
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11947-021-02679-y

ORIGINAL RESEARCH

Tailoring the Properties of Pea‑Enriched Soft Cakes Using 
a Multiobjective Model Based on Sensory‑Relevant Instrumental 
Characterization

A. F. Monnet1 · A. Saint‑Eve1 · C. Michon1,2   · M. H. Jeuffroy3 · J. Delarue1 · D. Blumenthal1

Received: 29 July 2019 / Accepted: 18 June 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Managing the quality of pea-enriched cakes made from mixes of wheat and pea flours in various proportions (10, 35, and 60 
wt% of pea, flour basis) and with various particle size distributions (0, 50, and 100 wt% of particles < 63 µm) is a challenge 
for the industry. A “multiobjective” model based on an I-optimal response surface design was set up in a previous study. It 
allows obtaining target cake structural and textural properties by adjusting several processing parameters (mixing speed and 
time, baking program). As the model’s ability to correct the variations in cake properties due to variations in flour proper-
ties remained to be proven, two case studies concerning the proportion and the particle size of pea flour were studied. A 
variation of crumb stiffness (24 to 37 kPa), lightness (85.4 to 79.6 in L*), and cell fineness (4.9 to –4.8 in PC1 score) could 
be observed with the increase in the proportion of pea flour from 0 to 35 wt%, and these variations were properly corrected 
by the model (corrected values: 28 kPa; 83.2 in L*; 3.7 in PC1 score). A change in the particle size of pea flour caused vari-
ations in cake properties inferior to those due to processing reproducibility, except for cake symmetry (7.5 to 10.1 in sym-
metry index; corrected value: 7.2). A selection of products representative of the diversity of cakes from the original design 
space was investigated by 11 trained panelists through quantitative descriptive analysis. A convergence between sensory and 
instrumental results was found concerning structural and textural properties. Additional sensory perceptions such as beany 
attributes or in-mouth drying aftertaste were pointed out.

Keywords  Pea flour · Cake quality · Desirability function · Reverse engineering · Surface response methodology · 
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Introduction

There is an urgent need for an agroecological transition to 
improve the sustainability of our food chains from fields to 
foods. The increasing pressure of climate change will affect 
cultural conditions. Moreover, better agricultural practices 
will have to be adopted such as removing chemical inputs 
(pesticides and fertilizers). Thus, it is highly likely that one 
will have to face an increase in the variability of raw materi-
als in the future. Intercropping wheat and legume crops is an 
agroecological practice that allows to significantly decrease 
the carbon footprint and greenhouse gas emissions associ-
ated to wheat growing (Nemecek et al., 2008). Thus, the 
formulation of legume-enriched cakes could promote the 
development of sustainable food chains including the use of 
composite flours made from wheat and legume grains grown 
and harvested together.
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However, in these conditions, the composite flours 
would present consequential variations in their proper-
ties, among which the proportions of both species in 
the mix and the particle sizes of both flours in the mix 
(Monnet et al., 2019a). In our current standardized food 
chains, the quality of manufactured products needs to be 
stable to guarantee stable sensory properties (texture, 
flavor, structure) to be perceived by the consumer, with 
the least processing constraints possible. Indeed, pro-
cessing is usually rather inflexible and the raw materi-
als are as standardized as possible. Being able to handle 
raw materials with more variability requires juggling the 
processing variables (De Vries et al., 2017). To be able to 
do so, specially designed tools are needed to monitor the 
quality of the end product as a function of the processing 
variables.

In baked cereal products such as soft cakes, the main raw 
material is flour, and the functionalities of its two main com-
ponents, protein and starch, are essential to the structure of the  
final product. Proteins enhance batter viscosity and thermoset 
during baking through the formation of intermolecular disulfide 
bonds (Dewaest et al., 2017). Starch granules swell and gelati-
nize during baking, to form the structuring “bricks” of the 
cell walls surrounded by a protein “mortar” (Donovan, 1977). 
Beyond the agricultural benefits of intercropping, introducing 
legume flour in 100% wheat cakes is a way to improve their 
nutritional properties, as the essential amino acid profiles of 
wheat and legume proteins are complementary (Berrazaga 
et al., 2019; Floret et al., 2021). While most wheat proteins  
are not suitable for emulsification or foaming due to their poor 
solubility in water at neutral pH, legume proteins have moderate 
to high emulsifying and foaming properties (Boye et al., 2010). 
Furthermore, higher protein denaturation and starch gelatini-
zation temperatures have been reported for legumes (Monnet 
et al., 2019b). Cake quality thus depends on both the raw materials  
and the conditions under which these are functionalized, which 
depend on the processing parameters. Processing comprises 
single or multistage mixing followed by baking. Monnet et al. 
(2019c) showed that, in multistage mixing, the order, speed, and 
length of the mixing steps of the ingredients might influence the 
cake end structure. Taking into account both raw material varia-
bility and influential processing parameters, these authors built an 
experimental design to study the effect of 7 explanatory variables 
on 6 dependent variables of cake structure (cake density, cake  
symmetry, crumb stiffness, cell fineness, thickness of cell walls, 
and crumb lightness). Experimental designs generally aim to 
account for a large number of effects with a minimum number 
of trials (Hunter & Muir, 1991; Weissman & Anderson, 2015). 
However, a review of existing food studies on product optimiza-
tion shows that experimental designs usually include only two 
or three explanatory variables (Battaiotto et al., 2013; Bitaraf 
et al., 2012; Kayacier et al., 2014; Milde et al., 2012; Saxena 
et al., 2012; Tan et al., 2012; Turabi et al., 2008).

Among the explanatory variables chosen by Monnet et al. 
(2019c), flour quality variables included the proportion of 
pea flour in the total mass of flour, the particle size of the 
pea flour, and the particle size of the wheat flour. These 
properties were identified as the most likely variabilities 
associated to the production of composite flours from wheat 
and legume intercrops harvested and ground together. The 
remaining explanatory variables corresponded to process-
ing variables used to adjust cake quality; they were related 
to batter mixing (liquids and oil mixing speeds, oil mixing 
time) and to the baking program. They were chosen as the 
most influential among a broader set of variables following 
a phase of preliminary tests (Monnet et al., 2019c).

A full factorial experimental design with the quadratic 
variations of the dependent variables would require a total 
of 19,683 trials. Consequently, the choice was made of an 
optimal design. Optimal designs are custom designs that 
make it possible to reduce further the number of trials and 
to include specific constraints such as blocking factors while 
minimizing the variance of the estimators of parameters (Del 
Castillo, 2007; Goos & Jones, 2011). An I-optimal design 
was chosen. I-optimality refers to the orientation of the design 
towards a good prediction capacity of the model through the 
minimization of the average variance of prediction, while 
D-optimality aims to minimize the variance of factor-effect 
estimates thus giving priority to modelling precision (Del 
Castillo, 2007; Goos & Jones, 2011; Goos et al., 2016). In 
order to build an efficient correction tool, I-optimality was 
thus preferred to D-optimality. This choice was supported by 
the diagnosis of simulated optimal designs as well as existing 
literature guidelines (Jones & Goos, 2012).

The resulting experimental design only required 56 trials 
and 8 days of experiments, which was much more feasible. 
This I-optimal design allowed the building of a multiobjec-
tive model to correct variations in the physical properties 
of the cake by adjusting the processing parameters. The 
multiobjective model was obtained by taking all responses 
into account simultaneously in the selection of the most sig-
nificant effects. The prediction capacity of the model was 
validated with two trials within the space design repeated 
three times each, several weeks apart.

This specific approach from Monnet et al. (2019c) was 
contrasting with existing literature on modeling and optimi-
zation based on experimental designs. Indeed, with two or 
three explanatory variables, experimental designs include 
generally less than 20 trials (Battaiotto et al., 2013; Bitaraf 
et al., 2012; Kayacier et al., 2014; Milde et al., 2012; Saxena 
et al., 2012; Tan et al., 2012; Turabi et al., 2008). They define 
the models for the variation of the responses independently 
and predict an optimum condition with no experimental vali-
dation of the model. However, the study from Monnet et al. 
(2019c) shared some gaps with available literature. In the 
literature, the prediction capacity of the models is rarely used 
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to simulate variations in responses following a change in the 
variables or to simulate a correction of the variables needed 
to reach a goal. Moreover, while the relationship between 
instrumental and sensory data has been widely studied with 
the aim of reducing dependence on human involvement in 
predicting sensory perception (Jha et al., 2013; Lassoued 
et al., 2008; Penci et al., 2013), the correction efficiency of 
a model designed using a response surface methodology has 
never been evaluated from the viewpoint of descriptive sen-
sory analysis. In the study of Monnet et al. (2019c), similarly, 
the efficiency of the model in correcting variations in flour 
quality was not evaluated, and the resulting corrections were 
not compared with the differences perceived by consumers.

The aim of the present study was to evaluate and explain 
the correction efficiency of a multiobjective model based on 
instrumental evaluation of cake properties. To this end, two 
case studies were designed to evaluate variations in flour 
quality. A desirability function (Costa et al., 2011) was used 
to define the changes in the processing settings required to 
obtain the properties of the target product despite variations 
in the quality of the raw material. The physical properties of 
the original, degraded, and corrected products obtained were 
compared to evaluate the correction efficiency at instrumen-
tal level. Based on a broad range of sensory attributes, their 
differences were then assessed by a trained panel through 
descriptive sensory analysis. The products were tested 
alongside a set of products representative of the diversity of 
cakes generated by the I-optimal design.

Materials and Methods

Materials

Wheat flour (55% extraction rate, 9.5 wt% protein, 13.9 wt% 
moisture, 0.5 wt% ash) was supplied by Grands Moulins 
de Paris (Ivry-sur-Seine, France), and pea flour (21.4 wt% 
protein, 9.8 wt% moisture, 2.1 wt% ash) was supplied by 
Moulin Meckert-Diemer (Krautwiller, France). Moisture 
contents were determined by oven drying for 90 min at 
130°C (French standard NF V03-707) and ash contents by 
dry combustion for 90 min at 900°C (French standard NF 
V03-720). Protein contents were analyzed using the Kjeldahl 
procedure (AACC 46-12 standard method) with the most 
usual conversion factors of 5.7 for wheat flours and 6.25 
for legume flours. The pea fine fraction, which was found 
to impact the cell structure of cakes (Monnet et al., 2019c), 
was obtained by sieving pea flour and characterized as 
described in Monnet et al. (2019a). Other cake ingredi-
ents and their suppliers are as follows: pasteurized liquid 
whole eggs containing 9.5 wt% of proteins and 82.6 wt% of 
water (Ovoteam, Locminé, France); rapeseed oil (Lesieur, 

Asnières-sur-Seine, France); white sugar (Saint Louis Sucre, 
Paris, France); glucose syrup DE40 containing 17.40 wt% 
of water (Louis François, Croissy-Beaubourg, France); glyc-
erol (Louis François, Croissy-Beaubourg, France); emulsi-
fier Spongolit® 542 (BASF France S.A.S, Levallois-Perret, 
France) containing 6.8 wt% of proteins, 1.2 wt% of water, 
and 92 wt% of lactic and acetic esters of mono- and diglycer-
ides of fatty acids; baking powder (Dr. Oetker France S.A.S, 
Schirmeck, France); and salt of commercial grade.

Batter and Cake Preparation

The cake formula was an industrial formula taken from 
Dewaest et al. (2017). It was composed of 350 g flour, 135 
g eggs, 125 g sugar, 118 g glucose syrup, 110 g water, 80 
g rapeseed oil, 62 g glycerin, 17 g emulsifier, 12 g baking 
powder, and 2 g salt for a total batch of 1011 g of batter. 
The batter and cake were prepared following the reference 
procedure in Monnet et al. (2019c) based on industrial stand-
ards. All baking conditions (temperature, time) were chosen 
in order to obtain cakes with 0.75 as aw value. Cake water 
content and water activity were verified to be the same for 
all trials (data available in Online Resource 1).

Two sets of products were prepared giving a total of 12 
products. The first set was a selection of seven products 
amongst the 56 trials generated by the I-optimal design 
(Monnet et al., 2019c). The selection logic is described and 
discussed in the “Results and Discussion” section. The set-
tings of the explanatory variables for these products are pre-
sented in Table 1. The second set of products was related to 
the correction case studies.

In the first case study, the proportion of pea flour was 
increased from 0 to 35% in a cake produced following the 
reference procedure. The proportion of 35% was chosen 
because it corresponded to the best estimated balance in the 
essential amino acid profile. The 0% pea cake was the “target 
product” (T1); its settings are listed in Table 2. Its physical 
properties were measured to define the target for the desir-
ability function. The “degraded product” (D1) was the cake 
with 35% pea flour produced using the same processing set-
tings as T1 above (Table 2). The desirability function was 
used to define the processing settings of the “corrected” 35% 
pea cake (C1). The correction consisted in increasing the 
liquids mixing speed from speed 171 to 266 rpm (rotation of 
the mixing arm in the planetary movement, corresponding 
to an increase of the KitchenAid setting from 4 to 8), the 
oil mixing time from 1 to 5 min, and decreasing the baking 
temperature from 180 to 179 °C. Baking time changed as a 
result from 18.0 to 18.3 min, following a linear dependency 
of cake water activity to baking time that was established 
previously in the range of baking temperatures covered by 
the study (results not shown). This temperature and time 
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adjustments were very small and might become negligible in 
real industry conditions. However, baking temperature was 
shown to be the second most influential explanatory vari-
able after the proportion of pea flour and before the mixing 
parameters (Monnet et al., 2019c).

In the second case study, the proportion of the pea fine frac-
tion was increased from 50 to 100% in a cake with 35% pea 
flour produced following the reference procedure. The target 
product (T2) was a 35% pea cake with 50% pea fine fraction 
like product D1; it was experimentally the same product as 
the degraded product D1 (same batch of production). The 
degraded product (D2) was a 35% pea cake with 100% pea 
fine fraction produced following the same procedure (Table 2). 
The desirability function, set with the physical properties of T2 
as the target, proposed the following changes to produce the 
corrected product C2: a decrease in liquids mixing speed from 
171 to 104 rpm (KitchenAid setting from 4 to 1), an increase 
in oil mixing speed from 104 to 115 rpm (Kitchen Aid setting 
from 1 to 2), and a decrease in baking temperature from 180 
to 165 °C.

After the experimental conditions were defined, all the 
products were produced in duplicate for assessment of their 
physical and sensory properties and evaluation of the repro-
ducibility of cake processing at a given time. Moreover, the 
repetitions of target products T1 and T2, already produced a 
few months earlier for the desirability function, were named 
T1’ and T2’. Some differences in the physical properties 

of these repetitions were observed. The differences can be 
explained by seasonal variations in room temperature during 
the 6-month period of the experiments and represent cake 
processing reproducibility taking into account flour aging 
phenomenon as pointed out by Dewaest et al. (2018).

Cake Instrumental Properties

The set of cake physical properties measured corresponded 
to the response variables taken into account in the I-optimal 
design described in Monnet et al. (2019c). They comprised 
cake density (g.cm−3), symmetry index, crumb stiffness 
(kPa), cell fineness (PC1 score), cell wall thickness (PC2 
score), and crumb lightness (L).

The cakes were weighed immediately after being 
unwrapped, and their volume was measured using a laser-based 
scanner (VolScan Profiler, Stable Micro Systems, Surrey, UK) 
with an increment of 2 mm and a rotation speed of 1 rps. Cake 
density (g cm−3) was calculated from the ratio of their mass 
(g) to their volume (cm3). The laser-based scanner provided a 
profile of the cake representing the change in its circumference 
along its longitudinal axis through the succession of 46 to 47 
slices separated by an increment of 2 mm (total cake length 
was approximately 90 mm). This data was used to calculate 
an adapted symmetry index as defined by the AACC method 
10-91 (AACC, 2010). The height in the center of the slice was 
measured on three slices situated respectively at one-fourth (B), 

Table 1   Experimental 
conditions for the seven 
products selected from 
I-optimal design

XP pea flour %, XPF pea fine fraction %, XWF wheat fine fraction %, XLS liquids speed, XOS oil speed, XOD oil 
time, XB baking schedule

Flour variables

Levels of explanatory variables XP XPF XWF

(wt% of total 
flour)

(wt% of pea 
flour)

(wt% of wheat 
flour)

Trial #3 10 100 100
Trial #7 60 50 100
Trial #9 60 100 100
Trial #17 10 100 50
Trial #18 60 0 50
Trial #19 10 0 100
Trial #29 60 50 100

Processing variables
Levels of explanatory variables XLS XOS XOT XB

(rpm) (rpm) (min) (°C; min)
Trial #3 104 104 3 160; 22.5 min
Trial #7 104 104 1 180; 18.0 min
Trial #9 171 342 1 180; 18.0 min
Trial #17 104 104 1 200; 15.0 min
Trial #18 104 104 1 160; 22.5 min
Trial #19 266 218 5 180; 18.0 min
Trial #29 266 342 5 160; 22.5 min
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one-half (C), and three-fourths (D) of the cake length, and the 
usual calculation was done (symmetry index = 2 × C − B − D).

The mechanical properties of the cake were determined 
after 1 week of storage using a TAHD plus texture analyzer 
(Stable Micro Systems, Surrey, UK) equipped with a 750-kg 
load cell. Just after the cake was unwrapped, a cutting tem-
plate and a bread knife were used to remove its top crust and 
a part of the four sides to obtain rectangular crumb samples 
(length 58 mm, width 26 mm, height 26 mm) located in the 
bottom center of the cakes. Each sample was subjected to 
90% uniaxial compression with a 10-cm-diameter aluminum 
plate at a constant speed of 2 mm/s (pre-test speed 1 mm/s, 
trigger force 0.5 N). The resulting curves of force (N) ver-
sus distance (mm) were converted into stress-versus-strain 
curves using the sample dimensions. The apparent Young 
modulus of the aerated crumb, representing crumb stiffness, 
was calculated as the initial slope of the stress-versus-strain 
curve.

The cell structure of the crumb was characterized using 
image analysis by mathematical morphology described in 
Dewaest et al. (2018). For image acquisition, the cakes were 
cut with a bread knife along their longitudinal axis. Both 
sides were gently cleaned with a brush to remove loose 
crumbs from the cellular structure and the sample was placed 
on a flatbed scanner (HP Scanjet G31110, Hewlett-Packard, 

Palo Alto, CA, USA). A black box was placed on top of 
the sample, and a full color image was acquired at a reso-
lution of 600 dpi. The program for image processing was 
run using MATLAB software version 7.9.1.705 (The Math-
Works, Natick, MA, USA), and the PCA was realized with 
XLSTAT Software version 18.06 (Addinsoft, Paris, France). 
In this study, interpretation of the similarity map of the cake 
crumb structures gave PC1 as the expression of cell fineness 
and PC2 as the expression of cell wall thickness.

Crumb color was measured using a spectrophotometer 
(Spectro-guide 6834, BYK-Chemie GmbH, Wesel, Ger-
many) with standard illuminant D65. One cake per batch was 
cut with a bread knife along its longitudinal axis, and one 
of the two sides was chosen for color measurement. After 
calibration and verification of the measurement repeatability 
on the first sample, color measurement was made one time 
at the center of the longitudinal slice for each cake. Results 
are expressed in the CIE L*a*b space.

Descriptive Sensory Analysis

A panel of 11 volunteers (10 females, 1 male, aged between 
22 and 56) were recruited among AgroParisTech staff. 
The panelists were recruited based on their willingness to 

Table 2   Experimental 
conditions for the five products 
from the case studies

XP pea flour %, XPF pea fine fraction %, XWF wheat fine fraction %, XLS liquids speed, XOS oil speed, XOD oil 
time, XB baking schedule
*D1 and T2 are the same products

Flour variables

Levels of explanatory variables XP XPF XWF

(wt% of total 
flour)

(wt% of pea 
flour)

(wt% of wheat 
flour)

Case study 1
Target product (T1) 0 0 50
Degraded product (D1)* 35 50 50
Corrected product (C1) 35 50 50
Case study 2
Target product (T2)* 35 50 50
Degraded product (D2) 35 100 50
Corrected product (C2) 35 100 50

Processing variables
Levels of explanatory variables XLS XOS XOT XB

(rpm) (rpm) (min) (°C ; min)
Case study 1
Target product (T1) 171 104 1 180; 18.0 min
Degraded product (D1)* 171 104 1 180; 18.0 min
Corrected product (C1) 266 104 5 179; 18.3 min
Case study 2
Target product (T2)* 171 104 1 180; 18.0 min
Degraded product (D2) 171 104 1 180; 18.0 min
Corrected product (C2) 104 115 1 165; 22.0 min
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participate, and all the panelists gave their free and informed 
consent. They were in good health at the time of testing 
and were compensated for their participation at the end of 
the study. The descriptive analysis procedure was based on 
conventional quantitative descriptive analysis (Lawless & 
Heymann, 2010). A total of six sessions was necessary to 
set up the panel: two sessions were dedicated to the genera-
tion and selection of attributes and four sessions to training 
in the use of these attributes for quantitative description of 
the products. All 12 products were used but were grouped 
differently in each session.

The first training session was devoted to generating the 
attributes. During this session, the panelists developed a 
vocabulary including appearance, texture when touched, 
oral texture, flavor, and aftertaste in order to describe dif-
ferences between the products. During the second training 
session, they selected 16 attributes to distinguish between 
the products, agreed on their definition and on the limits of 
the intensity line scales (Table 3). The panelists were trained 
in the proper use of a 10-cm unstructured linear scale in 
which extremities were defined as “very weak” and “very 
intense” perceptions.

Table 3   List of the 16 attributes and their definitions and intensity scales for cake evaluation

Scores for each attribute were rated on a 10-cm unstructured linear scale which extremities were defined as “very weak” and “very intense” per-
ceptions

Attribute Definition Lower intensity Upper intensity

Appearance
Volume Difference in height between minimum and maximum 

thickness of the cake along its longitudinal axis
Flat (negative difference) Domed (positive  

difference)
Brightness Intensity of light perception on the crust when tilting the cake 

with a constant angle, disregarding any cracks in the crust
Mat Glossy

Crack intensity Presence of a crack in the crust No crack Very marked crack
Crust color Color of the upper surface of the cake Light Dark
Crumb color Color of the crumb when cut along longitudinal axis White Green
Crumb aeration Overall appearance of the crumb cell structure, disregarding big 

holes or cracks
Dense, compact Aerated

Texture when touched
Firmness Perceived firmness when compressing the cake held upside 

down, thumb on the crust (upwards) and three fingers on the 
bottom (downwards)

Soft Firm

Friability Sensitivity to the formation of crumbs and to overall breakage 
when breaking the cake longitudinally (i) breaking off a corner 
with one hand; (ii) breaking it down the center with two hands

Not friable,
Keeps its shape

Very friable, falls apart

Oral texture
Pasty-sticky Overall pasty-sticky sensation after chewing and before swallowing Dry Pasty, sticky
Crumbliness Sensitivity to crumb formation when rubbing a piece of cake 

between tongue and palate
Not friable Very friable

Firmness Perceived firmness when compressing the central quarter of the 
second longitudinal half between the molars, during the first 
chewing

Soft Firm

Flavor
Beany Intensity of beany or green flavor, evaluated on a piece of 

crumb
Not intense Very intense

Toasted Intensity of toasted flavor, evaluated on a piece of crumb and 
crust

Not intense Very intense

Sweet Intensity of sweet flavor, evaluated on a piece of crumb Not intense Very intense
Aftertaste
In-mouth drying Sensation of drying out of the mouth and lack of saliva, before 

rinsing
Not drying Very drying

Beany persistency Intensity of beany or green flavor 5 s after swallowing, before 
rinsing

Not intense Very intense
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During the four following training sessions, they were 
trained to evaluate the intensities of the attributes on series 
of five products. Sessions were designed so that panelists 
were trained on all products, and all sessions were repeated 
twice. Then, evaluation of the 12 products was organized 
over six sessions, including repetitions. Only four samples 
were evaluated during a session. The products were pre-
sented to the panelists successively and each attribute was 
rated on the 10-cm unstructured line scale. The cakes (small 
individual, approx. 40 g) were presented on 3-digit coded 
plastic plates, in monadic sequential order according to the 
Williams Latin Square to balance the order of presentation. 
As cake formula contained emulsifiers, the evolution of the 
crumb texture due to staling was so slow that it became 
noticeable only after several weeks (Dewaest et al. 2018). 
Thus, samples were evaluated between 1 day and 1 week 
after fabrication without any noticeable sensory bias. Train-
ing and evaluation sessions were conducted in individual 
booths under white light in an air-conditioned room (20 °C). 
The panelists were asked to rinse their mouth with mineral 
water between samples.

Statistical Analysis

JMP software version 13.1.0 (SAS Institute Inc., Cary, 
SC, USA) was used for multiobjective optimization of the 
responses based on the I-optimal design presented in Monnet 
et al. (2019c). A composite desirability function was used 
to define the changes in the settings of the processing vari-
ables between degraded products (D1, D2) and corrected 
products (C1, C2) in order to target the physical properties 
of the target products (T1, T2). The composite desirability 
function corresponded to the weighted geometric average 
of individual desirability functions for the six responses of 
§2.3 (weight = 1).

XLSTAT software version 18.06 (Addinsoft, Paris, 
France) was used to perform hierarchical cluster analysis 
(HCA), principal component analysis (PCA), analysis of 
variance (ANOVA), and generalized Procrustes analysis 
(GPA) (Gower,  1975). An HCA (Euclidian distances, 
Ward’s criterion) and a PCA were performed on the 
instrumental properties of the 56 trials from the I-optimal 
design to select a set of products representative of the 
design space among the clusters of distinctive properties 
and to illustrate the distribution of the clusters as a func-
tion of the most distinctive response variables, respec-
tively. The instrumental properties of the 56 trials from 
the I-optimal design from Monnet et al. (2019c) used for 
the analyses are available in Online Resource 2.

A second PCA was performed of the instrumental prop-
erties of the 56 trials as principal observations and the 
instrumental properties of the products representative of the 
design space and of the products from the case studies as 

supplementary observations. This PCA revealed variations 
in instrumental properties through correction in the two 
case studies expressed as a function of the most distinctive 
response variables. The overall and individual homogene-
ity, discrimination ability, and repeatability of the panel 
performances were validated using ANOVA; the consensus 
among panelists was checked with GPA. For each attribute, 
a three-way ANOVA (overall performance) or a two-way 
ANOVA (individual performance) was performed on the 
effects of product, repetition, and panelist (only for over-
all performance) with their estimable interactions. In the 
ANOVA, when significant differences between products 
were revealed (P ≤ 0.05), mean intensities were compared 
using Tukey’s HSD test (P ≤ 0.05). The conclusion of the 
test was an ability of the panel to evaluate the cake sensory 
properties using the 16 attributes and to discriminate them 
in a homogeneous and repeatable way. Finally, a PCA was 
performed on the sensory properties of the 12 products 
tested by the panel with their instrumental properties as 
supplementary observations.

Results and Discussion

Selection of Products Representative of the Design 
Space

A hierarchical cluster analysis (HCA) was performed to 
select a reduced number of products to represent the differ-
ences in instrumental properties of the 56 trials generated 
by the I-optimal design. This approach assumed that two 
products with similar instrumental properties must have 
similar sensory properties. The dendrogram obtained from 
the HCA is shown in Fig. 1a. Six clusters of products were 
identified among the 56 trials. The clusters were unequal 
in size, containing between four (clusters A, B, F) and 18 
products (clusters C and D). They are represented on the 
product maps of the principal component analysis (PCA) 
of the instrumental properties according to principal com-
ponents 1 and 2 (Fig. 1c) and principal components 2 and 3 
(Fig. 1e). The corresponding loadings plots are presented in 
Fig. 1b and d. The six clusters were well separated according 
to the two first components that accounted for 72% of the 
variance (Fig. 1c). The first component mainly represented 
the variation in crumb stiffness and discriminated cluster F 
from cluster E, and from clusters A to D. The second com-
ponent, accounting for 24% of the variance, did not directly 
represent the variation of any response. Density and cell wall 
thickness (CWT) were expressed in the first quartile and 
discriminated cluster F and cluster D from the other clusters. 
Crumb lightness and cell fineness (CF) were expressed in the 
last quartile and discriminated cluster B from clusters A and 
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C and from clusters D to F. Thus, density and CWT were not 
correlated with crumb lightness and CF. The third compo-
nent, accounting for 15% of the variance, mainly represented 
the variation in symmetry index (Fig. 1d), but it was not used 
by the HCA to discriminate the products.

Clusters represent groups of products with similar 
instrumental properties. The clusters were used to iden-
tify the products whose value was the closest to the mini-
mum, mean, or maximum of the response distribution for 
each of the six instrumental responses. The products that 
fulfilled this condition for several responses at the same 
time were selected in order to reduce the number of prod-
ucts to test in sensory analysis. Fig. 2 shows photos of 
the seven products selected (3 and 17 from cluster A, 19 
and 29 from cluster C, 9 from cluster D, 7 from cluster E, 
18 from cluster F) plus product 8 from cluster B that was 
eliminated because its highly fragmented cell structure was 
judged unsuitable for sensory analysis. Indeed, cluster B 
comprised the maximum values of the fineness and light-
ness distributions. Consequently, product 8 was replaced 

by product 19 from cluster C and product 3 from cluster A; 
these products exhibited, respectively, the closest values of 
lightness and fineness at the time of the I-optimal design 
(product 3 exhibited a lower value of fineness when it was 
produced in the present study). The presence of a second 
product in clusters A and C (products 17 and 29) made it 
possible to cover the broadest range of symmetry values 
(Fig. 1d, e). The photos in Fig. 2 reveal the range of the 
instrumental properties, illustrated for example by products 
18 and 19 that differ in density, crumb stiffness, CF, and 
crumb lightness.

Instrumental Correction Efficiency of the Model

To visualize the instrumental correction efficiency, the 
paths between the target, degraded, and corrected prod-
ucts were drawn on the product maps of the PCA of the 
instrumental properties according to principal components 
1 and 2 (Fig. 3a for case study 1; Fig. 3b for case study 2) 

Fig. 1   Hierarchical cluster analysis dendogram (a) showing the dis-
tribution of the 56 trials in clusters according to their instrumental 
properties; (b–e) principal component analysis (PCA) of instrumental 
properties with loadings plots (b, d) and product maps with qualita-

tive identification of the clusters (c, e): (b–c) PCA on the PC1 and 
PC2 plan (71.6% of information); (d–e) PCA on the PC2 and PC3 
plan (38.7% of information)
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and principal components 2 and 3 (Fig. 3c for case study 
1; Fig. 3d for case study 2). The most influent response 
variables of the loadings plots (Fig. 1b, c) are identified by 
the gray arrows on the product maps to help interpretation. 
The target products T1 and T2 used for the definition of the 
desirability function were not superimposed with their rep-
etitions T1’ and T2’ on any of the maps. This corresponded 
to the differences due to cake processing reproducibility 
over the 6-month interval. The differences can be seen in 
Figs. 4 and 5. These differences were used as a benchmark 
in the analysis of the correction efficiency of the model; 
they were considered as the maximum acceptable difference 
between two products in the case studies for the model to 
correct efficiently.

In the first case study, D1 shifted to the right of the 
map in comparison to T1 and T1’. The introduction of 
35% of pea flour in a 0% pea cake caused an increase in 
crumb stiffness according to the first component, that 
was further corrected as C1 shifted back near T1 and T1’ 
(Fig. 3a). According to the other significant response 
variables in the PC1–PC2 map, there was a decrease in 
crumb lightness and cell fineness for D1 in comparison to 
T1 and T1’ that was also corrected in C1. While the vari-
ation in crumb lightness is visible (Fig. 4), it is doubtful 
whether the variation in cell fineness would be perceived 
by trained panelists. Finally, the addition of pea flour 
did not cause any perceptible change in density and cell 
wall thickness, neither did the correction by adjusting the 
processing parameters (Fig. 3a). In the PC2–PC3 map, 
all symmetry variations between the products are smaller 
than the distance between T1 and T’1 (Fig. 3c) so it can-
not be concluded a perceptible variation in symmetry.

In the second case study, the increase in the proportion 
of pea fine fraction from 50 to 100% in a 35% pea cake 
caused a modification of instrumental properties that barely 
outweighed the differences due to processing reproduc-
ibility (Fig. 3b) except for symmetry (Fig. 3d). Indeed, the 
photos of the cakes revealed fewer differences between the 
target and degraded products than in the first case study 
(Fig. 5). The position of C2 in comparison to D2 and T2 
and T2’ showed that the changes in processing parameters 
satisfactorily corrected symmetry (Fig. 3d). However, the 
other variables were not corrected (stiffness and crumb light-
ness), degraded (cell fineness), or overcorrected (density and 
wall thickness) (Fig. 3b). Overall, these results show that 
the multiobjective model was able to satisfactorily correct 
some modifications in the cake properties when they exceed 
the differences corresponding to processing reproducibility. 
To further evaluate the model efficiency, the instrumental 
correction of the properties should now be compared to the 
changes in properties actually perceived by trained panelists.

Sensory Characterization

A principal component analysis (PCA) was performed of 
the sensory properties of the 12 products according to the 16 
attributes with their instrumental properties as supplementary 
observations. Fig. 6a shows the loadings plot according to 
the two first dimensions with categorization of the attributes 
depending on their orientation. The first component accounted 
for 55% of the variance and expressed the attribute “pasty-
sticky” versus, on one hand, the firmness attributes (oral 
firmness and firmness when touched) correlated with crumb 
color and, on the other hand, the “toasted” attribute correlated 

Fig. 2   Photos of the longitudinal sections of the cakes and (on the 
right) close ups of the crumb structure of the products representa-
tive of the six clusters. Mean values of the instrumental properties are 

given for each product, with minimum and maximum values in ital-
ics and bold. CF, cell fineness; CWT, cell wall thickness; L*, crumb 
lightness
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with crust color (Fig. 6a). Instrumentally, it was observed that 
crumb stiffness varied inversely with crumb lightness and cell 
fineness (Fig. 1b). Here, instrumental crumb lightness and 
cell fineness were negatively correlated with sensory “firm-
ness when touched” (−0.798 and −0.854 respectively) and 
crumb color (−0.865 and −0.839) and positively correlated 
with the “pasty-sticky” attribute (+ 0.900 and + 0.853). 

Instrumental crumb stiffness was positively correlated with 
sensory “firmness when touched” (+ 0.726) and oral firmness 
(+ 0.685) although it did not appear clearly in the PC1–PC2 
plane. The lower firmness value and the darker color of the 
crumb perceived by the panelists were thus related to a lower 
cell fineness measured instrumentally. The cakes with lighter 
and softer crumbs were perceived as stickier after chewing 

Fig. 3   Paths for the optimization of cake quality for case studies 1 (a, 
c) and 2 (b, d) on the product maps of the PCAs of the instrumen-
tal properties in the 56 trials as principal observations (gray-filled  
circle) and instrumental properties of the products representative of 
the design space (black-filled circle) and of the products from the 

case studies (open triangle) as supplementary observations: a, b 
PCAs on PC1 and PC2 (71.6% of information) from case studies 1 
and 2 respectively; b, d PCAs on PC2 and PC3 (38.7% of informa-
tion) from case studies 1 and 2, respectively
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and before swallowing. The finer cell structure of these cakes 
could result in faster kinetics of hydration by saliva that would 
enhance cell breakage and collapse, and early amylolysis, giv-
ing rise to a more adhesive bolus. The correlation between 
toasted flavor and crust color reflected the baking intensity 
of the cake, driven by baking temperature. Cakes baked at a 
higher temperature (200 °C, 180 °C, 160 °C) were perceived 
as less sticky.

The second component accounted for 25% of the vari-
ance and expressed the “in-mouth drying” attribute ver-
sus the “crumbliness” attribute (Fig. 6a). The “volume,” 
“brightness,” and “crumb aeration” attributes grouped in 

the third quartile. Crumb aeration, defined as the dense or 
aerated aspect of the crumb, appeared to be related to the 
total amount of air incorporated in the cake rather than to 
cell fineness per se. The measurement of cell fineness at the 
millimetric scale, as well as cell wall thickness, provided 
additional information to that provided by the panelists’ 
perceptions. According to the regression coefficients of the 
multiobjective model (Monnet et al., 2019c), cake density 
decreases with an increase in mixing speed or baking tem-
perature. The higher volume, crumb aeration, and bright-
ness of the cakes perceived by the panelists could result 
from these factors. The “beany” and “beany persistency” 

Fig. 4   Photos of the longitudinal sections and (on the right) close ups 
of the crumb structure of the products of case study 1. T1, initial tar-
get for the desirability function; T1’, target assessed by descriptive 

sensory analysis; D1, degraded product; C1, corrected product. CF, 
cell fineness; CWT, cell wall thickness; L*, crumb lightness

Fig. 5   Photos of the longitudinal sections and (on the right) close ups 
of the crumb structure of the products of case study 2. T2, initial tar-
get for the desirability function; T2’, target assessed by descriptive 

sensory analysis; D2, degraded product; C2, corrected product. CF, 
cell fineness; CWT, cell wall thickness; L*, crumb lightness
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Fig. 6   Principal component 
analysis (PCA) on the PC1 and 
PC2 plan (80.1% of informa-
tion) of sensory properties as 
principal observations and 
instrumental properties as 
supplementary observations: 
a loadings plot with sensory 
variables relative to PC1 axis 
( ), PC2 axis ( ), relative 
to PC1 & PC2 axes ( ), and 
instrumental variables ( ); 
b product map with the paths 
for the optimization of cake 
quality. In a, the variables that 
are statistically significant in the 
plane are represented in bold 
characters
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attributes were grouped in the fourth quartile. Finally, the 
perceptions of “sweet,” “friability,” and “crack intensity” 
were slightly less well represented in the plane of the two 
first dimensions. This was due to a very high degree of simi-
larity between the products as indicated by the three-way 
ANOVA on the panel performances (§2.5). The depth of 
the crack in the crust was perceived as high as the volume 
of the cake, in accordance with physical observations made 
on pound cake structure (Monnet et al., 2020). The correla-
tion of the “sweet” perception with the instrumental cell 
fineness is an original result that brings reflection back to 
the understanding of perception during oral processing. 
One can assume that a very fine crumb is more extensively 
comminuted in the mouth after one or two bites, as well as 
more extensively soaked by saliva which quickly absorbs 
through the cellular structure thanks to efficient capillary 
mechanisms. Thus, saliva gets in a faster contact with all 
cellular surface area, solubilizing more sucrose than for a 
coarser crumb.

Fig. 6b shows the product map. The 12 products were 
evenly distributed in all directions. In the first case study, the 
introduction of 35% of pea flour in a 0% pea cake caused a 
modification according to the first component that was prop-
erly corrected (Fig. 6b). Degraded 35% pea cakes (D1) were 
perceived as less sticky, with firmer and darker crumb, with 
a darker crust and a more toasted flavor than target 0% cakes 
and corrected 35% pea cakes. The addition of pea flour using 
the same processing settings led to the formation of a coarser 
and stiffer crumb as described in Monnet et al. (2020). Bigger 
cells were obtained because of the reduced capability of the 
legume-enriched batter to retain air bubbles during baking, 
due to its lower viscosity and/or the distribution of bubbles 
in the batter (Ronda et al., 2011). For the corrected 35% pea 
cakes, the increase in both egg and sugar mixing rate and 
oil mixing time led to a decrease in bubble sizes in the bat-
ter and thus in the crumb cell sizes (i.e., an increase of the 
crumb fineness) (Monnet et al., 2020). This is in agreement 
with the variation observed in instrumental crumb firmness 
and lightness. However, according to the second component, 
one modification was not corrected and was even increased 
by correction. It corresponded to the decrease in crumbli-
ness and to the increase in the “in-mouth drying” attribute. 
Products 9 and 29 that also received high “in-mouth dry-
ing” scores were characterized by a high pea flour content 
(60%) and high mixing speeds (Table 1). The addition of pea 
flour from 0 to 35% caused a first increase in the “in-mouth 
drying” perception and the correction with a higher liquids 
mixing speed exacerbated it because this dimension was not 
taken into account in the multiobjective model which focused 
only on structure and texture properties. Furthermore, the 
addition of pea flour caused an increase in the “beany” and 
“beany persistency” perceptions that was not corrected. The 
presence of these sensory off-notes in high protein foods were 

described in literature. Indeed, legume proteins are known to 
introduce unpleasant off-notes (bitter, beany notes, etc.) what-
ever the food applications (Chumchuere et al., 2000; Jayasena 
& Nasar-Abbas, 2012; Roland et al., 2017). The reason of 
the increased perceptions of in-mouth drying, pasty, sticky 
attributes, and the reduced perception of crumbliness in the 
corrected 35% pea cake could be related to oral processing. 
The crumb of the corrected 35% pea cake might be more 
extensively soaked by saliva than that of the degraded 35% 
pea cake, becoming stickier on the tongue, without breaking 
into small pieces. This phenomenon might contribute to a 
slightly increased residence time in mouth, which could pro-
mote off-flavor perception. These off-notes could induce dis-
liking by the consumers. This was also a dimension that was 
not monitored by the model, but that could be corrected — if 
desired — by a flavoring of the formula. Finally, the panelists 
perceived no change in the “volume,” “crumb aeration,” and 
“brightness” attributes between T1’ and D1, but a decrease 
in them for C1. Compared to the instrumental variation in 
density, one can say that the panelists were highly sensitive 
to a small instrumental variation.

In the second case study, displacement of the products 
within the PCA map was much less important. Only a 
slight modification according to the second component was 
observed between T2’ and D2, the latter being grouped with 
C2. Thus, the panelists perceived the degraded and corrected 
product as a little less crumbly and a little more “in-mouth 
drying” than the target product. This confirmed that the 
modification was barely perceptible from a sensory point of 
view like from an instrumental point of view. Secondly, this 
confirmed that the use of our multiobjective model for flour 
granulometry variations was neither necessary nor efficient 
for modifications smaller than differences corresponding to 
processing reproducibility. Interestingly, the panelists per-
ceived C2 as almost the same as D2, while its instrumental 
properties were closer to D2 than were those of T2’ because 
of several overcorrections (Fig. 3b, d).

Conclusions

Multiobjective models that make it possible to predict the 
best settings of several processing parameters to reach a 
trade-off between several target properties are very valu-
able tools for industry. Our model enabled monitoring of 
cake properties after a variation in flour quality (wheat-pea 
blend composition, pea fine fraction proportion) among 
a range of cake physical properties. Through two differ-
ent case studies, it was shown that correction proposed by 
the model was effective when the modification caused by 
flour variation exceeded model sensitivity (i.e., when the 
difference in properties to be corrected is less than once 
the difference due to usual processing reproducibility, for 
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at least one property). Otherwise, treatment by the model 
could lead to overcorrections like in the second case study. 
Sensory analysis of the products enabled the identification 
of convergences between measured physical properties and 
sensory attributes concerning cake volume or density, crumb 
firmness, color, cell fineness measured directly, or through 
indirect attributes like “pasty-sticky.” In this respect, the 
sensory correction efficiency of the model was adequate. 
Moreover, the sensory analysis revealed additional modi-
fications like beany taste, aftertaste, and in-mouth drying 
that were not taken into account in the model, but could be 
overcome by a change in the formula or could be considered 
as new aromatic profiles. Beany notes are unusual notes that 
consumers are not familiar with at the moment. However, 
one can imagine that these appreciations might change with 
time. Even if the multiobjective model is based on instru-
mental variables, it was shown to be a very efficient tool to 
manage variations in flour composition simply by modifying 
processing parameters.
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