseeds (hence the reduced recall of the 
MD class). The HD class showed an appreciable F1-score 
of 90.3%. Most of the misclassifications were reported to 
the classes representing the severity of damage adjacent to 
the true class.

Some previous studies report that SVMs tend to overfit 
when too many features are utilized to develop the model 
(Koklu et  al., 2022; Thaiyalnayaki & Joseph, 2021). 
Hence, as suggested earlier, the redundant features were 
removed through the ANOVA approach. The rankings of 
the features based on the importance scores are provided 
in Fig. 6. Interestingly, among the top 30 features, 24 were 
derived from the GLRM, including GLN, LGRE, LRHGE, 
LRLGE, and RLN. Out of the remaining six features, two 
belonged to color, and four were morphological features.

Considering the observed differences between feature 
important scores, variables with scores over 100 were con-
sidered optimal and were used to develop another SVM-
based classification model. This means only 25% of TMC 
features were kept for further analysis. Those features 

include GLN (0°, 45°, 90°, 135°), average intensity, LGRE 
(0°, 45°, 90°), LRHGE (0°, 45°, 90°, 135°), LRLGE (45°, 
90°, 135°), RLN (90°), and SRE (90°).

After removing the redundant feature representations, the 
classification accuracy improved slightly to 88.4% from the 
previously achieved 87.4% (Table 3; Fig. 5b presents the 
confusion matrix). The total misclassification cost for the 
MD class decreased by around 10%. There was no improve-
ment in predicting images of the HD class; however, the 
precision of the LD class and recall rate of the MD class 
showed some improvement. These results validate the poten-
tial of the implemented optimum feature selection strategy 
in reducing the computation time and power without com-
promising the system performance.

The classification performance of the CNN model is 
illustrated in the confusion chart (Fig. 7). The CNN train-
ing was stopped early (coordinated using the fivefold cross-
validation (CV) loss (Eq. 5) and CV accuracy (Eq. 4) after 
nearly 2100 iterations to avoid overfitting. The CV accu-
racy reached > 80.0% soon after almost the 500th iteration; 
however, the rate of increase was very gradual for the next 
400 iterations and reached a saturation point (the training 
plot has been depicted in Fig. 8). An overall accuracy of 
91.0% was achieved on the test data and the final classi-
fication accuracy was 91.6% on fivefold cross-validation. 
Looking at the matrix, the model was able to identify ND 
and HD flaxseeds with almost 100% and > 96% recall rates, 

Fig. 5  Confusion matrices pro-
duced by SVM for classifying 
flaxseeds into the four classes 
(a) using all of the TMC fea-
tures (b) with selected features

Fig. 6  Features arranged based 
on their contribution (variable/
feature importance score from 
ANOVA) towards the classifica-
tion performance of the SVM 
model
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respectively. High precision values (> 93%) were obtained 
for all classes except LD (76%). The LD class experienced 
relatively poor precision (compared to other classes) since 
a noticeable amount of the LD flaxseed samples were mis-
classified as MD and vice versa. The activation maps from 
the intermediate layers of the network were also inspected 
(Fig. 9). The model tends to learn finer and finer details 
present in the image as we move to the deeper layers. The 
initial layers just present the outlines of the shapes; however, 
the activations seem to fade and become more abstract as it 
passes through subsequent layers of the network.

Undoubtedly, CNN provides the best performance among 
the three classification models with the highest accuracy 
of 91.0%. The precision and recall rates for ND and HD 
classes were > 94%, with the MD class securing a recall rate 
of 93.2%. It can be noticed from Fig. 7 that the number of 
misclassified images of the MD-HD class has been reduced 
to a great extent when compared with the confusion matrices 
produced by feature extraction techniques.

In a relevant study (Nadimi et al., 2022), a percentile 
method based on SVM and LDA was adopted on the flaxseed 

X-ray image’s gray level distribution for a similar classifi-
cation task. However, the maximum classification accura-
cies for 2-class and 4-class classifications were limited to 
87.2% and 60.0%, respectively, which were obtained using 
an SVM model. This study proves that the CNN model out-
performs the previous models as the accuracies for 2-class 
and 4-class classification could be obtained as 95.2% and 
91.0%, respectively.

It is worth mentioning that image feature extraction tech-
niques have accorded appreciable performances for grain 
quality assessment in the literature. An accuracy of 99.6% 
was achieved by Singh and Chaudhury (2020) for classifying 
eight rice varieties using textural features from GLCM and 
GLRM. Sapirstein et al. (1987) developed a discriminant anal-
ysis model primarily on grain morphological features (such 
as kernel length and width, area, aspect ratio, and contour 
length) that yielded 99.0% accuracy for classifying wheat, 
rye, barley, and oats in a four-way admixture. On a similar 
note, Visen et al. (2003) used textural and color characteristics 
to identify unknown grain types with over 90% accuracy. A 
high-speed system based on digital imaging was developed to 
identify defects in wheat kernels one by one using morpholog-
ical and textural features of images captured at opposite angles 
(Delwiche et al., 2013). Analogous to our study, the derived 
morphological features were the area, perimeter, eccentricity, 
and major and minor axis lengths. In another study, an artifi-
cial neural network was used as a classifier on TMC extracted 
grain image features for the identification of mechanical dam-
age to corn and barley (Nowakowski et al., 2011).

Despite all the research works mentioned above, our 
thorough literature review indicates that the present work 

Fig. 7  Confusion matrix produced by the CNN for classification of 
flaxseeds into the four classes

Fig. 8  Training plots of the 
CNN for 4-class classification 
task: (a) accuracy plot and (b) 
loss plot (dotted line denotes 
the fivefold cross-validation 
performance)
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is the first to utilize machine learning and deep learning 
algorithms to assess mechanical damage in flaxseeds. The 
developed model has the potential to be implemented as a  
pre-screening technique in the agriculture industry to reduce  
the time and labor currently used in the mechanical damage 
assessment of grain and oilseeds.

Conclusion

To the best of our knowledge, this work is the first in-depth 
exploration of mechanical damage to flaxseed using radio-
graphic imaging and artificial intelligence algorithms. Various 
machine learning and deep learning tools such as pattern rec-
ognition, features selection, and transfer learning were used. 
The features selection revealed that the average pixel intensity, 
GLCM- and GLRM-derived features were among the most 
contributing features in discriminating the severity of mechani-
cal damage. However, the best performance was achieved using 
the EfficientNet-B0 CNN model, where the damaged flaxseeds 
were classified into four classes with an accuracy of 91.0%.

We believe the developed model can open a promising 
pathway for the automated detection of mechanical damage 
in the grain and seeds industry through further research.
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