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Abstract
Low-cost plant and algal biomass are increasingly demanded as a source of proteins, and also, peptides and amino acids are
gaining interest for their biological and functional properties. The reduction in chemicals, time and energy, and the integral
valorization of the raw materials in the framework of biorefineries are major concerns in the development of environmentally
friendly processes. Subcritical water technology is an efficient green technique useful both for extraction and for hydrolysis of
protein and other fractions (lipid, carbohydrates, phenolics). However, adequate selection of operational conditions is needed in
order both to maximize their extraction yield and to avoid degradation into monomeric units and decomposition products. This
review summarizes the major features of subcritical water–based processes for the extraction/hydrolysis of protein. In order to
valorizate other valuable fractions from agro-food wastes and algal biomass, optimal conditions should be established as a
compromise solution. Alternatively, stagewise operation to sequentially obtain the target fractions could be desirable.
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Introduction

In a scenery where the need for renewable and sustainable
sources of proteins is growing, but the animal protein produc-
tion has a high environmental impact, the vegetarian popula-
tion increases, and some alternative sources such as food
grade insects are not universally accepted (Pojić et al. 2018),
plant and algal proteins are increasingly demanded (Du et al.
2020). Agro-food wastes are generated worldwide and their
valorization offers not only a low-cost protein source, but also
a solution to an environmental problem. Micro- and
macroalgae are advantageous in relation to their rapid growth
without requiring land and fertilizers.

The term peptides refer to those compounds with 2–20
amino acid residues, which in addition to their nutritional
value present a variety of physiological activities and are
named bioactive peptides (Hou et al. 2017; Baig et al. 2018;
Bhandari et al. 2020). Bioactive peptides are more bioavail-
able and less allergenic when compared with total proteins, or
high-molecular-weight polypeptides, usually with more than
70 amino acid residues. Their pharmacological use, either
purified or in mixtures, for the treatment and prevention of
various diseases also depends on their absorption and bio-
availability (Udenigwe and Aluko 2012) and on the different
regulations found in different territories (Chalamaiah et al.
2019). Amino acids also present applications in nutraceuticals
and ingredients for functional foods and feeds, and
biostimulants in agriculture (Montesano et al. 2020).

Numerous health benefits have been attributed to protein
hydrolyzates (Ashaolu 2020) and bioactive peptides, for the
risk reduction, treatment, and management of chronic and
degenerative diseases (Baig et al. 2018; Katayama and
Nakamura 2019; Lammi et al. 2019; Mada et al. 2019; Patel
et al. 2019; Montesano et al. 2020). Their different actions
include antihypertensive (Abdelhedi and Nasri 2019;
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Premkumar et al. 2019; Jahandideh andWu 2020), antimicro-
bial (Baig et al. 2018; Bártová et al. 2019; Oshiro et al. 2019),
antiinflammatory (Ahn et al. 2017; Fernández-Tomé et al.
2019; Guha and Majumder 2019; Reyes-Díaz et al. 2019),
antioxidant (Fernández-Tomé et al. 2019), immunomodulato-
ry (Fernández-Tomé et al. 2019), cytotoxicity against different
cancer cells (Baig et al. 2018; Marquez-Rios and Del-Toro-
Sánchez 2018; Aaghaz et al. 2019; Guidotti et al. 2019), anti-
platelet aggregation (Rengasamy et al. 2019), antidiabetes
(Baig et al. 2018; Kehinde and Sharma 2018; Hu et al.
2019; Moreno-Valdespino et al. 2020), antiobesity (Lee
et al. 2017), and bone health properties (Ahn and Je 2019).
Their inclusion as protein hydrolyzates in diets can ensure
desirable rates of growth performance and feed efficiency in
terrestrial animals and fish (Hou et al. 2017). Some of these
peptides are multifunctional (Li et al. 2019a), affecting more
than one physiological function, with low negative side effects
and reduced costs (Lammi et al. 2019). Bioactive peptides can
be used in cosmeceuticals (Lima and Moraes 2018), based on
their properties in relation to slow aging (Ahsan 2019; Apone
et al. 2019; Bhullar and Wu 2020), attenuation or prevention
of different skin dysfunctions (Lima and Moraes 2018) and
for conferring moisturizing properties (Ahsan 2019; Aguilar-
Toalá et al. 2019). These peptides also possess functional
properties determined by the protein structure and interactions
with other molecules and contributing to the physical proper-
ties of the food or cosmetic product. The most important are
water-holding capacity and solubility, foaming capacity,
emulsifying, and gel forming properties.

A number of recent reviews on the potential of bioactive
peptides can be found, including purification, identification,
bioavailability, and safety aspects (Hajfathalian et al. 2018;
Chakrabarti et al. 2018; Wang et al. 2018; Bhandari et al.
2020; Ghanbari 2019), the techniques for protein extraction,
the production methods of hydrolyzates and peptides
(Hajfathalian et al. 2018; Zamora-Sillero et al. 2018; Li et al.
2019a; Bhandari et al. 2020), in biorefineries (Pojić et al.
2018; Du et al. 2020). Among emerging extraction tech-
niques, subcritical water (SW) is an environmentally friendly
technology (King 2006) valid for the extraction of bioactives
(Cervantes-Cisneros et al. 2017; Youssef et al. 2019; Zhang
et al. 2020). It offers advantages to extract protein from food
industry wastes, including plant and animal sources, and for
the preparation of hydrolyzates and peptides with functional
and antioxidant properties (Marcet et al. 2016), being an alter-
native to conventional methods using chemicals or enzymes
(Zhu et al. 2015; Powell et al. 2016). Ziero et al. (2020)
discussed the economics, extraction routes, conditions, and
reactor configurations for protein extraction and hydrolysis
during subcritical and supercritical water processing of proteic
materials with the aim of obtaining amino acids.

The present review presents the potential of subcritical wa-
ter as a tool for the extraction and hydrolysis of protein in the

context of biorefineries with the aim of achieving an integral
valorization of biomass. If the final application of hydroly-
zates and peptides is related to food, nutraceutical, and cos-
meceutical applications, the consumer preferences prioritize
the utilization of plant and algal sources. Since subcritical
water processing can simultaneously fractionate and hydro-
lyze the different components of the raw material, the need
of a careful selection of operational conditions to attain an
optimal yield of the target products is discussed.

Sources

Bioactive peptides and hydrolyzates have been initially pro-
duced from food (Chakrabarti et al. 2018; Udenigwe and
Aluko 2012; Premkumar et al. 2019; Priya 2019; Liu et al.
2020; Montesano et al. 2020), including legumes (Reyes-Díaz
et al. 2019; Moreno-Valdespino et al. 2020), potato (Bártová
et al. 2019), defatted soy meal (Ashaolu 2020), and
byproducts from terrestrial animals, and fish and their
byproducts (Zamora-Sillero et al. 2018; Wang et al. 2019a).
Despite hydrolyzates and peptides from food sources are gen-
erally considered more “natural,” impart less adverse effects,
and are more accepted (Chakrabarti et al. 2018; Kehinde and
Sharma 2018), some of them are new without a history of safe
use and may present allergic or toxic concerns (Liu et al.
2020).

Peptides can also be obtained by chemical synthesis, re-
quiring amino acid mixtures as starting material and following
the rational design, directed evolution, or computational
methods to improve the properties (Adhikari et al. 2020).
However, both synthetic and animal-derived peptides are pro-
gressively less accepted, due to the presence of toxic solvent
residues after the chemical synthesis or the risk of infections
from pathogenic virus as well as the presence of dysfunctional
protein aggregates in the second case (Apone et al. 2019).
Therefore, the increasing consumer demand for less allergenic
and vegan ingredients (Apone et al. 2019) favors the utiliza-
tion of alternative sources for the production of bioactive pep-
tides (Montesano et al. 2020). Furthermore, the valorization of
wastes from agro-industrial activities (Marciniak et al. 2018)
in cost-effective, sustainable, and environmentally friendly
processes tends to the circular economy and zero waste
(Chakrabarti et al. 2018; Pojić et al. 2018; Montesano et al.
2020).

Agro-food wastes contain not only 10–40% protein, but
also other components (Table 1). Defatted meal remaining
after oil extraction is an excellent protein source, soymeal
was initially the byproduct of oil extraction, but both the qual-
ity and content in the defatted meal makes soybean protein a
valuable product (Khuwijitjaru et al. 2011). It is mentioned
here as a model, more than a waste and underused source.
Micro- and macroalgae are attractive sources of protein
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hydrolyzates and peptides (Li et al. 2019a), since they are safe,
well tolerated (Apone et al. 2019; Abdelhedi and Nasri 2019;
Hu et al. 2019), and increasingly demanded (Soto-Sierra et al.
2018).

Microalgae, with a high content of nutritious and low al-
lergenicity protein, contain other valuable compounds, includ-
ing carbohydrates, lipids with high omega-3 content, and car-
otenes. They present a rapid growth from a variety of low-cost
nutrients, do not compete with food production, and can be a
raw material for food, fuels, and chemicals (Garcia-Moscoso
et al. 2013; Soto-Sierra et al. 2018).

Red seaweeds possess a higher protein content than other
groups, up to 50% dry weight (d.w.), but macroalgae contain
an important fraction of polysaccharides or hydrocolloids and
also possess high levels of minerals and vitamins, which
makes them an interesting source for biorefining. Compared
with terrestrial biomass, seaweeds offer advantages since they
do not need land or freshwater and have a rapid growth and
biomass yield. Another low-cost source susceptible of valori-
zation is macroalgal blooms (Torres et al. 2019a, b). Marine
plants, such as mangroves, are used traditionally as herbal
medicine (Pangestuti et al. 2020).

Protein Extraction and Hydrolysis Techniques

Conventional extraction of protein from biomass relies on the
use of chemicals (acid, alkali) (Garcia-Moscoso et al. 2013;
Du et al. 2020). The further production of protein hydroly-
zates, composed of large peptides, small peptides, and free
amino acids, can be addressed using chemical synthesis or

by partial digestion of proteins, by chemical, enzymatic, or
microbial hydrolysis (Mirmoghtadaie et al. 2016).

Acid hydrolysis offers the advantage of low cost, but re-
sults in the complete destruction of tryptophan, a partial loss of
methionine, and the conversion of glutamine into glutamate
and asparagine into aspartate (Hou et al. 2017). Alkaline hy-
drolysis with calcium, sodium, or potassium hydroxide has the
advantage of a low cost and a complete recovery of trypto-
phan. However, due to the complete destruction of most ami-
no acids, it is not widely used in the food industry (Hou et al.
2017). Some amino acids can undergo chemical alterations
during processing such as decomposition, racemization, dehy-
dration, and glycation. Heat- and alkali-treated proteins often
induce formation of cross-linked amino acids, and undesirable
products can also be generated in the presence of other com-
ponents of the solid matrix, such as carbohydrates, lipids, or
secondary metabolites, susceptible of interacting with proteins
(Liu et al. 2020).

The enzymatic hydrolysis is valid for different protein
sources (Montesano et al. 2020) and can be performed under
mild conditions with precise control of the degree of hydroly-
sis, minimizing side reactions and the presence of toxic
chemicals in the products. The most frequently used enzymes
are from plant, from animal, and frommicrobial origin, which
have low production cost and good stability and specificity
(dos Santos Aguilar and Sato 2018; Mazorra-Manzano et al.
2018). The relatively high cost and the potential presence of
enzyme inhibitors in the raw protein materials are major dis-
advantages (Hou et al. 2017). Microorganisms produce prote-
ases that can hydrolyze proteins into peptides and free amino
acids, and other enzymes that can degrade complex

Table 1 Proximate composition of different agro-food wastes and algal sources

Source Content (wt%, d.b.) Reference

Protein Lipids Carbohydrates Phenolics Ash

Agro-food byproducts and wastes

Brewer’s
spent
grain

10–26 4 Du et al. (2020)

Okara 19–37 4 80 Wiboonsirikul et al. (2013); Li et al. (2019b)

Deoiled
bran

15 Watchararuji et al. (2008)

Deoiled
seeds

20–50 1–12 25–43 5–8 Ho et al. (2007); Khuwijitjaru et al. (2011); Pińkowska et al. (2013)

Algae

Microalgae 15–65 2–22 8–57 5–7 Garcia-Moscoso et al. (2013); Thiruvenkadam et al. (2015); Asiedu et al. (2018);
Du et al. (2020); Zainan et al. (2020)

Macroalgae

Brown 3–15 1–7 35–70 1–6 15–44 El-Baky et al. (2009); Holdt and Kraan (2011); Jiménez-Escrig et al. (2012); Cian
et al. (2015); Susanto et al. (2016); Flórez-Fernández et al. (2019); Park et al.
(2019); Neto et al. (2018); Torres et al. (2019a, b)

Green 9–26 1–3 38–46 1–5 11–26

Red 35–47 1–5 18–76 1–3 8–29
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carbohydrates and lipids. One major advantage of fermenta-
tion is the possibility of removing hyper-allergic or
antinutritional factors, but microbial hydrolysis presents rela-
tively high costs (Hou et al. 2017).

Another challenge to be considered for the production of
protein hydrolyzates and peptides is the development of effi-
cient and scalable methods, demanded to avoid chemicals or
the need of costly enzymes and prolonged times for modifying
functionality (Mirmoghtadaie et al. 2016; Hou et al. 2017;
Chakrabarti et al. 2018; Soto-Sierra et al. 2018; Montesano
et al. 2020). Among them are microwave, ultrasound, high-
voltage pulsed electric field, high hydrostatic pressure–
assisted enzyme hydrolysis (Ozuna et al. 2015; Marciniak
et al. 2018; Liu et al. 2020), and water under subcritical con-
ditions (Ma et al. 2018; Zhang et al. 2019a, b; Wang et al.
2019b).

Subcritical Water Processing

Potential for Extraction and Hydrolysis

Subcritical water (SW) is found at 100–374 °C, during oper-
ation under pressures up to 22 MPa in order to maintain its
liquid state. Under these conditions, water presents unique
properties, the viscosity and density decrease, but the com-
pressibility is low. The dielectric constant decreases and the
hydrogen bonding structure is weakened, facilitating the sol-
ubilization of apolar components. Furthermore, the greater
ionic product, compared with that of water at atmospheric
conditions, favors the catalytic action of SW and enhances
depolymerization of polysaccharides to oligomers and to mo-
nomeric units, as well as the generation of smaller soluble
protein fractions and amino acids, which could be further de-
g raded (Qui ta in e t a l . 2006 ; Ha ta e t a l . 2008 ;
Sereewatthanawut et al. 2008; Zainan et al. 2019). The possi-
bility of tuning the properties of water at elevated tempera-
tures and pressures makes it a promising reaction medium in
short residence times and with high rates of conversion
(Rogalinski et al. 2008; Brunner 2009). Alternative names
used for subcritical water processing include hot compressed
water, autohydrolysis, steam explosion, pressurized low po-
larity water, or liquid hot water (Garrote et al. 1999; King
2006; Ho et al. 2007; Kazan et al. 2015).

Subcritical water extraction is a technically efficient, inex-
pensive, scalable, and environmentally friendly technology.
Compared with operation at atmospheric conditions, SW ex-
traction is faster and more efficient for extraction and depoly-
merization. Furthermore, the possibility of avoiding the dry-
ing stages is particularly useful for algal biomass (Garcia-
Moscoso et al. 2013; Saravana et al. 2016a, b), but has also
been reported for plants and mushrooms (Garrote et al. 1999;
Marcet et al. 2016; Powell et al. 2016; Gallego et al. 2019).

Subcritical water hydrolysis can be an alternative, efficient,
cheap, and fast alternative to enzymatic digestion for the pro-
duction of peptides and amino acids (Aida et al. 2017). The
secondary reactions involving decarboxylation, deamination,
transamination, and oxidation lead to different amino acid
profiles (Pińkowska and Oliveros 2014; Watchararuji et al.
2008). Based on studies with model animal proteins, Powell
et al. (2016) observed that SW allows more than 80% peptide
production, comparable to trypsin hydrolysis. However, other
hydrolysis products can be found due to modifications of ami-
no acid side chains, an effect highly influenced by temperature
and heating modes (Fan et al. 2020). Usually irreversible first-
order kinetics is used to describe the protein hydrolysis to
amino acids (Marcet et al. 2016), but also, a simplified mech-
anism of protein aggregation with zero-order kinetics and next
disaggregation and decomposition following second-order
and zero-order kinetics, respectively, were proposed for the
production of polypeptides and amino acids (Sunphorka et al.
2012a) or a second-order reaction kinetics for the hydrolysis
to peptides and zeroth order for the production of amino acids
(Garcia-Moscoso et al. 2013).

The reader can find excellent compilations of the condi-
tions defined in different studies with subcritical water for
the extraction of protein and the further hydrolysis to peptides
and amino acids from different plant and animal sources
(Marcet et al. 2016; Lamp et al. 2020). When different com-
ponents are desired, the optimal yields for each of them have
been reported at different temperatures, as summarized in
Table 2 for some selected examples.

Simultaneous or Cascade Extraction in the Context of
Biorefineries

The plant and algal materials used as protein sources have a
complex composition. Usually other fractions with commer-
cial value can be obtained from different protein sources, i.e.,
cellulose, hemicelluloses, lignin, and free phenolics from
plant residues (Viriya-Empikul et al. 2012; Getachew and
Chun 2017) and food wastes (Wiboonsirikul et al. 2013);
oil, carbohydrates, and phenolics from oil seeds (Ho et al.
2007; Ndlela et al. 2012; Ravber et al. 2015a, b; Pińkowska
et al. 2019); and lipids, pigments, and polysaccharides from
algae (Fu et al. 2018). Optimal operational conditions should
consider their simultaneous or their sequential extraction. The
simultaneous extraction of other components provides the hy-
drolyzates interesting biological and functional properties,
particularly derived from the enrichment in phenolics and
sugars (Watchararuji et al. 2008; Park et al. 2019), and the
stronger hydrophobic interactions due to the accumulation of
flavonoids at the interface enhance the physical and oxidative
stability of emulsions (Chen et al. 2016).

Different conditions are required due to different suscepti-
bility of the components. In a study on the hydrolysis kinetics
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of model biopolymers, starch, cellulose, and bovine serum
albumin, in a continuous-flow reactor, Rogalinski et al.
(2008) confirmed that the peptide bonds in proteins exhibited
higher stability compared with the β-1,4- and β-1,6-glycosid-
ic linkages in cellulose and starch, respectively. Operating in
batch mode during a fixed time, a slightly lower temperature
was preferred for the extraction of carbohydrates than for
protein. Wiboonsirikul et al. (2007a) found for black rice bran
maximum carbohydrate yield at 200 °C, and protein at
220 °C, but the phenolic compound maximum occurred at a
higher value; Chiou et al. (2010) selected 180 °C for carbo-
hydrate and 210 °C for protein from rice bran, but for the
extraction of antioxidant compounds, 20% ethanol at 237 °C
was more efficient than SW (Chiou et al. 2012). Kataoka et al.
(2008) found the highest yield and saccharide content at
200 °C for wheat bran, whereas the protein, total phenolic,
hydroxymethylfurfural, and furfural contents were the highest
at 240 °C, as well as the radical scavenging activity and the
protective action against linoleic acid oxidation at 250 °C.
Khuwijitjaru et al. (2011) reported maximum carbohydrate
and protein contents from defatted soybean meal at 175 °C

and 225 °C, respectively. Wiboonsirikul et al. (2013) obtained
the highest carbohydrate content from okara at 170 °C, the
highest protein content at 240–260 °C, and the radical scav-
enging activity at 240 °C. Nomura et al. (2019) reported the
highest content of carbohydrates at 180 °C, protein at 200 °C,
and the antiinflamamtory apocynin at 180–260 °C from
Mentha arvensis leaves. Ho and Chun (2019) found the max-
imum amoun t o f s ug a r s and f l a vono i d s f r om
Pseuderanthemum palatiferum at 130 °C, but for saponin,
phenolics, and protein at 170 °C, 190 °C, and 230 °C, respec-
tively. SW extraction of black rice bran provided maximum
yields, carbohydrate and protein contents at 200 °C and anti-
oxidant properties at 260 °C (Wiboonsirikul et al. 2007b).

Phusunti et al. (2017) reported the highest carbohydrate
removal from microalgae at 180 °C and protein removal at
200 °C. Gereniu et al. (2017) proposed the operation at 150 °C
to maximize sugars from Kappaphycus alvarezii, whereas
proteins and phenolics and antioxidant properties were best
extracted at 270 °C. Pangestuti et al. (2019) reported the
highest sugar content from Hypnea musciformis at 120–
180 °C, whereas the highest protein and phenolic yields were

Table 2 Examples of the optimal conditions during subcritical water extraction of proteins, and other compounds from different sources

Operational conditions1: T (°C); t (min); flow rate2 Reference

Protein Carbohydrates Phenolics Oil

Agro-food wastes

Black rice bran 220, 5 200, 5 Wiboonsirikul et al. (2007a)

Brewer’s spent grain 200, 20, 62 Du et al. (2020)

Defatted rice bran 200–220, 5–30 180–200, 5 240–260, 5 Wiboonsirikul et al. (2007b); Sereewatthanawut et al. (2008);
Watchararuji et al. (2008); Chiou et al. (2010)

Defatted flaxseed 160, 2402 160, 2402 190, 1202 Ho et al. (2007)

Okara 240, 5 170, 5 240, 5 Wiboonsirikul et al. (2013)

Rapeseed meal 205, 51 (AA) 220, 35 (MS) Pińkowska et al. (2013)

Soybean flakes 234–225, 5–30 175, 5 150, 30 Ndlela et al. (2012)

Wheat bran 240, 5 200, 5 240–250, 5 Kataoka et al. (2008)

Microalgae

Chlorella pyrenoidosa 270, 10 220, 5 Zainan et al. (2020)

Chlorella vulgaris 200–281, 17–180 180–277, 5–180 Awaluddin et al. (2016); Phusunti et al. (2017)

Macroalgae

Hypnea musciformis 210, 10 180, 10 210, 10 Pangestuti et al. (2019)

Kappaphycus alvarezii 270, 5 150, 5 270, 5 Gereniu et al. (2017)

Himanthalia elongata 180 ni 160 ni 220 ni Cernadas et al. (2019)

Laminaria ochroleuca 220 ni 160–180 ni 220 ni Flórez-Fernández et al. (2019)

Pyropia yezoensis 180, 30 120, 30 210, 30 Park et al. (2019)

Saccharina japonica 170, 5 140, 5 Saravana et al. (2016b)

AA amino acids, MS monomeric sugars
1 Note that if nothing is indicated, the operation is isothermal, ni non-isothermal
2 If nothing is indicated, operation is performed in batch mode, in semicontinuous or in continuous operation flow rate is indicated
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obtained at 210 °C. Park et al. (2019) found optimal overall
hydrolysis efficiency and protein yield of Pyropia yezoensis at
180 °C, whereas the maximal phenolics and antiradical prop-
erties were found at 210 °C, and the maximum total sugar
content at 120 °C and the reducing sugar content at 180 °C;
also, different optimal temperatures for essential and non-
essential amino acids were reported. Saravana et al. (2016a)
found the maximum protein content at 170 °C for Saccharina
japonica (S. japonica).However, the maximal crude fucoidan
and phlorotannin contents were found at 140 °C. Saravana
et al. (2016b) also found the maximum for the recovery of
sugars and polyols from S. japonica at 180 °C, and also for
total amino acids, the non-essential showing higher yield than
essential amino acids. However, the protein and mineral (Mg,
Ca, K, Na) contents occurred at temperature higher than
300 °C. Flórez-Fernández et al. (2019) applied non-
isothermal heating up to 220 °C to Laminaria ochroleuca, to
obtain the highest extraction yield, phenolic and protein con-
tents, and antioxidant capacity, but the maximal alginate ex-
traction and viscoelastic properties were achieved at 160 °C
and the fucose and sulfate content at 180 °C.

Simultaneous extraction of different biomass components
is possible when the required conditions are coincident or if
compromise conditions are established. These have been re-
ported at short times for the recovery of protein and carbohy-
drates from defatted rice bran at 200 °C (Wiboonsirikul et al.
2007b; Sereewatthanawut et al. 2008) and 160 °C (Viriya-
Empikul et al. 2012), for protein and for radical scavenging
properties from okara treated at 240 °C (Wiboonsirikul et al.
2013), or at 120 °C for protein and phenolics frommangroves
(Pangestuti et al. 2020). Awaluddin et al. (2016) proposed
more moderated conditions for the joint extraction of carbo-
hydrates and protein from Chlorella vulgaris compared with
those leading to maximal protein yields.

However, when different conditions are needed for differ-
ent components and the valorization of all of them is desired,
cascade operation seems preferable to increase the yields and
to substantially reduce the formation of undesired degradation
products (Reisinger et al. 2018). The integral valorization of
agro-industrial, food, forest, and marine sources could be ad-
dressed with an initial subcritical water extraction stage. The
extraction could be defined to obtain initially carbohydrates,
then protein and oil in severity growing sequence (Ravber
et al. 2015a, b). When a higher quality oil is desired, a differ-
ent sequence is proposed, i.e., extraction with supercritical
carbon dioxide and further extraction of proteins with pressur-
ized hot water from the olive pomace oil, followed by more
severe conditions to obtain fermentable sugars (Kazan et al.
2015). SW serves as a pretreatment to obtain a microalgal
solid with less N-containing compounds and higher long-
chain fatty acid content, facilitating the further pyrolysis re-
garding the energy consumption and the quality of the biooil
(Phusunti et al. 2017; Thiruvenkadam et al. 2015). Operation

at higher temperatures (350 °C) could be of interest for the
energetic valorization from algal components (Cui et al.
2020).

Figure 1 illustrates a very simple flow diagram of general
biorefinery processes, showing in gray areas the stages that
could be replaced by subcritical water processing for both the
extraction and the production of protein hydrolyzates and pep-
tides from agro-food wastes and micro- and macroalgal
biomass

Modes of Subcritical Water Operation

The efficiency of the SW process is determined by different
operational variables that should be independently optimized
for each raw material and final product. Most studies have
been performed in batch-type stainless steel vessel, but also
in semicontinuous and in continuous operation in a range from
lab to bench scale (Khuwijitjaru et al. 2011; Sunphorka et al.
2012b; Wiboonsirikul et al. 2013; Hwang et al. 2015;
Saravana et al. 2016b; Zainan et al. 2019). Before operation,
water can be sonicated or bubbled with nitrogen gas to in-
crease the reactor pressure and to purge and displace oxygen
avoiding oxidation reactions (Plaza et al. 2010; Khuwijitjaru
et al. 2011; Viriya-Empikul et al. 2012; Saravana et al. 2016a;
Phusunti et al. 2017; Park et al. 2019). During semicontinuous
operation, with the packed raw material, a sequence of frac-
tions with different compositions can be eluted; increased ef-
ficiency was reported using co-packing materials (such as
glass beads) (Ho et al. 2007). A preliminary static stage before
dynamic operation has been described; in this case, the influ-
ence of the flow rates could be attenuated (Viriya-Empikul
et al. 2012). Continuous operation provides higher productiv-
ity than batch one, but during continuous operation (Saravana
et al. 2016b; Du et al. 2020), but both the radial temperature
distribution of slurries (Fu et al. 2018) and the rheological
properties of the microalgal suspension, affected by the starch
gelatinization and protein denaturation (Zhang et al. 2018),
can influence the yield of carbohydrates and proteins.

One strategy suitable for materials containing components
with different depolymerization kinetics in SW, and for work-
ing in continuous-flow scalable systems, is flash hydrolysis.
Several operations (centrifugation, concentration, and drying)
could be avoided, and the residence time can be precisely
controlled to several seconds avoiding prolonged preheating
and cooling times (Garcia-Moscoso et al. 2013). It has been
reported for protein extraction from microalgae (Asiedu et al.
2018), and to selectively remove inorganic elements, hydro-
lyze proteins, and preserve lipids of microalgae, proposed for
biofuel production (Garcia-Moscoso et al. 2013, 2015).

A modification of SW extraction consists on the steam
explosion, based on exposing the biomass to pressurized
steam, followed by a sudden decompression that breaks the
internal structure during the rapid expansion of the biomass.
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The thermal and physical changes during steam explosion not
only enhance the extraction yield of the protein, some
covalent bonds in the polypeptidic chains can be broken,
and the further recombination forming new bonds can
modify the final structure and surface morphology of
proteins. Zhang et al. (2019a, b) applied it before the oil ex-
traction from camellia seed and found a decrease in the simple
sugars, free amino acids, and lightness of the products, but the
foaming and emulsifying properties increased compared with
the untreated ones. Li et al. (2019b) observed lowered molec-
ular weight of okara polysaccharides and proteins, with in-
creased water solubility, probably by loosening and degrading

the fiber structure, exposing more hydrophilic groups. Steam
explosion pretreatment enhanced the fermentation of sorghum
by increasing the sugar content and changing the physico-
chemical properties (Zhao et al. 2020). Despite acid soaking
could lower the purity of the product, it can increase the yields
(Zhang et al. 2013) and facilitate the hydrolysis of carbohy-
drates and proteins as well as the further fractionation stages
and the better solvent access to lipids (Lorente et al. 2018).

Effect of Operational Conditions During Subcritical
Water Operation

Effect of Pretreatment

Drying and grinding are the usual pretreatment stages, applied
with the aim of stabilizing the raw material during storage and
providing higher solvent accessibility to solutes, respectively.
The type of mechanical pretreatment (flaking, extrusion)
(Ndlela et al. 2012) and defatting (Watchararuji et al. 2008)
also influence the extraction yields. Previous deoiling allowed
lower temperatures for soybean, but not for rice bran
(Sereewatthanawut et al. 2008; Watchararuji et al. 2008).

Effect of Liquid-to-Solid Ratio

The optimal liquid-to-solid ratio has been usually selected as a
function of the raw material and particle size (Awaluddin
et al. 2016) and according to the desired product
(Awaluddin et al. 2016). Values in the range 3–12 are
frequent for the oil and protein extraction from soybean
(Ndlela et al . 2012) and 5–40 for soybean meal
(Khuwijitjaru et al. 2011; Ndlela et al. 2012; Pińkowska
and Oliveros 2014; Hwang et al. 2015), 5–50 for brans
(Watchararuji et al. 2008; Wiboonsirikul et al. 2013), and
up to 210 for flaxseed (Ho et al. 2007). Lower ratios, such
as 2.5 tried for deoiled rice bran, could be limiting since
poor mixing makes external mass transfer difficult
(Watchararuji et al. 2008). Comparable values, 10–50,
have been reported for seaweeds (Santoyo et al. 2011;
Park et al. 2019; Saravana et al. 2016b; Pangestuti et al.
2019), whereas a wider range has been applied to
microalgae, from 6 to 110, including batch and continu-
ously processed slurries (Garcia-Moscoso et al. 2013;
Kumar et al. 2014; Garcia-Moscoso et al. 2013; Phusunti
et al. 2017; Zainan et al. 2019; Fan et al. 2020).

Effect of Operation Severity

Pressure is a key variable to maintain the solvent in liquid
state, but hardly influences its properties. The hardness of
the process is frequently measured with the temperature and
with time (Awaluddin et al. 2016; Pangestuti et al. 2019), or
with a combination of both in a single parameter, which

Fig. 1 Simplified flow diagrams of the processes for the production of
protein hydrolyzates and peptides from agro-food wastes, microalgae,
and macroalgae in the framework of a biorefinery to obtain other valuable
fractions. Note that not all stages are always used during conventional
processing, i.e., solvent extraction or hydrolysis
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allows comparison of different studies. A useful one is the
severity factor log R0, defined by Overend and Chornet
(1987) for the solubilization of hemicelluloses as:

R0 ¼ exp
T−100
14:75

:t
� �

ð1Þ

where R0 is the reaction ordinate (min), T is the temperature of
the process (°C), and t is the reaction time under isothermal
operation (min). It has also been applied to other fractions
from lignocellulosics (Garrote et al. 2017) and to protein sol-
ubilization (Garcia-Moscoso et al. 2015; Lamp et al. 2020). A
combined factor, considering the influence of pH, has been
considered (Lamp et al. 2020). When operation is performed
under non-isothermal conditions, Eq. (2) can be used:

R0 ¼ ∫
0

t F

exp
T tð Þ−100
14:75

:dt
� �

ð2Þ

where T(t) is the temperature versus time profile.
During isothermal extraction of protein, a previous heating

(5–30 min) and a subsequent cooling (5–30 min) stages are
needed (Watchararuji et al. 2008; Khuwijitjaru et al. 2011;
Plaza et al. 2010; Wiboonsirikul et al. 2013). More prolonged
heating time has been also described (50–105 min) (Saravana
et al. 2016b; Park et al. 2019). The severity during these pe-
riods can be defined according to Eq. (2).

Temperature and time should be optimized simultaneously
(Wiboonsirikul et al. 2013). In continuous operation, the flow
rate determines the residence time. Initially higher protein
yield could also be obtained by increasing the hydrolysis time
and/or temperature, but protein denatures at high tempera-
tures, due to destruction of the protein tertiary structure
through the cleavage of its hydrogen bonds (Awaluddin
et al. 2016) and also is decomposed to amino acids and to
organic acids (Sereewatthanawut et al. 2008; Watchararuji
et al. 2008), Similarly, other components are degraded (poly-
saccharides, phenolics). When the proteins are strongly bound
to the cell structure and require a higher severity to be re-
leased, amino acid degradation could already occur (Plaza
et al. 2010; Lamp et al. 2020). Usually, this has been observed
at temperatures in the range 190–270 °C in 15–50 min (Sato
et al. 2004; Hata et al. 2008; Sereewatthanawut et al. 2008;
Pińkowska et al. 2013; Hwang et al. 2015; Ramachandraiah
et al. 2017; Zainan et al. 2019; Lamp et al. 2020).

Based on the compilation of data in Fig. 2, summarizing
the influence of the heating temperature on the extraction yield
and protein content in the extracts, the optimal values can be
attained operating close to 200 °C. In the general reaction of
Fig. 3, they are represented by the oligomeric fraction, which
can be further degraded to amino acids and to decomposition
products. The scheme is valid also for the saccharide and
phenolic fraction, which can also be present in the raw

material. However, the temperature and/or time conditions
leading to maximal yield/content differ for each fraction.

Addition of Chemicals

Integration of alkaline and subcritical water treatment suc-
ceeds for the optimization of protein extraction from biomass.
Alkaline treatment led to high protein extraction yield, but
some unextracted protein remained in the residue, and a fur-
ther SW treatment might further destroy the lignocellulosic
structure of the residue and promotes protein extraction effi-
ciency (Pangestuti et al. 2019; Du et al. 2020). The protein
content from S. japonica was higher during operation at
140 °C with the addition of 0.1% formic acid or 0.1%
NaOH (Saravana et al. 2016a, b). The maximum carbohydrate
recovery from defatted flaxseed meal was obtained at 150 °C
and pH 4, whereas the maximum yield of proteins and lignin
was attained at 160 °C and lignans 170 °C, respectively, in
both cases at pH 9 (Ho et al. 2007). Supawong et al. (2019)
prepared hydrolyzates from hexane defatted rice bran treated
with subcritical alkaline water extraction and further
enzymatic hydrolysis, and the product reduced fat uptake in
fried fish cakes and protected surimi seafood against lipid
oxidation. Addition of acid could make the conditions more
severe and cause undesirable degradation, but it is chosen
when the objective is to produce monomeric sugars, which
can further be used as a carbon source for ethanol
production. In order to avoid excessive degradation,
Reisinger et al. (2018) proposed a cascade process with step-
wise separation of the liquid phase, to increase the yields and
to reduce the formation of excessive amounts of sugar mono-
mers and undesired degradation products from destarched
wheat bran.

Combination with Other Extraction Techniques

The selectivity of subcritical water extraction can be modified
by altering the operational conditions, and the process perfor-
mance can be enhanced by combination with other techniques
(King 2006; Zhang et al. 2020), such as pretreatments with
microwave and ultrasonics or with modifiers such as nitrogen
and carbon dioxide on subcritical water (Getachew and Chun
2017). Coupling of ultrasound and SW extraction to Spirulina
platensis provided higher protein extraction yield in 1 h than
the traditional ultrasound and freeze-thawmethod in 16 h. The
protein can be released by the high frequency vibration of
ultrasound and the degradation of cell wall induced by the
high pressure gradients and shear forces induced by cavita-
tion. Combination of ultrasound with SW was proposed to
obtain antidiabetes peptides (Hu et al. 2019) and this strategy
can also accelerate the degradation of proteins, resulting in a
molecular weight distribution in the range 0.18–5 kDa, where-
as from the combination of ultrasound with freeze-thaw were
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> 5 kDa (Fan et al. 2020). Microwave-assisted SW extraction
lowered processing times compared with the conventional
heating method. Operating in non-isothermal heating up to
150 °C provided maximum for protein content from
Mastocarpus stellatus, but the highest phenolic content, anti-
radical capacity, and sulfate content were observed at 190 °C,

and strongest hydrogels of hybrid carrageenans were found at
170 °C for 6 min (Ponthier et al. 2020).

The SW processing can be applied before or simultaneous-
ly with the enzymatic hydrolysis or can replace the hydrolysis
with enzymes. A previous SW processing stage can enhance
the enzymatic susceptibility (Hwang et al. 2017; Zhang et al.
2019a, b; Wang et al. 2017). Alternatively, prehydrolysis with
an Aspergillus oryzae protease before SW extraction of pro-
tein from soy meal enhanced the extraction yield, but lowered
selectivity. The increased surface hydrophobicity, caused by
protein unfolding, and the formation of small aggregates en-
hanced the emulsifying capacity and emulsion stability. The
presence of secondary activities, such as β-glucosidase, can
enhance the antioxidant capacity, due to the formation of
Maillard reaction products and the release of flavonoid agly-
cones (Lu et al. 2015). However, SW treatment causes heat-
induced conformational changes that could decrease the enzy-
matic susceptibility. After SW treatment at 220 °C for 20 min,
protein solubility increased but the degradation, deamidation,
and small molecular size caused that many hydrolysis sites
disappear and were difficult to access by protease (Hwang
et al. 2017).

Effect of the Operation Conditions
on the Properties of the Products

The antioxidant activity of protein and peptides is closely
related to their structure, those with lower molecular weight
and high degree of hydrophobicity showing more potent an-
tioxidant activity (Pangestuti et al. 2019). The optimal condi-
tions for phenolics and proteins are sometimes coincident,
thus leading to high antioxidant properties, since both contents
could positively correlates with the activity of the extracts
(Wiboonsirikul et al. 2013). The increased antiradical proper-
ties observed at higher temperatures than the maximal for
protein and phenolics would also suggest the relevance of
the products from the carbohydrate degradation and proteins,
both the Maillard browning and the caramelization reactions
(Plaza et al. 2010; Wiboonsirikul et al. 2013; Saravana et al.

Fig. 2 Influence of the temperature during subcritical water extraction of
protein from different sources operating under isothermal conditions
during 5–20 min on protein extraction yield in a batch and b continuous
operation at optimal time, and c protein content in the extract

Fig. 3 General simplified scheme of the sequence of reactions leading to
depolymerization of the target fractions into oligomers, monomers, and
degradation products
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2016b; Gereniu et al. 2017). These reactions also induce color
changes from colorless to slight yellow and to dark brown
(Wiboonsirikul et al. 2007a, b; Watchararuji et al. 2008;
Khuwijitjaru et al. 2011; Ramachandraiah et al. 2017;
Pangestuti et al. 2019; Park et al. 2019).

Also, the color of the extracts changed depending on the
conditions, being a result of the extraction of different com-
ponents, i.e., pigments from algae, or the formation of new
colored compounds. The addition of soy protein hydrolyzates
obtained by SW processing at 180 °C can confer darker color
to pork patties, particularly when used at higher doses; the
water holding capacity and hardness was not affected and
the addition at 0.5–1.5% suppressed oxidative deterioration
of fat-containing meat products during chilled storage (Lee
et al. 2015). Also, a toasty aroma at the lower temperatures
became more pungent with an increase in temperature and
modifications in the particle size and turbidity occur due to
the aggregation and degradation of protein (Zhang et al. 2015;
Saravana et al. 2016b; Gereniu et al. 2017).

The use of excessively high temperatures could cause a
reduction in the high-molecular-mass polysaccharides and
peptides and also some functional properties, i.e., emulsion
stability (Wiboonsirikul et al. 2007a, b).

Subcritical water treatment increased the functionality, sol-
ubility, emulsifying, and foaming properties of protein and
improved the thermal stability (Zhang et al. 2015, 2018;
Park et al. 2019; Du et al. 2020). Foaming and emulsifying
properties are highly influenced by interactions with polysac-
charides, and pH. The emulsification properties were less af-
fected by the extraction temperature; the foaming capacity and
stability were more affected for soy protein from soybean
meal (Khuwijitjaru et al. 2011). Gereniu et al. (2017) found
optimal foaming properties when Kappaphycus alvarezii was
extracted at 150 °C and optimal emulsifying properties at
270 °C, for red and for brown seaweeds. However, the emul-
sifying properties were usually optimal at conditions less se-
vere than those providingmaximal of protein, and closer to the
optimal for carbohydrates (Hata et al. 2008; Kataoka et al.
2008; Wiboonsirikul et al. 2007b). SW treatment of soy pro-
tein isolate at 120 °C induced the formation of larger aggre-
gates with higher surface activity at the air-water and oil-water
interface than native protein due to lower aggregation degree
and more flexible conformation, which improved storage and
freeze-thaw stability against emulsion coalescence due to the
formation of a thicker multilayer (Wang et al. 2018).

Conclusions

In summary, compared with conventional technologies, sub-
critical water provides comparable or higher yields of protein
and amino acids than conventional alkali or enzymatic hydro-
lysis in shorter times. Furthermore, the content of bioactives

was higher in extracts from SW compared with conventional
solvents and exhibited higher antioxidant and antimicrobial
activity and enhanced functional properties. However, the
safety of compounds produced during protein or peptide pro-
cessing should be tested to avoid the possible formation of
allergenic and toxic peptides and hazardous compounds dur-
ing protein extraction and hydrolysis. Furthermore, if these
peptides are destined for functional food ingredients and/or
nutraceuticals, their safety in humans should be evaluated pri-
or to commercialization. In the current scenario demanding
lower cost and non-animal protein sources, a variety of possi-
bilities should be considered for their integral utilization.
Subcritical water processing is a “green” solvent for both the
extraction of bioactive compounds and is attracting interest
regarding waste and biomass conversion. This is an efficient
and clean scalable method for the extraction and hydrolysis of
proteins that should be considered for the integral valorization
of renewable resources. However, for this latter purpose and
considering the ability of this technology to extract and depo-
lymerize other fractions with interesting properties, careful
selection of operational conditions in either simultaneously
or in a sequential process is recommended.

Funding This research was funded by the Ministry of Science,
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